1
|
Madkour M, Ali SI, Alagawany M, El-Kholy MS, El-Baz FK, Alqhtani AH, Alharthi AS, Pokoo-Aikins A, Elolimy AA. Dietary Dunaliella salina microalgae enriches eggs with carotenoids and long-chain omega-3 fatty acids, enhancing the antioxidant and immune responses in heat-stressed laying hens. Front Vet Sci 2025; 12:1545433. [PMID: 40078214 PMCID: PMC11897048 DOI: 10.3389/fvets.2025.1545433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Dunaliella salina (DS) is a prospective source of bioactive carotenoids, including beta-carotene, zeaxanthin, and omega-3 fatty acids. The effect of dietary supplementation of DS on the productive performance, immune response, and egg quality of heat-stressed laying hens has not been comprehensively studied. We investigated how dietary D. salina supplementation affects the deposition of bioactive carotenoids and omega-3 fatty acids in egg yolks of laying hens experiencing summer heat stress, as determined by the Temperature-Humidity Index (THI). The influence of D. salina supplementation on the productive performance, immune response, and antioxidant status of heat-stressed laying hens was assessed. Methods A total of 120 Elma-Brown laying hens were assigned to four dietary treatments with DS supplementation at 0 (control), 0.5, 1, and 1.5 g/kg of diet. The experiment lasted 60 days, during which eggs were collected at three time points: 15, 30, and 60 days from the start of the study. Results and discussion including DS at 1 g/kg improved egg production and feed conversion, with improved antioxidant status via a marked inhibitory effect on malondialdehyde in heat-stressed laying hens. Dietary 0.5 g/kg DS improved the immune response of heat-stressed laying hens compared to that of the control group. The highest dose of DS (1.5 g/kg diet) increased astaxanthin, zeaxanthin, lutein, and total carotenoids by 9.8%, 50.44%, 49.19%, and 84.21% (p < 0.05), respectively, and decreased β-carotene by 38.61% (p < 0.05), when compared with the control. Feeding DS to heat-stressed laying hens increased the concentrations of the long-chain Omega-3 (docosahexaenoic acid) in egg yolks; the dose of 0.5 g/kg diet for 15 d produced an increase in the DHA content by104.76% above the control group (p < 0.5). Feeding DS improved the nutritional indices of egg yolks, as egg yolks retained a high ratio of monounsaturated fatty acids (MUFA)/polyunsaturated fatty acids (PUFA)/saturated fatty acids, low thrombogenicity index (IT), low atherogenicity index (IA), and high hypocholesterolemic/hypercholesterolemic index (h/H). Feeding heat-stressed laying hens DS improved their productivity and antioxidant status, resulting in functional eggs enriched with bioactive carotenoids (astaxanthin, zeaxanthin, and lutein) and beneficial omega-3 fatty acids.
Collapse
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza, Egypt
| | - Sami I. Ali
- Plant Biochemistry Department, National Research Centre, Giza, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed S. El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Farouk K. El-Baz
- Plant Biochemistry Department, National Research Centre, Giza, Egypt
| | - Abdulmohsen H. Alqhtani
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman S. Alharthi
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Anthony Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Ahmed A. Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Abd Elrazik NA, Abd El Salam ASG. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. Metab Brain Dis 2024; 40:10. [PMID: 39556255 PMCID: PMC11573817 DOI: 10.1007/s11011-024-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
Astrocyte swelling, blood brain barrier (BBB) dissipation and the subsequent brain edema are serious consequences of persistent hyperammonemia in hepatic encephalopathy (HE) in which if inadequately controlled it will lead to brain death. The current study highlights the potential neuroprotective effect of diacerein against thioacetamide (TAA)-induced HE in acute liver failure rat model. HE was induced in male Sprague-Dawley rats via I.P. injection of TAA (200 mg/kg) for three alternative times/week at 3rd week of the experiment. Diacerein (50 mg/kg) was gavaged for 14 days prior to induction of HE and for further 7 days together with TAA injection for an overall period of 21 days. Diacerein attenuated TAA-induced HE in acute liver failure rat model; as proofed by significant lowering of serum and brain ammonia concentrations, serum AST and ALT activities and significant attenuation of both brain and hepatic MDA contents and IL-1β with