1
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
2
|
Hodges A, Dubuque R, Chen SH, Pan PY. The LILRB family in hematologic malignancies: prognostic associations, mechanistic considerations, and therapeutic implications. Biomark Res 2024; 12:159. [PMID: 39696628 DOI: 10.1186/s40364-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor B (LILRB) proteins, characterized by their transmembrane nature and canonical immunoreceptor tyrosine-based inhibitory motifs (ITIM) signaling, play a pivotal role in maintaining immune homeostasis and are implicated in the pathogenesis of various disease states. This comprehensive review will focus on the intricate involvement of the LILRB family in hematologic malignancies. These receptors have emerged as valuable diagnostic and prognostic biomarkers in leukemia, lymphoma, and myeloma. Beyond their prognostic implications, LILRBs actively shape the immune microenvironment and directly influence the disease pathogenesis of hematologic malignancies. Furthermore, their identification as potential therapeutic targets offer a promising avenue for precision medicine strategies in the treatment of these disorders. Currently, multiple LILRB directed therapies are in the preclinical and clinical trial pipelines. This review underscores the multifaceted role of the LILRB family in hematologic malignancies, highlighting their significance from diagnostic and prognostic perspectives to their broader impact on disease pathophysiology and as valuable therapeutic targets.
Collapse
Affiliation(s)
- Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA
| | - Rachel Dubuque
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA.
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
3
|
Liu Q, Liu Y, Yang Z. Leukocyte immunoglobulin-like receptor B4: A keystone in immune modulation and therapeutic target in cancer and beyond. CANCER INNOVATION 2024; 3:e153. [PMID: 39444949 PMCID: PMC11495969 DOI: 10.1002/cai2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) significantly impacts immune regulation and the pathogenesis and progression of various cancers. This review discusses LILRB4's structural attributes, expression patterns in immune cells, and molecular mechanisms in modulating immune responses. We describe the influence of LILRB4 on T cells, dendritic cells, NK cells, and macrophages, and its dual role in stimulating and suppressing immune activities. The review discusses the current research on LILRB4's involvement in acute myeloid leukemia, chronic lymphocytic leukemia, and solid tumors, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer, hepatocellular carcinoma, and extramedullary multiple myeloma. The review also describes LILRB4's role in autoimmune disorders, infectious diseases, and other conditions. We evaluate the recent advancements in targeting LILRB4 using monoclonal antibodies and peptide inhibitors and their therapeutic potential in cancer treatment. Together, these studies underscore the need for further research on LILRB4's interactions in the tumor microenvironment and highlight its importance as a therapeutic target in oncology and for future clinical innovations.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingYunnanChina
| | - Zhanyu Yang
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
4
|
Li M, Zhao X. Leukocyte immunoglobulin-like receptor B4 (LILRB4) in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2697-2711. [PMID: 38973293 PMCID: PMC11611246 DOI: 10.1097/cm9.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Leukocyte immunoglobulin-like receptor (LILR) B4 (also known as ILT3/CD85k) is an immune checkpoint protein that is highly expressed in solid tumors and hematological malignancies and plays a significant role in the pathophysiology of cancer. LILRB4 is highly expressed in acute myeloid leukemia (AML), and this phenotype is associated with adverse patient outcomes. Its differential expression in tumors compared to normal tissues, its presence in tumor stem cells, and its multifaceted roles in tumorigenesis position it as a promising therapeutic target in AML. Currently, several immunotherapies targeting LILRB4 are undergoing clinical trials. This review summarizes advancements made in the study of LILRB4 in AML, focusing on its structure, ligands, expression, and significance in normal tissues and AML; its protumorigenic effects and mechanisms in AML; and the application of LILRB4-targeted therapies in AML. These insights highlight the potential advantages of LILRB4 as an immunotherapeutic target in the context of AML.
Collapse
Affiliation(s)
- Muzi Li
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
5
|
Schorr C, Perna F. Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia. Front Immunol 2022; 13:1085978. [PMID: 36605213 PMCID: PMC9809466 DOI: 10.3389/fimmu.2022.1085978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy associated with high mortality rates (less than 30% 5-year survival). Despite advances in our understanding of the molecular mechanisms underpinning leukemogenesis, standard-of-care therapeutic approaches have not changed over the last couple of decades. Chimeric Antigen Receptor (CAR) T-cell therapy targeting CD19 has shown remarkable clinical outcomes for patients with acute lymphoblastic leukemia (ALL) and is now an FDA-approved therapy. Targeting of myeloid malignancies that are CD19-negative with this promising technology remains challenging largely due to lack of alternate target antigens, complex clonal heterogeneity, and the increased recognition of an immunosuppressive bone marrow. We carefully reviewed a comprehensive list of AML targets currently being used in both proof-of-concept pre-clinical and experimental clinical settings. We analyzed the expression profile of these molecules in leukemic as well normal tissues using reliable protein databases and data reported in the literature and we provide an updated overview of the current clinical trials with CAR T-cells in AML. Our study represents a state-of-art review of the field and serves as a potential guide for selecting known AML-associated targets for adoptive cellular therapies.
