1
|
Fernandez-Pombo A, Izquierdo AG, Canton-Blanco A, Garcia-Sobrino T, Hervás D, Martínez-Olmos MA, Pardo J, Crujeiras AB. Blood DNA Methylation in Nuclear and Mitochondrial Sequences Links to Malnutrition and Poor Prognosis in ALS: A Longitudinal Study. Nutrients 2025; 17:1295. [PMID: 40284160 PMCID: PMC12030252 DOI: 10.3390/nu17081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Malnutrition in amyotrophic lateral sclerosis (ALS) is associated with disease severity, and epigenetic regulation may be involved. The aim of this study was to assess the methylation levels of specific DNA sequences from the nuclear and mitochondrial genomes in a population with ALS to elucidate their relationship with nutritional status and the evolution of the disease. Methods: Patients with ALS were evaluated between 2013 and 2021 (n = 66). They were categorized according to their nutritional status, using the Global Leadership Initiative on Malnutrition (GLIM) criteria, and disease progression, using the ALS Functional Rating (ALSFRS-R) Scale. DNA samples were extracted from leukocytes at the time of diagnosis for analysis of DNA methylation levels of markers of oxidative stress, mitochondrial function and global methylation (D-loop, GSTP1, and LINE-1). Results: According to the GLIM criteria, 29 (43.9%) patients had malnutrition (22.7%-moderate; 21.2%-severe), which was positively correlated with ALS disease progression (r = 0.414; p < 0.01) and death (r = 0.687; p < 0.01). Mortality occurred in 43.9% of the patients (median time to death, 18.7 (1.7-82.7) months). A significant association was observed between DNA methylation levels of the D-loop, GSTP1, and the CpG1 site of LINE-1 and malnutrition, disease progression at diagnosis, and death. The D-loop was the best predictor of malnutrition (AUC, 0.79; p < 0.01), disease progression (AUC, 0.70; p < 0.01), and mortality (AUC, 0.71; p < 0.01). Conclusions: This study revealed, for the first time, the early detection of D-loop methylation levels as a potential biomarker of nutritional status in patients with ALS, which may be useful for personalized nutritional management aimed at counteracting disease progression.
Collapse
Affiliation(s)
- Antia Fernandez-Pombo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain;
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, A Coruña, Spain; (A.C.-B.); (M.A.M.-O.)
| | - Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| | - Ana Canton-Blanco
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, A Coruña, Spain; (A.C.-B.); (M.A.M.-O.)
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
- Molecular Endocrinology Group, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain
| | - Tania Garcia-Sobrino
- Department of Neurology, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, A Coruña, Spain; (T.G.-S.); (J.P.)
| | - David Hervás
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Valencia, Spain;
| | - Miguel A. Martínez-Olmos
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, A Coruña, Spain; (A.C.-B.); (M.A.M.-O.)
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
- Molecular Endocrinology Group, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain
| | - Julio Pardo
- Department of Neurology, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, A Coruña, Spain; (T.G.-S.); (J.P.)
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, A Coruña, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), 28029 Madrid, Spain
| |
Collapse
|
2
|
Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet 2025:10.1038/s41576-025-00829-y. [PMID: 40175591 DOI: 10.1038/s41576-025-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.