marked increases in GSH contents (P < 0.0001). The neuroprotective effect of diacerein was demonstrated by marked improvement of motor and cognitive deficits, brain histopathological changes; hallmarks of HE. As shown by immunohistochemical results, diacerein markedly downregulated brain TLR4 expression which in turn significantly increased the GFAP expression, and significantly decreased AQP4 expression; the astrocytes swelling biomarkers (P < 0.0001). Moreover, diacerein preserved BBB integrity via downregulation of MMP-9 mediated digestion of tight junction proteins such as occludin (P < 0.0001). Collectively, diacerein ameliorated cerebral edema and maintained BBB integrity via modulation of TLR4/AQP4/MMP-9 axis thus may decrease the progression of HE induced in acute liver failure.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
3
|
M Salah N, Elbedaiwy HM, Helmy MW, El-Salamouni NS. Topical amlodipine-loaded solid lipid nanoparticles for enhanced burn wound healing: A repurposed approach. Int J Pharm 2024; 662:124484. [PMID: 39033942 DOI: 10.1016/j.ijpharm.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Burn wounds are a complicated process with ongoing psychological and physical issues for the affected individuals. Wound healing consists of multifactorial molecular mechanisms and interactions involving; inflammation, proliferation, angiogenesis, and matrix remodeling. Amlodipine (ADB), widely used in cardiovascular disorders, demonstrated antioxidant and anti-inflammatory effects in some non-cardiovascular studies. It was reported that amlodipine is capable of promoting the healing process by regulation of collagen production, extracellular matrix, re-epithelialization and wound healing through its vasodilation and angiogenic activity. The objective of the current study is to appraise the wound healing capacity of amlodipine-loaded SLN (ADB-SLN) integrated into a hydrogel. The in-vitro characterization revealed that the optimized formulation was nanometric (190.4 ± 1.6 nm) with sufficiently high entrapment efficiency (88 % ± 1.4) and sustained ADB release (85.45 ± 4.45 % after 12 h). Furthermore, in-vivo evaluation was conducted on second-degree burns induced in male Sprague-Dawley rats. ADB-SLN gel revealed a high wound contraction rate and a significant improvement in skin regeneration and inflammatory biomarkers levels, confirming its efficiency in enhancing wound healing compared to other tested and commercial formulations. To conclude, the present findings proved that ADB-SLN integrated hydrogel offers a promising novel therapy for burn wound healing with a maximum therapeutic value.
Collapse
Affiliation(s)
- Nada M Salah
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
4
|
Zhang Z, Guo J, Zhu J. HSPB1 alleviates acute-on-chronic liver failure via the P53/Bax pathway. Open Life Sci 2024; 19:20220919. [PMID: 39071496 PMCID: PMC11282914 DOI: 10.1515/biol-2022-0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
The mortality rate of acute-on-chronic liver failure (ACLF) remains significantly elevated; hence, this study aimed to investigate the impact of heat shock protein family B (small) member 1 (HSPB1) on ACLF in vivo and in vitro and the underlying mechanism. This study used the ACLF mouse model, and liver damage extent was studied employing Masson trichrome, hematoxylin and eosin (H&E), Sirius red staining, and serum biochemical indices. Similarly, hepatocyte injury in lipopolysaccharide (LPS)-induced L02 cells was evaluated using cell counting kit-8 assay, enzymatic activity, flow cytometry, and TUNEL assay, while the underlying mechanism was investigated using western blot. Results showed that the morphology of liver tissue in ACLF mice was changed and was characterized by cirrhosis, fibrosis, collagen fiber deposition, inflammatory cell infiltration, and elevated liver injury indices. Moreover, HSPB1 was upregulated in both ACLF patients and mice, where overexpressing HSPB1 was found to inhibit ACLF-induced liver damage. Similarly, the HSPB1 expression in LPS-treated L02 cell lines was also increased, where overexpressing HSPB1 was found to promote cell viability, inhibit liver injury-related enzyme activity, and suppress apoptosis. Mechanistic investigations revealed that HSPB1 was responsible for inhibiting p-P53 and Bax protein levels, where activated P53 counteracted HSPB1's effects on cellular behaviors. In conclusion, HSPB1 attenuated ACLF-induced liver injury in vivo and inhibited LPS-induced hepatocyte damage in vitro, suggesting that HSPB1 may be a novel target for ACLF therapy.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Infectious Diseases, Shenzhen Guangming District People’s Hospital, Shenzhen, Guangdong, 518106, China
