1
|
Park HE, Shin JI, Kim KM, Choi JG, Anh WJ, Trinh MP, Kang KM, Byun JH, Yoo JW, Kang HL, Baik SC, Lee WK, Jung M, Shin MK. Genetic variations underlying aminoglycoside resistance in antibiotic-induced Mycobacterium intracellulare mutants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105716. [PMID: 39837360 DOI: 10.1016/j.meegid.2025.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Mycobacterium avium complex (MAC) is an emerging pathogen leading to public health concerns in developing and developed countries, particularly among immunocompromised individuals and patients with structural lung diseases. Current clinical guidelines recommend combination antibiotic therapy for treating MAC pulmonary disease (MAC-PD). However, the rising prevalence of antibiotic resistance poses significant challenges, including treatment failure and clinical recurrence. A deeper understanding of the mechanisms underlying MAC antibiotic resistance is essential to improve treatment outcomes. This study investigates the genetic variations associated with aminoglycoside resistance in an antibiotic-induced Mycobacterium intracellulare mutant derived from a clinical strain. Whole-genome analysis identified seven mutations in the aminoglycoside-resistant mutant, including single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Key genetic alterations included a frameshift variant in a gene encoding a secreted protein antigen, missense mutations in rpsL and rsmG, and synonymous and in-frame deletion variants in srfAB and mtrB, respectively. These findings highlight the complex genetic landscape of aminoglycoside resistance in M. intracellulare. Understanding these resistance determinants provides valuable insights for developing diagnostic tools to detect drug-resistant MAC strains and optimizing therapeutic strategies for managing MAC infections in clinical practice.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Jun Anh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong-Min Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Kim JY, Bae J, Hyung K, Lee I, Park HJ, Kim SY, Lee KE, Ahn YH, Yoon SM, Kwak N, Yim JJ. Significance of changes in cavity after treatment in Mycobacterium avium complex pulmonary disease. Sci Rep 2024; 14:21133. [PMID: 39256432 PMCID: PMC11387760 DOI: 10.1038/s41598-024-71971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Cavities are characteristic radiological features related to increased mycobacterial burden and poor prognosis in Mycobacterium avium complex pulmonary disease (MAC-PD). However, cavity changes following treatment and their clinical implications remain unknown. We aimed to elucidate whether cavity obliteration or reduction in cavity size or wall thickness correlates with microbiological cure. In total, 136 adult patients with cavitary MAC-PD treated for ≥ 6 months between January 1st, 2009, and December 31st, 2021, in a tertiary referral centre in South Korea were enrolled. The cavity with the largest diameter at treatment initiation was tracked for size and thickness changes. Following median treatment of 20.0 months, 74 (54.4%) patients achieved microbiological cure. Cavity obliteration, achieved in 58 (42.6%) patients at treatment completion, was independently associated with microbiological cure. In patients with persistent cavities, size reduction of ≥ 10% was significantly associated with microbiological cure, whereas thickness reduction was not. Five-year mortality rates in patients with cavity obliteration, persistent but reduced cavity, and persistent cavity without shrinkage were 95.6%, 72.1%, and 65.3%, respectively (P < 0.001). In conclusion, cavity obliteration or shrinkage at treatment completion is associated with microbiological cure and reduced mortality in MAC-PD, suggesting that cavity changes could serve as a proxy indicator for treatment response.
