1
|
Cieśla J, Tomsia M. Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochem Cell Biol 2025; 163:27. [PMID: 39863760 DOI: 10.1007/s00418-025-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA). The review summarizes the most important scientific reports on biology and mechanisms of SC-derived chondrogenesis and sources of SCs for chondrogenic purposes. Additionally, it focuses on the genetic mechanisms, microRNA (miRNA) regulation, and epigenetic processes steering the chondrogenic differentiation of SCs. It also describes the attempts to create functional cartilage with tissue engineering using growth factors and scaffolds. Finally, it presents the challenges that researchers will have to face in the future to effectuate SC differentiation methods into clinical practice for treating cartilage diseases.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| |
Collapse
|
2
|
Thamarai P, Karishma S, Kamalesh R, Shaji A, Saravanan A, Bibi S, Vickram AS, Chopra H, Saleem RA, Alsharif KF, Theyab A, Kamel M, Alamoudi MK, Kumer A, Chopra S, Abdel-Daim MM. Current advancements in nanotechnology for stem cells. Int J Surg 2024; 110:7456-7476. [PMID: 39236089 PMCID: PMC11634102 DOI: 10.1097/js9.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Stem cell therapy has emerged as a promising approach for regenerative medicine, offering potential treatments for a wide range of diseases and injuries. Although stem cell therapy has great promise, several obstacles have prevented its broad clinical adoption. The effectiveness of therapy has been inhibited by problems such as ineffective stem cell differentiation, low post-transplantation survival rates, and restricted control over stem cell behavior. Furthermore, the implementation of stem cell therapies is further complicated by the possibility of immunological rejection and cancer. Innovative strategies that provide precise control over stem cell characteristics and maximize their therapeutic potential are desperately needed to overcome these obstacles. Recent studies have shown that the effectiveness of stem cell treatments can be greatly increased by nanoscale advances. By establishing an ideal microenvironment and precisely offering growth factors, nanomaterials such as nanoparticles, nanocomposites, and quantum dots have been demonstrated to improve stem cell differentiation and proliferation. This article provides an overview of the recent trends and applications of nanoscale innovations in the context of stem cell therapy. The recent development of precision medicine has been facilitated by the incorporation of nanotechnology into stem cell therapy. The ability to manipulate stem cells at the nanoscale offers unprecedented control over their behavior and function, opening up exciting possibilities for personalized and highly effective therapeutic interventions. This review paper highlights the recent trends and applications of nanotechnology in advancing stem cell therapy, showcasing its potential to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Suresh Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Raja Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rimah A. Saleem
- Biochemistry and Molecular Medicine College of Medicine Alfaisal University, Riyadh
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt
| | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences, IUBAT – International University of Business Agriculture and Technology, Uttara Model Town, Dhaka, Bangladesh
| | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Monleón-Guinot I, Bravo-Baranda L, Milián L, Sancho-Tello M, Llop-Miguel M, Galbis JM, Cremades A, Carda C, Mata M. Cancer Epithelial Cells Participate in the Self-Organization of Lung Tumor Spheroids: A Morphological Approach. Cells Tissues Organs 2024:1-23. [PMID: 39383853 DOI: 10.1159/000541524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION/AIMS The tumor microenvironment is known to play an important role in tumor progression. However, the specific mechanisms underlying this process are still not known in detail and more research is needed on the elements that control tumor progression in lung cancer. In this work, we aimed to investigate the involvement of epithelial and stromal cancer cells in growth, cell migration, and epithelial-to-mesenchymal transition (EMT) in a 3D in vitro model consisting of cell spheroids cultured in a type I collagen scaffold. METHODS Spheroids were manufactured using different combinations of epithelial cells, particularly H460 and H1792 cell lines, with cancer-associated fibroblasts and normal fibroblasts, both isolated from adenocarcinoma patients. We evaluated the morphology of the spheroids by analysis of F-actin and pankeratin with confocal microscopy. We determined the ultrastructure of cells in the spheroids by transmission electron microscopy and the expression of CDH1, CDH2, and VIM by RT-PCR. RESULTS We observed that, on the one hand, the type of epithelial cell influences the morphology of spheroids. Stromal cells stimulated spheroid growth and cell dissemination through the collagen matrix, either alone or organized in branches with a nucleus of epithelial cells preceded by fibroblast cells. They also induced the appearance of new cell groups in the scaffold and the presence of EMT markers. CONCLUSION The results presented here indicate the participation of both epithelial and stromal cells in the control of spheroid self-organization. The experimental model proposed here, although preliminary, is useful for the study of some aspects related to tumor progression in lung cancer.