| | - Jinwei Guo
- Department of Infectious Diseases, Shenzhen Guangming District People’s Hospital, Shenzhen, Guangdong, 518106, China
| | - Jincan Zhu
- Department of Infectious Diseases, Shenzhen Guangming District People’s Hospital, Shenzhen, Guangdong, 518106, China
| |
Collapse
|
5
|
Sedik AA, Elgohary R, Khalifa E, Khalil WKB, I Shafey H, B Shalaby M, S O Gouida M, M Tag Y. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats. Toxicol Mech Methods 2024; 34:454-467. [PMID: 38166588 DOI: 10.1080/15376516.2023.2301344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver illness characterized by increase of lipid content in the liver. This study investigated the role of lauric acid to treat NAFLD in male adult Sprague Dawley rats. In this study, to induce NAFLD in the rats, a high-fat diet (HFD) was administered for eight consecutive weeks. Lauric acid groups received lauric acid (250 and 500 mg/kg; orally), concurrently with HFD for eight consecutive weeks. Lauric acid could ameliorate the serum levels of TG, TC, ALT, AST, blood glucose, and insulin. Moreover, lauric acid significantly elevated the levels of SOD, GSH, catalase, and IL-10. Additionally, it lowered the hepatic levels of MDA, ROS, MPO, 4-HNE, interleukin (IL)-1β, and tumor necrosis factor (TNF-α). Furthermore, lauric acid significantly up-regulated the hepatic expression of IRS1, AMPK, PI3K, and SIRT1 genes. In parallel, lauric acid could improve the histopathological picture of the liver and reduce the liver apoptosis via decreasing the expression of annexin V (Anx V). Finally, our data proposed that lauric acid could be an effective candidate for the NAFLD treatment.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Eman Khalifa
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | | | - Heba I Shafey
- Cell Biology Department, National Research Centre, Giza, Egypt
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology (RIME), General Organisation of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP), Cairo, Egypt
| | - Mona S O Gouida
- Genetics Unit, Faculty of Medicine, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Yasmin M Tag
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| |
Collapse
|
6
|
Farag MR, Alagawany M, Alsulami LS, Di Cerbo A, Attia Y. Ameliorative effects of Dunaliella salina microalgae on nanoparticle (ZnO NPs)-induced toxicity in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121915-121928. [PMID: 37957498 DOI: 10.1007/s11356-023-30933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Dunaliella salina (D. salina) is a well-known microalga that contains considerable amounts of nutritious and medicinal bioactive components. This work studied the modulatory role of D. salina against zinc oxide nanoparticle (ZnO NPs)-induced neurotoxic effects in adult zebrafish. Fishes were subjected to 0.69 mg L-1 (1/5th 96-h LC50) for 4 weeks; then, fishes were supplemented with D. salina in the diet for 2 weeks at two levels (15 and 30%). Exposure to ZnO NPs induced a significant increase in the levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) while accompanied with downregulation of antioxidant genes in the brain of exposed fishes. Brain neurochemistry and enzyme activities were also altered following ZnO NP exposure. ZnO NPs significantly reduced the neurotransmitters and acetylcholinesterase (AchE) activity while increasing Alzheimer's disease-related proteins and inflammatory response via upregulation of tumor necrosis factor (TNF-α). Additionally, ZnO NPs increased the indices of brain's DNA oxidative damage, increasing brain tissue's metallothionein (MT) and zinc residues. ZnO NPs upregulated the transcription patterns of apoptosis-related genes (casp3 and p53). D. salina dietary co-supplementation with ZnO NPs alleviated the ZnO NPsZnO NP-induced neuro-oxidative damages by lowering the lipid, DNA damage, and inflammatory biomarkers. Besides, D. salina alleviating responses were linked with increasing the levels of the assessed antioxidants. Conclusively, D. salina dietary supplementation induced potential alleviating effects of the ZnO NP-induced neurotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Lafi S Alsulami