Collapse
Affiliation(s)
- Joong-Yub Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juye Bae
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwonhyung Hyung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Inhan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Eui Lee
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pulmonology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Yoon Hae Ahn
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Si Mong Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nakwon Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Bolcato V, Bassetti M, Basile G, Bianco Prevot L, Speziale G, Tremoli E, Maffessanti F, Tronconi LP. The State-of-the-Art of Mycobacterium chimaera Infections and the Causal Link with Health Settings: A Systematic Review. Healthcare (Basel) 2024; 12:1788. [PMID: 39273812 PMCID: PMC11395465 DOI: 10.3390/healthcare12171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background. A definition of healthcare-associated infections is essential also for the attribution of the restorative burden to healthcare facilities in case of harm and for clinical risk management strategies. Regarding M. chimaera infections, there remains several issues on the ecosystem and pathogenesis. We aim to review the scientific evidence on M. chimaera beyond cardiac surgery, and thus discuss its relationship with healthcare facilities. (2) Methods. A systematic review was conducted on PubMed and Web of Science on 7 May 2024 according to PRISMA 2020 guidelines for reporting systematic reviews, including databases searches with the keyword "Mycobacterium chimaera". Article screening was conducted by tree authors independently. The criterion for inclusion was cases that were not, or were improperly, consistent with the in-situ deposition of aerosolised M. chimaera. (3) Results. The search yielded 290 eligible articles. After screening, 34 articles (377 patients) were included. In five articles, patients had undergone cardiac surgery and showed musculoskeletal involvement or disseminated infection without cardiac manifestations. In 11 articles, respiratory specimen reanalyses showed M. chimaera. Moreover, 10 articles reported lung involvement, 1 reported meninges involvement, 1 reported skin involvement, 1 reported kidney involvement after transplantation, 1 reported tendon involvement, and 1 reported the involvement of a central venous catheter; 3 articles reported disseminated cases with one concomitant spinal osteomyelitis. (4) Conclusions. The scarce data on environmental prevalence, the recent studies on M. chimaera ecology, and the medicalised sample selection bias, as well as the infrequent use of robust ascertainment of sub-species, need to be weighed up. The in-house aerosolization, inhalation, and haematogenous spread deserve experimental study, as M. chimaera cardiac localisation could depend to transient bacteraemia. Each case deserves specific ascertainment before tracing back to the facility, even if M. chimaera represents a core area for healthcare facilities within a framework of infection prevention and control policies.
Collapse
Affiliation(s)
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giuseppe Basile
- IRCCS Orthopaedic Institute Galeazzi, 20157 Milan, Italy
- Section of Legal and Forensic Medicine Clinical Institute San Siro, 20148 Milan, Italy
| | - Luca Bianco Prevot
- IRCCS Orthopaedic Institute Galeazzi, 20157 Milan, Italy
- Residency Program in Orthopaedics and Traumatology, University of Milan, 20122 Milan, Italy
| | | | - Elena Tremoli
- GVM Care and Research, Maria Cecilia Hospital, 49033 Cotignola, Italy
| | | | - Livio Pietro Tronconi
- GVM Care and Research, Maria Cecilia Hospital, 49033 Cotignola, Italy
- Department of Human Science, European University of Rome, 00163 Rome, Italy
| |
Collapse
|
4
|
Phunpae P, Thongkum W, Panyasit W, Laopajon W, Takheaw N, Pata S, Yasamut U, Kasinrerk W, Tayapiwatana C. Rapid lateral flow test for Mycobacterium tuberculosis complex and non-tuberculous mycobacteria differentiation. Appl Microbiol Biotechnol 2024; 108:456. [PMID: 39222096 PMCID: PMC11369055 DOI: 10.1007/s00253-024-13293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The diagnosis of mycobacterial infections, including both the Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), poses a significant global medical challenge. This study proposes a novel approach using immunochromatographic (IC) strip tests for the simultaneous detection of MTBC and NTM. Traditional methods for identifying mycobacteria, such as culture techniques, are hindered by delays in distinguishing between MTBC and NTM, which can affect patient care and disease control. Molecular methods, while sensitive, are resource-intensive and unable to differentiate between live and dead bacteria. In this research, we developed unique monoclonal antibodies (mAbs) against Ag85B, a mycobacterial secretory protein, and successfully implemented IC strip tests named 8B and 9B. These strips demonstrated high concordance rates with conventional methods for detecting MTBC, with positivity rates of 93.9% and 85.9%, respectively. For NTM detection, the IC strip tests achieved a 63.2% detection rate compared to culture methods, considering variations in growth rates among different NTM species. Furthermore, this study highlights a significant finding regarding the potential of MPT64 and Ag85B proteins as markers for MTBC detection. In conclusion, our breakthrough method enables rapid and accurate detection of both MTBC and NTM bacteria within the BACTEC MGIT system. This approach represents a valuable tool in clinical settings for distinguishing between MTBC and NTM infections, thereby enhancing the management and control of mycobacterial diseases. KEY POINTS: • Panel of mAbs for differentiating MTB versus NTM • IC strips for diagnosing MTBC and NTM after the BACTEC MGIT • Combined detection of MTP64 and Ag85B enhances diagnostic accuracy.
