1
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
3
|
Li J, Xu J, Zhang W, Li P, Zhang W, Wang H, Tang B. Detection and Imaging of Active Substances in Early Atherosclerotic Lesions Using Fluorescent Probes. Chembiochem 2023; 24:e202300105. [PMID: 36898970 DOI: 10.1002/cbic.202300105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Atherosclerosis (AS) is a vascular disease caused by chronic inflammation and lipids that is the main cause of myocardial infarction, stroke and other cardiovascular diseases. Atherosclerosis is often difficult to detect in its early stages due to the absence of clinically significant vascular stenosis. This is not conducive to early intervention or treatment of the disease. Over the past decade, researchers have developed various imaging methods for the detection and imaging of atherosclerosis. At the same time, more and more biomarkers are being found that can be used as targets for detecting atherosclerosis. Therefore, the development of a variety of imaging methods and a variety of targeted imaging probes is an important project to achieve early assessment and treatment of atherosclerosis. This paper provides a comprehensive review of the optical probes used to detect and target atherosclerosis imaging in recent years, and describes the current challenges and future development directions.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jiheng Xu
- School of Materials Science and Engineering, Shandong University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
4
|
Lankala CR, Yasir M, Ishak A, Mekhail M, Kalyankar P, Gupta K. Application of Nanotechnology for Diagnosis and Drug Delivery in Atherosclerosis: A New Horizon of Treatment. Curr Probl Cardiol 2023; 48:101671. [PMID: 36828044 DOI: 10.1016/j.cpcardiol.2023.101671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide, with atherosclerosis being a prominent risk factor for their development. The current diagnostic criteria for atherosclerosis rely primarily on imaging techniques, including an angiogram. However, current diagnostic procedures fail to provide insights into the plaque's burden and composition. Therefore, nanotechnology is recommended as a novel drug delivery method in treating atherosclerosis and resulting cardiovascular diseases to enhance clinical outcomes. This review discusses the different approaches in which nanotechnology can be applied in the diagnosis and drug delivery of cardiovascular diseases. A systematic review was carried out in line with the PRISMA reporting guidelines, with the literature databases PubMed, Scopus, and Web of Science being screened for relevant literature. Any study that discussed and reported on the application of nanotechnology for either the diagnosis or drug delivery in atherosclerotic patients was included in this review, with each novel design identified in the citations being contrasted to that of the other literature. Moreover, the efficacy of this technology was compared to current diagnostic and drug delivery methods. The search strategy yielded 14 studies relevant to the aims of this review. Nine assessed the therapeutic applications of nanotechnology, 3 solely assessed the diagnostic applications of nanotechnology, and 2 discussed the diagnostic and therapeutic applications. The nanoparticle designs differed significantly between studies; however, all noted a superior therapeutic and diagnostic benefit compared to current approaches to diagnosing and treating atherosclerosis. Multifunctional nanoparticles are a feasible and appropriate novel approach to diagnosing and treating atherosclerosis.
Collapse
Affiliation(s)
- Chetan Reddy Lankala
- Department of Internal Medicine, Uzhhorod National University, Uzhhorod, Ukraine
| | - Mohamed Yasir
- Department of Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, CA.
| | - Angela Ishak
- Department of Research and Academic Affairs, Larkin Health System, South Miami, Florida
| | - Mario Mekhail
- Department of Internal Medicine, NYU Langone Long Island Community Hospital
| | - Pravin Kalyankar
- Department of Internal Medicine, Fortis Escorts Hospital, Faridabad, Haryana, India
| | - Kamal Gupta
- Department of Cardiology, Fortis Escorts Hospital, Faridabad, Haryana, India
| |
Collapse
|
5
|
Abstract
Atherosclerosis is a chronic inflammatory disease involved in plaque rupture, stroke, thrombosis, and heart attack (myocardial infarction), which is a leading cause of sudden cardiovascular events. In the past decades, various imaging strategies have been designed and employed for the diagnosis of atherosclerosis. Targeted imaging can accurately distinguish pathological tissues from normal tissues and reliably reveal biological information in the occurrence and development of atherosclerosis. By taking advantage of versatile imaging techniques, rationally designed imaging probes targeting biomarkers overexpressed in plaque microenvironments and targeting activated cells by modifying specific ligands accumulated in lesion regions have attracted increasing attention. This Perspective elucidates comprehensively the targeted imaging strategies, current challenges, and future development directions for precise identification and diagnosis of atherosclerosis, which is beneficial to better understand the physiological and pathological progression and exploit novel imaging strategies.