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Youssef Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Amri J, Jamalian M, Salami Z, Akbari A, Alaee M, Soleiman FA, Alimoradian A. Hydroalcoholic extract of Scrophularia striata has a significant therapeutic effect on thioacetamide-induced liver cirrhosis in rats. Horm Mol Biol Clin Investig 2023; 44:371-377. [PMID: 38124628 DOI: 10.1515/hmbci-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Liver cirrhosis is one of the most important causes of death from liver diseases. Nowadays, the use of herbal medicines has increased due to its availability, less side effects and cheapness for the treatment of liver diseases. The present study was conducted to examine therapeutic effects of hydroalcoholic extract of Scrophularia striata (S. striata) on thioacetamide-induced liver cirrhosis in rats through evaluate its effects on oxidative stress markers and the expression of metalloproteinase 1 (TIMP 1), toll-like receptor-4 (TLR-4), and Mitofusin (MFN2) genes. METHODS 24 male rats were selected by simple random sampling. Rats were randomly assigned to four groups: group I: healthy rats, group II: thioacetamide (TAA) injected rats, group III: TAA injected rats+100 mg/kg bw of S. striata and group IV: TAA injected rats+200 mg/kg bw of S. striata. Liver cirrhosis was induced in rats by a 300 mg/kg bw TAA administration twice with an interval of 24 h. After 8 weeks of treatment by S. striata at doses of 100 and 200 mg/kg bw, biochemical factors and oxidative stress markers (SOD, TAC, GPX, CAT and MDA) were measured using spectrophotometric methods. Also, gene expression of TIMP 1, TLR-4, and MFN2 were analyzed using real-time PCR. ANOVA and Bonferroni post hoc test analysis were applied to evaluate the data. RESULTS The results showed the S. striata extract significantly improve the serum ALT, AST and ALP levels, TIMP 1, TLR-4, and MFN2 genes and oxidative stress markers (SOD, TAC, GPX, CAT and MDA) in the liver tissues when compared to control group (p<0.05). Also, it was found that the beneficial effects of the S. striata were dose-dependent. CONCLUSIONS Based on the results obtained S. striata by reducing the expression of TIMP 1, TLR-4, and MFN2 genes and improving oxidative stress might be used as adjuvant treatment for liver cirrhosis.
Collapse
Affiliation(s)
- Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R, Iran
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Jamalian
- Department of Forensic Medicine and Poisoning, Arak University of Medical Sciences, Arak, Iran
| | - Zahre Salami
- Department of Biochemistry and Genetic, Arak University of Medical Sciences, Arak, I.R, Iran
| | - Ahmad Akbari
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mona Alaee
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Azizi Soleiman
- Department of Nutrition, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Abbas Alimoradian
- Department of Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
8
|
Salama A, Elgohary R. Influence of chrysin on D-galactose induced-aging in mice: Up regulation of AMP kinase/liver kinase B1/peroxisome proliferator-activated receptor-γ coactivator 1-α signaling pathway. Fundam Clin Pharmacol 2023; 37:947-959. [PMID: 36977287 DOI: 10.1111/fcp.12895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Adenosine monophosphate kinase/liver kinase B1/peroxisome proliferator-activated receptor-γ coactivator 1-α (AMPK/LKB1/PGC1α) pathway has a vital role in regulating age-related diseases. It controls neurogenesis, cell proliferation, axon outgrowth, and cellular energy homeostasis. AMPK pathway also regulates mitochondrial synthesis. The current study evaluated the effect of chrysin on D-galactose (D-gal) induced-aging, neuron degeneration, mitochondrial dysfunction, oxidative stress, and neuroinflammation in mice. The mice were allocated randomly into four groups (10 each group): Group 1: normal control group, Group 2: D-gal group, Groups 3 and 4: chrysin (125 and 250 mg/kg, respectively). Groups 2-4 were injected with D-gal (200 mg/kg/day; s.c) for 8 weeks to induce aging. Groups 3 and 4 were orally gavaged every day concurrent with D-gal. At the end of experiment, behavioral, brain biochemical and histopathological changes were monitored. Chrysin administration elevated discrimination ratio in object recognition, Y Maze percentage alternation, locomotor activity and brain contents of AMPK, LKB1, PGC1α, NAD (P)H quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), nerve growth factor (NGF) (neurotrophin-3; NT-3), and seretonin as well as reduced brain contents of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), advanced glycation end products (AGEs) and glial fibrillary acidic protein (GFAP) compared to D-gal-treated mice. Chrysin also alleviated cerebral cortex and white matter neurons degeneration. Chrysin protects against neurodegeneration, improves mitochondrial autophagy and biogenesis as well as activates antioxidant genes expression. In addition, chrysin ameliorates neuroinflammation and stimulates the release of NGF and serotonin neurotransmitter. So, chrysin has a neuroprotective effect in D-gal induced-aging in mice.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Cairo, Dokki, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, El-Buhouth St., Cairo, Dokki, 12622, Egypt