Collapse
Affiliation(s)
- Christopher Schorr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Biomedical Engineering, Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Fabiana Perna
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Fabiana Perna,
| |
Collapse
|
6
|
Sauter C, Simonet J, Guidez F, Dumétier B, Pernon B, Callanan M, Bastie JN, Aucagne R, Delva L. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers (Basel) 2022; 14:5443. [PMID: 36358861 PMCID: PMC9657843 DOI: 10.3390/cancers14215443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
Arginine methylation is a common post-translational modification affecting protein activity and the transcription of target genes when methylation occurs on histone tails. There are nine protein arginine methyltransferases (PRMTs) in mammals, divided into subgroups depending on the methylation they form on a molecule of arginine. During the formation and maturation of the different types of blood cells, PRMTs play a central role by controlling cell differentiation at the transcriptional level. PRMT enzymatic activity is necessary for many cellular processes in hematological malignancies, such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair processes, RNA splicing, and transcription by methylating histone tails' arginine. Chemical tools have been developed to inhibit the activity of PRMTs and have been tested in several models of hematological malignancies, including primary samples from patients, xenografts into immunodeficient mice, mouse models, and human cell lines. They show a significant effect by reducing cell viability and increasing the overall survival of mice. PRMT5 inhibitors have a strong therapeutic potential, as phase I clinical trials in hematological malignancies that use these molecules show promising results, thus, underlining PRMT inhibitors as useful therapeutic tools for cancer treatment in the future.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - John Simonet
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabien Guidez
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Dumétier
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Pernon
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mary Callanan
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Jean-Noël Bastie
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Department of Clinical Hematology, University Hospital François Mitterrand, 21000 Dijon, France
| | - Romain Aucagne
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Laurent Delva
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
7
|
Szewczyk MM, Luciani GM, Vu V, Murison A, Dilworth D, Barghout SH, Lupien M, Arrowsmith CH, Minden MD, Barsyte-Lovejoy D. PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biol 2022; 51:102282. [PMID: 35305370 PMCID: PMC8933703 DOI: 10.1016/j.redox.2022.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues leading to regulation of transcription and splicing programs. Although PRMT5 has emerged as an attractive oncology target, the molecular determinants of PRMT5 dependency in cancer remain incompletely understood. Our transcriptomic analysis identified PRMT5 regulation of the activating transcription factor 4 (ATF4) pathway in acute myelogenous leukemia (AML). PRMT5 inhibition resulted in the expression of unstable, intron-retaining ATF4 mRNA that is detained in the nucleus. Concurrently, the decrease in the spliced cytoplasmic transcript of ATF4 led to lower levels of ATF4 protein and downregulation of ATF4 target genes. Upon loss of functional PRMT5, cells with low ATF4 displayed increased oxidative stress, growth arrest, and cellular senescence. Interestingly, leukemia cells with EVI1 oncogene overexpression demonstrated dependence on PRMT5 function. EVI1 and ATF4 regulated gene signatures were inversely correlated. We show that EVI1-high AML cells have reduced ATF4 levels, elevated baseline reactive oxygen species and increased sensitivity to PRMT5 inhibition. Thus, EVI1-high cells demonstrate dependence on PRMT5 function and regulation of oxidative stress response. Overall, our findings identify the PRMT5-ATF4 axis to be safeguarding the cellular redox balance that is especially important in high oxidative stress states, such as those that occur with EVI1 overexpression.
Collapse
Affiliation(s)
| | - Genna M Luciani
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an inhibitory receptor in the LILR family mainly expressed on normal and malignant human cells of myeloid origin. By binding to ligands, LILRB4 is activated and subsequently recruits adaptors to cytoplasmic immunoreceptor tyrosine inhibitory motifs to initiate different signaling cascades, thus playing an important role in physiological and pathological conditions, including autoimmune diseases, microbial infections, and cancers. In normal myeloid cells, LILRB4 regulates intrinsic cell activation and differentiation. In disease-associated or malignant myeloid cells, LILRB4 is significantly correlated with disease severity or patient survival and suppresses T cells, thereby participating in the pathogenesis of various diseases. In summary, LILRB4 functions as an immune checkpoint on myeloid cells and may be a promising therapeutic target for various human immune diseases, especially for cancer immunotherapy.
Collapse
|