Collapse
Affiliation(s)
- Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Weeraya Thongkum
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wutthichai Panyasit
- Office of Disease Prevention and Control Region 1, Chiang Mai, 50100, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Xu N, Li L, Wu S. Epidemiology and laboratory detection of non-tuberculous mycobacteria. Heliyon 2024; 10:e35311. [PMID: 39166010 PMCID: PMC11334812 DOI: 10.1016/j.heliyon.2024.e35311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
The global incidence of non-tuberculous mycobacteria (NTM) infections is on the rise. This study systematically searched several databases, including PubMed, Web of Science, Google Scholar, and two Chinese libraries (Chinese National Knowledge Infrastructure and Wanfang) to identify relevant published between 2013 and 2023 related to the isolation of NTM in clinical specimens from various countries and provinces of China. Furthermore, a comprehensive literature review was conducted in PubMed and Google Scholar to identify randomized clinical trials, meta-analyses, systematic reviews, and observational studies that evaluated the diagnostic accuracy and impact of laboratory detection methods on clinical outcomes. This review presented the most recent epidemiological data and species distributions of NTM isolates in several countries and provinces of China. Moreover, it provided insights into laboratory bacteriological detection, including the identified strains, advantages and disadvantages, recent advancements, and the commercial Mycobacterium identification kits available for clinical use. This review aimed to aid healthcare workers in understanding this aspect, enhance the standards of clinical diagnosis and treatment, and enlighten them on the existing gaps and future research priorities.
Collapse
Affiliation(s)
- Nuo Xu
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lihong Li
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenghai Wu
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| |
Collapse
|
6
|
Kim S, Woo AL, Yong SH, Leem AY, Lee SH, Lee SH, Kim SY, Chung K, Kim EY, Jung JY, Kang YA, Park MS, Kim YS, Park Y. Clinical Characteristics and Treatment Outcomes of Pulmonary Diseases Caused by Coinfections With Multiple Nontuberculous Mycobacterial Species. J Korean Med Sci 2024; 39:e167. [PMID: 38804011 PMCID: PMC11136675 DOI: 10.3346/jkms.2024.39.e167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Coinfections with multiple nontuberculous mycobacterial (NTM) species have not been widely studied. We aimed to evaluate the clinical characteristics and treatment outcomes in patients with NTM-pulmonary disease (PD) caused by coinfection with multiple NTM species. METHODS We retrospectively reviewed patients with NTM-PD at a tertiary referral hospital in Korea between March 2012 and December 2018. Coinfection was defined as two or more species of NTM pathogens isolated from the same respiratory specimen or different specimens within three months. RESULTS Among 1,009 patients with NTM-PD, 147 (14.6%) NTM coinfections were observed (average age 64.7 years, 69.4% women). NTM species were identified more frequently (median 6 vs. 3 times, P < 0.001) in the coinfection group than in the single species group, and follow-up duration was also longer in the coinfection group (median 44.9 vs. 27.1 months, P < 0.001). Mycobacterium avium complex (MAC) and M. abscessus and M. massiliense (MAB) were the dominant combinations (n = 71, 48.3%). For patients treated for over six months in the MAC plus MAB group (n = 31), sputum culture conversion and microbiological cure were achieved in 67.7% and 41.9% of patients, respectively. We divided the MAC plus MAB coinfection group into three subgroups according to the target mycobacteria; however, no statistical differences were found in the treatment outcomes. CONCLUSION In NTM-PD cases, a significant number of multiple NTM species coinfections occurred. Proper identification of all cultured NTM species through follow-up is necessary to detect multispecies coinfections. Further research is needed to understand the nature of NTM-PD in such cases.
Collapse
Affiliation(s)
- Sol Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - A La Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyun Yong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Hwan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungsoo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Youngmok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea.
| |
Collapse
|
7
|
Park HE, Kim KM, Trinh MP, Yoo JW, Shin SJ, Shin MK. Bigger problems from smaller colonies: emergence of antibiotic-tolerant small colony variants of Mycobacterium avium complex in MAC-pulmonary disease patients. Ann Clin Microbiol Antimicrob 2024; 23:25. [PMID: 38500139 PMCID: PMC10949641 DOI: 10.1186/s12941-024-00683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
8
|
Narimisa N, Bostanghadiri N, Goodarzi F, Razavi S, Jazi FM. Prevalence of Mycobacterium kansasii in clinical and environmental isolates, a systematic review and meta-analysis. Front Microbiol 2024; 15:1321273. [PMID: 38440139 PMCID: PMC10911025 DOI: 10.3389/fmicb.2024.1321273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Mycobacterium kansasii infection is one of the most common causes of non-tuberculosis mycobacterial (NTM) disease worldwide. However, accurate information on the global prevalence of this bacterium is lacking. Therefore, this study was conducted to investigate the prevalence of M. kansasii in clinical and environmental isolates. Methods Databases, including PubMed, Scopus, and the Web of Science, were utilized to gather articles on the prevalence of M. kansasii in clinical and environmental isolates. The collected data were analyzed using Comprehensive Meta-Analysis software. Results A total of 118 and 16 studies met the inclusion criteria and were used to analyze the prevalence of M. kansasii in clinical and environmental isolates, respectively. The prevalence of M. kansasii in NTM and environmental isolates were 9.4 and 5.8%, respectively. Subsequent analysis showed an increasing prevalence of M. kansasii over the years. Additionally, the results indicated a significant difference in the prevalence of this bacteria among different regions. Conclusion The relatively high prevalence of M. kansasii among NTM isolates suggests the need for further implementation of infection control strategies. It is also important to establish appropriate diagnostic criteria and management guidelines for screening this microorganism in environmental samples in order to prevent its spread, given its high prevalence in environmental isolates.
