1
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Gu M, Li X, Wu R, Cheng X, Zhou S, Gu X. The Transcription Factor Ets1 Influences Axonal Growth via Regulation of Lcn2. Mol Neurobiol 2024; 61:971-981. [PMID: 37672148 PMCID: PMC10861751 DOI: 10.1007/s12035-023-03616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Transcription factors are essential for the development and regeneration of the nervous system. The current study investigated key regulatory transcription factors in rat spinal cord development via RNA sequencing. The hub gene Ets1 was highly expressed in the spinal cord during the embryonic period, and then its expression decreased during spinal cord development. Knockdown of Ets1 significantly increased the axonal growth of cultured spinal cord neurons. Luciferase reporter assays and chromatin immunoprecipitation assays indicated that Ets1 could directly bind to the Lcn2 promoter and positively regulate Lcn2 transcription. In conclusion, these findings provide the first direct evidence that Ets1 regulates axon growth by controlling Lcn2 expression, and Ets1 may be a novel therapeutic target for axon regeneration in the central nervous system.
Collapse
Affiliation(s)
- Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei, China
| | - Xiaodi Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiao Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Xiaosong Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Wu Z, Gong Z, Li C, Huang Z. RTEL1 is upregulated in colorectal cancer and promotes tumor progression. Pathol Res Pract 2023; 252:154958. [PMID: 37988793 DOI: 10.1016/j.prp.2023.154958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
As one of the most common cancers worldwide, the incidence of colorectal cancer (CRC) continues to increase. Metastasis is the leading cause of death for this malignant disease. Regulator of telomere elongation helicase 1 (RTEL1) is a key factor that maintains telomere stability and contributes to DNA repair. Recent advances have suggested that RTEL1 exerts other functions through various mechanisms. However, little is known about its role in human cancers, including CRC. In this study, we revealed that the copy number of RTEL1 was significantly higher in CRC tissues, especially in metastatic CRC tissues, than in paired normal tissues, which was associated with increased expression. Increased RTEL1 expression was significantly correlated with CRC progression and poor survival. Functionally, RTEL1 knockdown suppressed the proliferation and metastasis of CRC both in vitro and in vivo. In addition, multiple signalling pathways, including the mitotic cell cycle, DNA repair, and EMT, were potentially regulated by RTEL1. Notably, GPR17 appeared to be a candidate downstream target gene that partially mediated the tumor-promoting effects of RTEL1 in CRC. Altogether, our results indicate that RTEL1 plays a crucial role in CRC progression and appears to be a promising therapeutic target and prognosis for CRC.
Collapse
Affiliation(s)
- Zhuochao Wu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214062, Jiangsu, China.
| |
Collapse
|
4
|
Chen Y, Hu D, Wang F, Huang C, Xie H, Jin L. A systematic framework for identifying prognostic necroptosis-related lncRNAs and verification of lncRNA CRNDE/miR-23b-3p/IDH1 regulatory axis in glioma. Aging (Albany NY) 2023; 15:12296-12313. [PMID: 37934582 PMCID: PMC10683586 DOI: 10.18632/aging.205180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases. However, the impact that necrosis-related lncRNAs (NRLs) have on glioma remains unclear. In our studies, we selected 9 NRLs to construct a prognostic model. Meanwhile, we assessed the survival curves of these 9 NRLs. Our findings found ADGRA1-AS1 and WAC-AS1 were protective lncRNAs, while MIR210HG, LINC01503, CRNDE, HOXC-AS1, ZIM2-AS1, MIR22HG and PLBD1-AS1 were risk lncRNAs. Specifically, 12 immune cells, 25 immune-correlated pathways, and TME score were differentially expressed in the both risk groups. Additionally, the study predicted and validated the necroptosis-related lncRNA CRNDE/miR-23b-3p/IDH1 axis. CRNDE was strongly expressed in glioma specimens and several cell lines. Inhibiting CRNDE resulted in a substantial reduction in the proliferation and migration of U-118MG and U251 cells. Furthermore, the study predicted that CRNDE may exhibit oncogenic features by adsorbing miR-23b-3p and positively regulating IDH1 expression. Overall, the study constructed a prognostic model in glioma, and predicted a lncRNA CRNDE/miR-23b-3p/IDH1 axis, which could potentially be useful for gene therapy of glioma.
Collapse
Affiliation(s)
- Yangxia Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fang Wang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Methods in Medicine CAM. Retracted: CRNDE/ETS1/GPR17 Facilitates the Proliferation, Migration, and Invasion of Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9814841. [PMID: 37811263 PMCID: PMC10551290 DOI: 10.1155/2023/9814841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
[This retracts the article DOI: 10.1155/2021/7566365.].