Collapse
Affiliation(s)
- Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
6
|
Smeraldo A, Ponsiglione AM, Soricelli A, Netti PA, Torino E. Update on the Use of PET/MRI Contrast Agents and Tracers in Brain Oncology: A Systematic Review. Int J Nanomedicine 2022; 17:3343-3359. [PMID: 35937076 PMCID: PMC9346926 DOI: 10.2147/ijn.s362192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
The recent advancements in hybrid positron emission tomography–magnetic resonance imaging systems (PET/MRI) have brought massive value in the investigation of disease processes, in the development of novel treatments, in the monitoring of both therapy response and disease progression, and, not least, in the introduction of new multidisciplinary molecular imaging approaches. While offering potential advantages over PET/CT, the hybrid PET/MRI proved to improve both the image quality and lesion detectability. In particular, it showed to be an effective tool for the study of metabolic information about lesions and pathological conditions affecting the brain, from a better tumor characterization to the analysis of metabolic brain networks. Based on the PRISMA guidelines, this work presents a systematic review on PET/MRI in basic research and clinical differential diagnosis on brain oncology and neurodegenerative disorders. The analysis includes literature works and clinical case studies, with a specific focus on the use of PET tracers and MRI contrast agents, which are usually employed to perform hybrid PET/MRI studies of brain tumors. A systematic literature search for original diagnostic studies is performed using PubMed/MEDLINE, Scopus and Web of Science. Patients, study, and imaging characteristics were extracted from the selected articles. The analysis included acquired data pooling, heterogeneity testing, sensitivity analyses, used tracers, and reported patient outcomes. Our analysis shows that, while PET/MRI for the brain is a promising diagnostic method for early diagnosis, staging and recurrence in patients with brain diseases, a better definition of the role of tracers and imaging agents in both clinical and preclinical hybrid PET/MRI applications is needed and further efforts should be devoted to the standardization of the contrast imaging protocols, also considering the emerging agents and multimodal probes.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
| | - Andrea Soricelli
- Department of Motor Sciences and Healthiness, University of Naples “Parthenope”, Naples, 80133, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
- Correspondence: Enza Torino, Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, Naples, 80125, Italy, Tel +39-328-955-8158, Email
| |
Collapse
|
7
|
Zhou J, Niu C, Huang B, Chen S, Yu C, Cao S, Pei W, Guo R. Platelet Membrane Biomimetic Nanoparticles Combined With UTMD to Improve the Stability of Atherosclerotic Plaques. Front Chem 2022; 10:868063. [PMID: 35350774 PMCID: PMC8958035 DOI: 10.3389/fchem.2022.868063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Although research on the treatment of atherosclerosis has progressed recently, challenges remain in developing more effective, safer and transformative strategies for the treatment of atherosclerosis. Nanomaterials have recently played a unique role in many fields, including atherosclerosis treatment. Platelets are common component in the blood. Due to their inherent properties, platelets can target and adhere to atherosclerotic plaques. Ultrasound-targeted microbubble destruction (UTMD) shows great prospects in promoting the efficiency of drug delivery in treating solid tumors. In this study, we explored the possibility that UTMD assists platelet biomimetic rapamycin (RAP)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (RAP@PLT NPs) in the treatment of atherosclerosis. The biomimetic nano-formulations exhibit better targeting ability to plaques when administered in vivo. Targeted destruction of Sonovue™ in the aortic area further improved the efficiency of targeting plaques. Moreover, the progression of atherosclerotic plaques was inhibited, and the stability of plaques was improved. Together, our study established a novel strategy for targeted delivery of nanoparticles in atherosclerotic plaques, by combining the advantages of the ultrasonic cavitation effect and biomimicking nanoparticles in drug delivery.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Caigui Yu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Sheng Cao, ; Wenjing Pei, ; Ruiqiang Guo,
| | - Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Sheng Cao, ; Wenjing Pei, ; Ruiqiang Guo,
| | - Ruiqiang Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Sheng Cao, ; Wenjing Pei, ; Ruiqiang Guo,
| |
Collapse
|
8
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|
9
|
Smeraldo A, Ponsiglione AM, Netti PA, Torino E. Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics. Biomedicines 2021; 9:1551. [PMID: 34829780 PMCID: PMC8614968 DOI: 10.3390/biomedicines9111551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is emerging as a promising tool to control physicochemical properties of nanoparticles and to accelerate clinical translation. Indeed, microfluidic-based techniques offer more advantages in nanomedicine over batch processes, allowing fine-tuning of process parameters. In particular, the use of microfluidics to produce nanoparticles has paved the way for the development of nano-scaled structures for improved detection and treatment of several diseases. Here, ionotropic gelation is implemented in a custom-designed microfluidic chip to produce different nanoarchitectures based on chitosan-hyaluronic acid polymers. The selected biomaterials provide biocompatibility, biodegradability and non-toxic properties to the formulation, making it promising for nanomedicine applications. Furthermore, results show that morphological structures can be tuned through microfluidics by controlling the flow rates. Aside from the nanostructures, the ability to encapsulate gadolinium contrast agent for magnetic resonance imaging and a dye for optical imaging is demonstrated. In conclusion, the polymer nanoparticles here designed revealed the dual capability of enhancing the relaxometric properties of gadolinium by attaining Hydrodenticity and serving as a promising nanocarrier for multimodal imaging applications.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials—CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials—CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|