Collapse
Affiliation(s)
| | - Pradeep Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | | |
Collapse
|
3
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
ElGendy K, Malcomson FC, Afshar S, Bradburn MD, Mathers JC. Effects of obesity, and of weight loss following bariatric surgery, on methylation of DNA from the rectal mucosa and in cell-free DNA from blood. Int J Obes (Lond) 2023; 47:1278-1285. [PMID: 37714902 DOI: 10.1038/s41366-023-01384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND DNA methylation is an epigenetic mechanism through which environmental factors including nutrition and inflammation influence health. Obesity is a major modifiable risk factor for many common diseases including cardiovascular diseases and cancer. In particular, obesity-induced inflammation resulting from aberrantly-methylated inflammatory genes may drive risk of several non-communicable diseases including colorectal cancer (CRC). This study is the first to investigate the effects of weight loss induced by bariatric surgery (BS) on DNA methylation in the rectum and in cell-free DNA (cfDNA) from blood. SUBJECTS AND METHODS DNA methylation was quantified in rectal mucosal biopsies and cfDNA from serum of 28 participants with obesity before and 6 months after BS, as well as in 12 participants without obesity (control group) matched for age and sex from the Biomarkers Of Colorectal cancer After Bariatric Surgery (BOCABS) Study. DNA methylation of LEP, IL6, POMC, LINE1, MAPK7 and COX2 was quantified by pyrosequencing. RESULTS BMI decreased significantly from 41.8 kg/m2 pre-surgery to 32.3 kg/m2 at 6 months after BS. Compared with the control group, obesity was associated with lower LEP methylation in both the rectal mucosa and in cfDNA from serum. BS normalised LEP methylation in DNA from the rectal mucosa but not in cfDNA. BS decreased methylation of some CpG sites of LINE1 in the rectal mucosal DNA and in cfDNA to levels comparable with those in participants without obesity. Methylation of POMC in rectal mucosal DNA was normalised at 6 months after BS. CONCLUSION BS reversed LINE1, POMC and LEP methylation in the rectal mucosa of patients with obesity to levels similar to those in individuals without obesity. These findings support current evidence of effects of BS-induced weight loss on reversibility of DNA methylation in other tissues. The DNA methylation changes in the rectal mucosa shows promise as a biomarker for objective assessment of effects of weight loss interventions on risk of cancer and other diseases.
Collapse
Affiliation(s)
- Khalil ElGendy
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England.
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England.
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Sorena Afshar
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England
| | - Michael D Bradburn
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
5
|
Ramini D, Latini S, Giuliani A, Matacchione G, Sabbatinelli J, Mensà E, Bacalini MG, Garagnani P, Rippo MR, Bronte G, Bonafè M, Cardelli M, Olivieri F. Replicative Senescence-Associated LINE1 Methylation and LINE1-Alu Expression Levels in Human Endothelial Cells. Cells 2022; 11:cells11233799. [PMID: 36497059 PMCID: PMC9739197 DOI: 10.3390/cells11233799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences.
Collapse
Affiliation(s)
- Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
| | - Silvia Latini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6243
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40126 Bologna, Italy
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”-Unit of Bologna, 40126 Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giuseppe Bronte
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Obesity-Associated Differentially Methylated Regions in Colon Cancer. J Pers Med 2022; 12:jpm12050660. [PMID: 35629083 PMCID: PMC9142939 DOI: 10.3390/jpm12050660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity with adiposity is a common disorder in modern days, influenced by environmental factors such as eating and lifestyle habits and affecting the epigenetics of adipose-based gene regulations and metabolic pathways in colorectal cancer (CRC). We compared epigenetic changes of differentially methylated regions (DMR) of genes in colon tissues of 225 colon cancer cases (154 non-obese and 71 obese) and 15 healthy non-obese controls by accessing The Cancer Genome Atlas (TCGA) data. We applied machine-learning-based analytics including generalized regression (GR) as a confirmatory validation model to identify the factors that could contribute to DMRs impacting colon cancer to enhance prediction accuracy. We found that age was a significant predictor in obese cancer patients, both alone (p = 0.003) and interacting with hypomethylated DMRs of ZBTB46, a tumor suppressor gene (p = 0.008). DMRs of three additional genes: HIST1H3I (p = 0.001), an oncogene with a hypomethylated DMR in the promoter region; SRGAP2C (p = 0.006), a tumor suppressor gene with a hypermethylated DMR in the promoter region; and NFATC4 (p = 0.006), an adipocyte differentiating oncogene with a hypermethylated DMR in an intron region, are also significant predictors of cancer in obese patients, independent of age. The genes affected by these DMR could be potential novel biomarkers of colon cancer in obese patients for cancer prevention and progression.
Collapse
|