Collapse
|
6
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Mokhtari M. Contribution of CRNDE lncRNA in the development of cancer and the underlying mechanisms. Pathol Res Pract 2023; 244:154387. [PMID: 36893710 DOI: 10.1016/j.prp.2023.154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Colorectal Neoplasia Differentially Expressed (CRNDE) is an lncRNA with crucial roles in cancer development. It is located on chromosome 16 on the opposite strand to the adjacent IRX5 gene, implying the presence of a shared bidirectional promoter for these two genes. Expression of CRNDE has been assessed in a diverse array of hematological malignancies and solid tumors, representing its potential as a therapeutic target in these conditions. This lncRNA has a regulatory effect on activity of several pathways and axes that are involved in the regulation of cell apoptosis, immune responses and tumorigenesis. The current review is an updated review about the role of CRNDE in the development of cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
8
|
In the Tumor Microenvironment, ETS1 Is an Oncogenic Immune Protein: An Integrative Pancancer Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7730433. [PMID: 35463077 PMCID: PMC9033344 DOI: 10.1155/2022/7730433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Background Previous research suggested that ETS1 (ETS proto-oncogene 1, transcription factor) could be useful for cancer immunotherapy. The processes underlying its therapeutic potential, on the other hand, have yet to be thoroughly investigated. The purpose of this study was to look into the relationship between ETS1 expression and immunity. Methods TCGA and GEO provide raw data on 33 different cancers as well as GSE67501, GSE78220, and IMvigor210. In addition, we looked at ETS1's genetic changes, expression patterns, and survival studies. The linkages between ETS1 and TME, as well as its association with immunological processes/elements and the major histocompatibility complex, were explored to effectively understand the role of ETS1 in cancer immunotherapy. Three distinct immunotherapeutic cohorts were employed to examine the relationship between ETS1 and immunotherapeutic response. Results ETS1 expression was shown to be high in tumor tissue. ETS1 overexpression is linked to a worse clinical outcome in individuals with overall survival. Immune cell infiltration, immunological modulators, and immunotherapeutic signs are all linked to ETS1. Overexpression of ETS1 is linked to immune-related pathways. However, no statistically significant link was found between ETS1 and immunotherapeutic response. Conclusions ETS1 may be a reliable biomarker for tumor prognosis and a viable prospective therapeutic target for human cancer immunotherapy (e.g., KIRP, MESO, BLCA, KIRC, and THYM).
Collapse
|
9
|
Lin KN, Zhang K, Zhao W, Huang SY, Li H. Insulin-like Growth Factor 1 Promotes Cell Proliferation by Downregulation of G-Protein-Coupled Receptor 17 Expression via PI3K/Akt/FoxO1 Signaling in SK-N-SH Cells. Int J Mol Sci 2022; 23:ijms23031513. [PMID: 35163437 PMCID: PMC8835821 DOI: 10.3390/ijms23031513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) not only regulates neuronal function and development but also is neuroprotective in the setting of acute ischemic stroke. G-protein-coupled receptor 17 (GPR17) expression in brain tissue serves as an indicator of brain damage. As whether IGF-1 regulates GPR17 expression remains unknown, the aim of this study is to investigate how IGF-1 regulates GPR17 expression in vitro. Human neuroblastoma SK-N-SH cells were used. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to mediate the silencing of FoxO1, while adenoviral vectors were used for its overexpression. Verification of the relevant signaling cascade was performed using a FoxO1 inhibitor (AS1842856), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and a GPR17 antagonist (cangrelor). Cell proliferation was analyzed using EdU staining; immunofluorescence staining was used to detect the expression and subcellular localization of FoxO1. Chromatin immunoprecipitation was used to analyze the binding of FoxO1 to the GPR17 promoter in SK-N-SH cells. The expression of FoxO1, GPR17, and protein kinase B (also known as Akt) mRNA and protein as well as the levels of FoxO1 and Akt phosphorylation were investigated in this study. IGF-1 was found to downregulate FoxO1 and GPR17 expression in SK-N-SH cells while promoting cell viability and proliferation. Inhibition of FoxO1 and antagonism of GPR17 were found to play a role similar to that of IGF-1. Silencing of FoxO1 by lentivirus-mediated shRNA resulted in the downregulation of FoxO1 and GPR17 expression. The overexpression of FoxO1 via adenoviral vectors resulted in the upregulation of FoxO1 and GPR17 expression. Blocking of PI3K signaling by LY294002 inhibited the effect of IGF-1 on GPR17 suppression. Results from chromatin immunoprecipitation revealed that IGF-1 promotes FoxO1 nuclear export and reduces FoxO1 binding to the GPR17 promoter in SK-N-SH cells. Here, we conclude that IGF-1 enhances cell viability and proliferation in SK-N-SH cells via the promotion of FoxO1 nuclear export and reduction of FoxO1 binding to the GPR17 promoter via PI3K/Akt signaling. Our findings suggest that the enhancement of IGF-1 signaling to antagonize GPR17 serves as a potential therapeutic strategy in the management of acute ischemic stroke.
Collapse
Affiliation(s)
- Ka-Na Lin
- Center for Brain Science & Clinical Research Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Kan Zhang
- Department of Anesthesiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Wei Zhao
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.Z.); (S.-Y.H.)
| | - Shi-Ying Huang
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.Z.); (S.-Y.H.)
| | - Hao Li
- Center for Brain Science & Clinical Research Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.Z.); (S.-Y.H.)
- Correspondence:
| |
Collapse
|