Collapse
Affiliation(s)
- Negar Narimisa
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yu X, He Y, Gu Y, Zhang T, Huo F, Liang Q, Wu J, Hu Y, Wang X, Tang W, Huang H, Liu G. The Homologous Gene of Chromosomal Virulence D ( chvD) Presents High Resolution as a Novel Biomarker in Mycobacterium Species Identification. Infect Drug Resist 2023; 16:6039-6052. [PMID: 37719646 PMCID: PMC10503549 DOI: 10.2147/idr.s422191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Objective To evaluate the resolution of chromosomal virulence D (chvD) as a novel marker for mycobacterial species identification. Methods A segment of chvD (652 bp) was amplified by PCR from 63 mycobacterial reference strains, 163 nontuberculous mycobacterial clinical isolates, and 16 M. tuberculosis complex (MTBC) clinical isolates. A phylogenetic tree based on the reference strains was constructed by the neighbor-joining and IQ-tree methods. Comparative sequence analysis of the homologous chvD gene efficiently differentiated the species within the genus Mycobacterium. Slowly growing Mycobacterium (SGM) and rapidly growing Mycobacterium (RGM) were separated in the phylogenetic tree based on the chvD gene. Results The sequence discrepancies were obvious between M. kansasii and M. gastri, M. chelonae and M. abscessus, and M. avium and M. intracellulare, none of which could be achieved by 16S ribosomal RNA (rRNA) homologous gene alignment. Furthermore, chvD manifested larger intraspecies diversity among members of M. intracellulare subspecies. A total of 174 of the 179 (97.21%) clinical isolates, consisting of 12 mycobacterial species, were identified correctly by chvD blast. Four M. abscessus subsp. abscessus were identified as M. abscessus subsp. bolletii by chvD. MTBC isolates were indistinguishable, because they showed 99.84%-100% homology. Conclusion Homologous chvD is a promising gene marker for identifying mycobacterial species, and could be used for highly accurate species identification among mycobacteria.
Collapse
Affiliation(s)
- Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Yingxia He
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan, 430030, People’s Republic of China
| | - Yuzhen Gu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Tingting Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Qian Liang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Jing Wu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Yan Hu
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan, 430030, People’s Republic of China
| | - Xuan Wang
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan, 430030, People’s Republic of China
| | - Wei Tang
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan, 430030, People’s Republic of China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Guan Liu
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
10
|
Ramadhan AR, Massi MN, Sultan AR, Hamid F, Muslich LT, Sjahril R, Madjid B, Rasita YD, Hatta M. Molecular identification of mycobacterial infections in nonsputum specimens. Int J Mycobacteriol 2023; 12:267-273. [PMID: 37721231 DOI: 10.4103/ijmy.ijmy_121_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/12/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Mycobacterial infections can manifest in various anatomical sites, necessitating the analysis of nonsputum specimens for accurate diagnosis. The aim of this study was to identify the molecular cases of mycobacterial infections in nonsputum specimens using polymerase chain reaction based assays and gene sequencing methods. METHODS This observational study examined 161 nonsputum samples that have been stored in the Clinical Microbiology Laboratory at Hasanuddin University Hospital. Samples were analyzed by microscopy and molecular detection methods according to the standard methods at the Clinical Microbiology Laboratory of Hasanuddin University. Descriptive statistics were utilized to summarize patient demographics, infection characteristics, and outcomes. RESULTS The samples were collected from patients with an average age of 39.82 years. The anatomical sites of specimen collection varied, with musculoskeletal organs and eyes being the most common. Microbiological analysis revealed a predominance of Gram positive bacteria, with polymicrobial morphology observed. Methicillin susceptible Staphylococcus aureus were the most frequently isolated organisms. Acid fast bacilli were detected in 8.1% of samples. Phylogenetic analysis, based on 16S rRNA gene sequencing, revealed similarities between the samples and known mycobacterial species, including Mycobacterium parmense, Mycobacterium lacus, and Mycobacterium dioxanotrophicus. CONCLUSIONS The findings highlight the microbial diversity observed in these infections. The study advocates for comprehensive diagnostic evaluations and targeted testing strategies based on both clinical and laboratory findings. This knowledge can contribute to improved diagnostic accuracy and optimized treatment strategies for mycobacterial infections.