| |
Collapse
|
9
|
Soto-Sánchez O, Hidalgo P, González A, Oliveira PE, Hernández Arias AJ, Dantagnan P. Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. AQUACULTURE NUTRITION 2023; 2023:5110281. [PMID: 36860971 PMCID: PMC9973195 DOI: 10.1155/2023/5110281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Studies have shown that ancient cultures used microalgae as food for centuries. Currently, scientific reports highlight the value of nutritional composition of microalgae and their ability to accumulate polyunsaturated fatty acids at certain operational conditions. These characteristics are gaining increasing interest for the aquaculture industry which is searching for cost-effective replacements for fish meal and oil because these commodities are one of the most significant operational expenses and their dependency has become a bottleneck for their sustainable development of the aquaculture industry. This review is aimed at highlighting the use of microalgae as polyunsaturated fatty acid source in aquaculture feed formulations, despite their scarce production at industrial scale. Moreover, this document includes several approaches to improve microalgae production and to increase the content of polyunsaturated fatty acids with emphasis in the accumulation of DHA, EPA, and ARA. Furthermore, the document compiles several studies which prove microalgae-based aquafeeds for marine and freshwater species. Finally, the study explores the aspects that intervene in production kinetics and improvement strategies with possibilities for upscaling and facing main challenges of using microalgae in the commercial production of aquafeeds.
Collapse
Affiliation(s)
- Oscar Soto-Sánchez
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Pamela Hidalgo
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Aixa González
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia E. Oliveira
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Adrián J. Hernández Arias
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
10
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
11
|
Mawed SA, Centoducati G, Farag MR, Alagawany M, Abou-Zeid SM, Elhady WM, El-Saadony MT, Di Cerbo A, Al-Zahaby SA. Dunaliella salina Microalga Restores the Metabolic Equilibrium and Ameliorates the Hepatic Inflammatory Response Induced by Zinc Oxide Nanoparticles (ZnO-NPs) in Male Zebrafish. BIOLOGY 2022; 11:biology11101447. [PMID: 36290351 PMCID: PMC9598141 DOI: 10.3390/biology11101447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Microalgae are rich in bioactive compounds including pigments, proteins, lipids, polyunsaturated fatty acids, carbohydrates, and vitamins. Due to their non-toxic and nutritious characteristics, these are suggested as important food for many aquatic animals. Dunaliella salina is a well-known microalga that accumulates valuable amounts of carotenoids. We investigated whether it could restore the metabolic equilibrium and mitigate the hepatic inflammation induced by zinc oxide nanoparticles (ZnO-NPs) using male zebrafish which were exposed to 1/5th 96 h-LC50 for 4 weeks, followed by dietary supplementation with D. salina at two concentrations (15% and 30%) for 2 weeks. Collectively, ZnO-NPs affected fish appetite, whole body composition, hepatic glycogen and lipid contents, intestinal bacterial and Aeromonas counts, as well as hepatic tumor necrosis factor- α (TNF-α). In addition, the mRNA expression of genes related to gluconeogenesis (pck1, gys2, and g6pc3), lipogenesis (srepf1, acaca, fasn, and cd36), and inflammatory response (tnf-α, tnf-β, nf-kb2) were modulated. D. salina reduced the body burden of zinc residues, restored the fish appetite and normal liver architecture, and mitigated the toxic impacts of ZnO-NPs on whole-body composition, intestinal bacteria, energy metabolism, and hepatic inflammatory markers. Our results revealed that the administration of D. salina might be effective in neutralizing the hepatotoxic effects of ZnO-NPs in the zebrafish model.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (S.A.M.); (G.C.)