Collapse
Affiliation(s)
- Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Lucía Bravo-Baranda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Mauro Llop-Miguel
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | | | | | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Novotná R, Franková J. Materials Suitable for Osteochondral Regeneration. ACS OMEGA 2024; 9:30097-30108. [PMID: 39035913 PMCID: PMC11256084 DOI: 10.1021/acsomega.4c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Osteochondral defects affect articular cartilage, calcified cartilage, and subchondral bone. The main problem that they cause is a different behavior of cell tissue in the osteochondral and bone part. Articular cartilage is composed mainly of collagen II, glycosaminoglycan (GAG), and water, and has a low healing ability due to a lack of vascularization. However, bone tissue is composed of collagen I, proteoglycans, and inorganic composites such as hydroxyapatite. Due to the discrepancy between the characters of these two parts, it is difficult to find materials that will meet all the structural and other requirements for effective regeneration. When designing a scaffold for an osteochondral defect, a variety of materials are available, e.g., polymers (synthetic and natural), inorganic particles, and extracellular matrix (ECM) components. All of them require the accurate characterization of the prepared materials and a number of in vitro and in vivo tests before they are applied to patients. Taken in concert, the final material needs to mimic the structural, morphological, chemical, and cellular demands of the native tissue. In this review, we present an overview of the structure and composition of the osteochondral part, especially synthetic materials with additives appropriate for healing osteochondral defects. Finally, we summarize in vitro and in vivo methods suitable for evaluating materials for restoring osteochondral defects.
Collapse
Affiliation(s)
- Renáta Novotná
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Jana Franková
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| |
Collapse
|
5
|
Safiaghdam H, Baniameri S, Aminianfar H, Mohajeri SF, Dehghan MM, Tayebi L, Nokhbatolfoghahaei H, Khojasteh A. Evaluating osteogenic potential of a 3D-printed bioceramic-based scaffold for critical-sized defect treatment: an in vivo and in vitro investigation. In Vitro Cell Dev Biol Anim 2024; 60:657-666. [PMID: 38743380 DOI: 10.1007/s11626-024-00912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The integration of precision medicine principles into bone tissue engineering has ignited a wave of research focused on customizing intricate scaffolds through advanced 3D printing techniques. Bioceramics, known for their exceptional biocompatibility and osteoconductivity, have emerged as a promising material in this field. This article aims to evaluate the regenerative capabilities of a composite scaffold composed of 3D-printed gelatin combined with hydroxyapatite/tricalcium phosphate bioceramics (G/HA/TCP), incorporating human dental pulp-derived stem cells (hDPSCs). Using 3D powder printing, we created cross-shaped biphasic calcium phosphate scaffolds with a gelatin layer. The bone-regenerating potential of these scaffolds, along with hDPSCs, was assessed through in vitro analyses and in vivo studies with 60 rats and critical-sized calvarial defects. The assessment included analyzing cellular proliferation, differentiation, and alkaline phosphatase activity (ALP), and concluded with a detailed histological evaluation of bone regeneration. Our study revealed a highly favorable scenario, displaying not only desirable cellular attachment and proliferation on the scaffolds but also a notable enhancement in the ALP activity of hDPSCs, underscoring their pivotal role in bone regeneration. However, the histological examination of calvarial defects at the 12-wk mark yielded a rather modest level of bone regeneration across all experimental groups. The test and cell group exhibited significant bone formation compared to all other groups except the control and cell group. This underscores the complexity of the regenerative process and paves the way for further in-depth investigations aimed at improving the potential of the composite scaffolds.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Baniameri
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Aminianfar
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, 74106, USA
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sulcanese L, Prencipe G, Canciello A, Cerveró-Varona A, Perugini M, Mauro A, Russo V, Barboni B. Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells. Cells 2024; 13:744. [PMID: 38727280 PMCID: PMC11083072 DOI: 10.3390/cells13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| |
Collapse
|
7
|
Zawadzka-Knefel A, Rusak A, Mrozowska M, Machałowski T, Żak A, Haczkiewicz-Leśniak K, Kulus M, Kuropka P, Podhorska-Okołów M, Skośkiewicz-Malinowska K. Chitin scaffolds derived from the marine demosponge Aplysina fistularis stimulate the differentiation of dental pulp stem cells. Front Bioeng Biotechnol 2023; 11:1254506. [PMID: 38033818 PMCID: PMC10682193 DOI: 10.3389/fbioe.2023.1254506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