Collapse
Affiliation(s)
- Ahmad Rahmat Ramadhan
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Rofian Sultan
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdaus Hamid
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lisa Tenriesa Muslich
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rizalinda Sjahril
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Baedah Madjid
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yoeke Dewi Rasita
- Department of Microbiology, Faculty of Medicine, Hasanuddin University; Health Laboratory Center for Makassar, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
11
|
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health. Microorganisms 2022; 10:microorganisms10081516. [PMID: 35893574 PMCID: PMC9332762 DOI: 10.3390/microorganisms10081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent an important group of environmentally saprophytic and potentially pathogenic bacteria that can cause serious mycobacterioses in humans and animals. The sources of infections often remain undetected except for soil- or water-borne, water-washed, water-based, or water-related infections caused by groups of the Mycobacterium (M.) avium complex; M. fortuitum; and other NTM species, including M. marinum infection, known as fish tank granuloma, and M. ulcerans infection, which is described as a Buruli ulcer. NTM could be considered as water-borne, air-borne, and soil-borne pathogens (sapronoses). A lot of clinically relevant NTM species could be considered due to the enormity of published data on permanent, periodic, transient, and incidental sapronoses. Interest is currently increasing in mycobacterioses diagnosed in humans and husbandry animals (esp. pigs) caused by NTM species present in peat bogs, potting soil, garden peat, bat and bird guano, and other matrices used as garden fertilizers. NTM are present in dust particles and in water aerosols, which represent certain factors during aerogenous infection in immunosuppressed host organisms during hospitalization, speleotherapy, and leisure activities. For this Special Issue, a collection of articles providing a current view of the research on NTM-including the clinical relevance, therapy, prevention of mycobacterioses, epidemiology, and ecology-are addressed.
Collapse
|
12
|
Sun Q, Yan J, Liao X, Wang C, Wang C, Jiang G, Dong L, Wang F, Huang H, Wang G, Pan J. Trends and Species Diversity of Non-tuberculous Mycobacteria Isolated From Respiratiroy Samples in Northern China, 2014–2021. Front Public Health 2022; 10:923968. [PMID: 35923959 PMCID: PMC9341428 DOI: 10.3389/fpubh.2022.923968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary non-tuberculous mycobacteria (NTM) infection has become a public health concern in China and around the world. The objective of this study was to describe the longitudinal changes in the frequency and diversity of NTM in northern China. Methods We retrospectively analyzed data on mycobacterium species in Beijing Chest Hospital from January 2014 to December 2021. The isolates were identified to species level by targeted DNA sequencing. Results After excluding duplicates, 1,755 NTM strains were analyzed, which were from 27 provinces in China over 8 years. Among all mycobacteria, the proportion of NTM increased each year, from 4.24% in 2014 to 12.68% in 2021. Overall, 39 different NTM species were identified, including 23 slow growing mycobacteria (SGM) and 16 rapid growing mycobacteria (RGM). The most common species were M. intracellulare (51.62%), M. abscessus (22.22%), M. kansasii (8.32%), M. avium (7.75%) and M. fortuitum (2.05%). The number of NTM species identified also increased each year from 9 in 2014 to 26 in 2021. Most species showed stable isolation rates over the years; however, the proportion of M. avium increased from 3.85 to 10.42% during the study period. Besides, 81 non-mycobacteria strains, including Gordonia (21 isolates), Nocardia (19 isolates) and Tsukamurella (17 isolates), etc., were also discovered. Conclusion The proportion of NTM and species diversity increased considerably in northern China from 2014 to 2021. M. intracellulare was the most common NTM isolated among respiratory specimens, followed by M. abscessus and M. kansasii. Rare NTM species and non-mycobacteria pathogens also need attention.
Collapse
Affiliation(s)
- Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Jun Yan
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xinlei Liao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Chaohong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Chenqian Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- *Correspondence: Junhua Pan
| | - Junhua Pan
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- Guirong Wang
| |
Collapse
|