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, Casamassima km 3, 70010 Valenzano, Italy
- Correspondence: (S.A.M.); (G.C.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 6012201, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
12
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
13
|
Qiang R, Liu XZ, Xu JC. The Immune Pathogenesis of Acute-On-Chronic Liver Failure and the Danger Hypothesis. Front Immunol 2022; 13:935160. [PMID: 35911735 PMCID: PMC9329538 DOI: 10.3389/fimmu.2022.935160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a group of clinical syndromes related to severe acute liver function impairment and multiple-organ failure caused by various acute triggering factors on the basis of chronic liver disease. Due to its severe condition, rapid progression, and high mortality, it has received increasing attention. Recent studies have shown that the pathogenesis of ACLF mainly includes direct injury and immune injury. In immune injury, cytotoxic T lymphocytes (CTLs), dendritic cells (DCs), and CD4+ T cells accumulate in the liver tissue, secrete a variety of proinflammatory cytokines and chemokines, and recruit more immune cells to the liver, resulting in immune damage to the liver tissue, massive hepatocyte necrosis, and liver failure, but the key molecules and signaling pathways remain unclear. The “danger hypothesis” holds that in addition to the need for antigens, damage-associated molecular patterns (DAMPs) also play a very important role in the occurrence of the immune response, and this hypothesis is related to the pathogenesis of ACLF. Here, the research status and development trend of ACLF, as well as the mechanism of action and research progress on various DAMPs in ACLF, are summarized to identify biomarkers that can predict the occurrence and development of diseases or the prognosis of patients at an early stage.
Collapse
Affiliation(s)
- Rui Qiang
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xing-Zi Liu
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jun-Chi Xu
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People’s Hospital of Suzhou, Suzhou, China
- *Correspondence: Jun-Chi Xu,
| |
Collapse
|
14
|
Shahgond L, Patel C, Thakur K, Sarkar D, Acharya S, Patel P. Therapeutic potential of probiotics - Lactobacillus plantarum UBLP40 and Bacillus clausii UBBC07 on thioacetamide-induced acute hepatic encephalopathy in rats. Metab Brain Dis 2022; 37:185-195. [PMID: 34731397 DOI: 10.1007/s11011-021-00862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/23/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE Hepatic encephalopathy (HE) or hepatic coma is a demanding, not utterly understood complication of acute and chronic liver dysfunction and portosystemic shunting. In HE, hyperammonemia and inflammatory responses are believed to act in synergism. Probiotics, Lactobacillus plantarum UBLP40 and Bacillus clausii UBBC07 reduce small intestinal bacterial overgrowth and hyperammonemia, thereby preventing HE development. METHODS The effect of probiotics-Lactobacillus plantarum UBLP40 (107 CFU/day, 14 days) and Bacillus clausii UBBC07 (107 CFU/day, 14 days) combination and standard drug-lactulose (2.5 ml/kg in 3 divided doses, 14 days) was studied in thioacetamide (250 mg/kg for three days) induced acute HE in rats by measuring behavioural parameters, biochemical parameters (serum AST, ALT, ALP and ammonia level), neurochemical parameters and histopathology study in brain and liver. RESULTS In contrast to only thioacetamide treated rats, probiotics treatment substantially (p < 0.001) reduced liver function parameters, i.e. serum AST, ALT, ALP, and ammonia, improved behaviour parameters, i.e. decreased motor disruption, improved memory impairment. Probiotics treated rats have also shown a substantial improvement in oxidative stress parameters i.e. reduced lipid peroxidation and increased glutathione level in brain tissue and ameliorated the histopathological changes induced by thioacetamide in the brain and liver. CONCLUSIONS It can be concluded based on the findings that the combination therapy of Lactobacillus plantarum UBLP40 and Bacillus clausiiUBBC07 proves to be effective in acute hepatic encephalopathy in the preclinical stage, and further studies are required to assess this therapy potential in the clinical setting.
Collapse
Affiliation(s)
- Lalita Shahgond
- Department of Pharmacology, S.S.R. College of Pharmacy, Silvassa, Dadra and Nagar Haveli, India, 396230
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| | - Khushboo Thakur
- Department of Pharmacology, S.S.R. College of Pharmacy, Silvassa, Dadra and Nagar Haveli, India, 396230
| | - Dipta Sarkar
- Department of Pharmacology, S.S.R. College of Pharmacy, Silvassa, Dadra and Nagar Haveli, India, 396230
| | - Sanjeev Acharya
- Department of Pharmacology, S.S.R. College of Pharmacy, Silvassa, Dadra and Nagar Haveli, India, 396230
| | - Priyanshi Patel
- Department of Pharmacology, S.S.R. College of Pharmacy, Silvassa, Dadra and Nagar Haveli, India, 396230
| |
Collapse
|