The use of stem cells for tissue regeneration is a prominent trend in regenerative medicine and tissue engineering. In particular, dental pulp stem cells (DPSCs) have garnered considerable attention. When exposed to specific conditions, DPSCs have the ability to differentiate into osteoblasts and odontoblasts. Scaffolds are critical for cell differentiation because they replicate the 3D microenvironment of the niche and enhance cell adhesion, migration, and differentiation. The purpose of this study is to present the biological responses of human DPSCs to a purified 3D chitin scaffold derived from the marine demosponge Aplysina fistularis and modified with hydroxyapatite (HAp). Responses examined included proliferation, adhesion, and differentiation. The control culture consisted of the human osteoblast cell line, hFOB 1.19. Electron microscopy was used to examine the ultrastructure of the cells (transmission electron microscopy) and the surface of the scaffold (scanning electron microscopy). Cell adhesion to the scaffolds was determined by neutral red and crystal violet staining methods. An alkaline phosphatase (ALP) assay was used for assessing osteoblast/odontoblast differentiation. We evaluated the expression of osteogenic marker genes by performing ddPCR for ALP, RUNX2, and SPP1 mRNA expression levels. The results show that the chitin biomaterial provides a favorable environment for DPSC and hFOB 1.19 cell adhesion and supports both cell proliferation and differentiation. The chitin scaffold, especially with HAp modification, isolated from A. fistularis can make a significant contribution to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Michał Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Kuropka
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
8
|
Sun Q, Zhuang Z, Bai R, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206757. [PMID: 37386801 PMCID: PMC10460901 DOI: 10.1002/advs.202206757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Indexed: 07/01/2023]
Abstract
Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Zimeng Zhuang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tianyi Xin
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
9
|
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int J Mol Sci 2022; 23:11169. [PMID: 36232468 PMCID: PMC9570095 DOI: 10.3390/ijms231911169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Irina A. Romanova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| |
Collapse
|
10
|
Milián L, Monleón-Guinot I, Sancho-Tello M, Galbis JM, Cremades A, Almenar-Ordaz M, Peñaroja-Martinez J, Farras R, Martín de Llano JJ, Carda C, Mata M. In Vitro Effect of Δ9-Tetrahydrocannabinol and Cannabidiol on Cancer-Associated Fibroblasts Isolated from Lung Cancer. Int J Mol Sci 2022; 23:ijms23126766. [PMID: 35743206 PMCID: PMC9223514 DOI: 10.3390/ijms23126766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
There is evidence that demonstrates the effect of cannabinoid agonists inhibiting relevant aspects in lung cancer, such as proliferation or epithelial-to-mesenchymal transition (EMT). Most of these studies are based on evidence observed in in vitro models developed on cancer cell lines. These studies do not consider the complexity of the tumor microenvironment (TME). One of the main components of the TME is cancer-associated fibroblasts (CAFs), cells that are relevant in the control of proliferation and metastasis in lung cancer. In this work, we evaluated the direct effects of two cannabinoid agonists, tetrahydrocannabinol (THC) and cannabidiol (CBD), used alone or in combination, on CAFs and non-tumor normal fibroblasts (NFs) isolated from adenocarcinoma or from healthy lung tissue from the same patients. We observed that these compounds decrease cell density in vitro and inhibit the increase in the relative expression of type 1 collagen (COL1A1) and fibroblast-specific protein 1 (FSP1) induced by transforming growth factor beta (TGFβ). On the other hand, we studied whether THC and CBD could modulate the interactions between CAFs or NFs and cancer cells. We conditioned the culture medium with stromal cells treated or not with THC and/or CBD and cultured A549 cells with them. We found that culture media conditioned with CAFs or NFs increased cell density, induced morphological changes consistent with EMT, inhibited cadherin-1 (CDH1) gene expression, and induced an increase in the relative expression of cadherin-2 (CDH2) and vimentin (VIM) genes in A549 cells. These changes were inhibited or decreased by THC and CBD administered alone or in combination. In another series of experiments, we conditioned culture media with A549 cells treated or not with THC and/or CBD, in the presence or absence of TGFβ. We observed that culture media conditioned with A549 in the presence of TGFβ induced an increase in the expression of COL1A1 and VIM, both in CAFs and in non-tumor NFs. Both THC and CBD ameliorated these effects. In summary, the results presented here reinforce the usefulness of cannabinoid agonists for the treatment of some relevant aspects of lung cancer pathology, and demonstrate in a novel way their possible effects on CAFs as a result of their relationship with cancer cells. Likewise, the results reinforce the usefulness of the combined use of THC and CBD, which has important advantages in relation to the possibility of using lower doses, thus minimizing the psychoactive effects of THC.
Collapse
Affiliation(s)
- Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | | | | | - María Almenar-Ordaz
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
| | - Josep Peñaroja-Martinez
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
| | - Rosa Farras
- Príncipe Felipe Research Center Foundation (CIPF), 46012 Valencia, Spain;
| | - José Javier Martín de Llano
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.); (I.M.-G.); (M.S.-T.); (M.A.-O.); (J.P.-M.); (J.J.M.d.L.); (C.C.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Biomedical Research Networking Center of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|