1
|
Burton MA, Rodríguez-López CE, Cetz-Chel JE, Urrea-López R, Pereira-Santana A. Beyond the trinity: unraveling a fourth clade in the PEBP gene family in plants. PLANT CELL REPORTS 2025; 44:122. [PMID: 40383720 DOI: 10.1007/s00299-025-03505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
KEY MESSAGE Proposal for a new fourth PEBP gene group (SFT-like) in a genomic context different from 21 the other three. FT/TFL groups evolved from MFT, but then became sub-, neo-functionalized. The phosphatidylethanolamine-binding protein (PEBP) gene family plays crucial roles in plant development, principally involved in flowering time regulation and seed development. Traditionally, PEBP genes are classified into three clades: MOTHER OF FT AND TFL1 (MFT), FLOWERING LOCUS T (FT), and TERMINAL FLOWER 1 (TFL). We used phylogenomic and microsynteny network analyses to explore the PEBP family across 275 plant genomes from different lineages. The phylogenetic tree of the identified 3707 PEBP proteins allows us to visualize a fourth clade within the PEBP family. This new clade, named SFT (Sibling of FT/TFL), is closely related to the MFT clade but sister to the branch point of FT/TFL subfamilies, suggesting a long-standing evolutionary divergence. In addition, the SFT subfamily is in a different genomic context, whereas FT and TFL share a common origin with MFT. Motif analyzes show differences between this new clade and those already reported, suggesting functions other than flowering or seed development. The Ka/Ks analysis also suggests that SFT clade had fewer duplication events, so these genes could have an important function for the plant that had not yet been elucidated. These findings offer new insights into the evolutionary history and functional diversification of PEBP genes in plants. This study provides an update on the classification of the PEBP family. By understanding the syntenic relationships and evolutionary dynamics within the PEBP family, this research sets the stage for future functional studies on PEBP genes in plant biology, particularly the recently identified SFT clade.
Collapse
Affiliation(s)
- Miguel A Burton
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), 45019, Zapopan, Jalisco, Mexico
| | - Carlos E Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
- Integrative Biology Unit, Tecnológico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - José E Cetz-Chel
- División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Rafael Urrea-López
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), 45019, Zapopan, Jalisco, Mexico.
| | - Alejandro Pereira-Santana
- SECIHTI-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Sede Sureste, Parque Científico Tecnológico de Yucatán, 97302, Mérida, Yucatán, Mexico.
| |
Collapse
|
2
|
Murithi A, Panangipalli G, Wen Z, Olsen MS, Lübberstedt T, Dhugga KS, Jung M. Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis. PLANTS (BASEL, SWITZERLAND) 2025; 14:295. [PMID: 39861649 PMCID: PMC11768128 DOI: 10.3390/plants14020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN. Key findings included the identification of components of the plant innate immune system, such as differentially regulated R genes (mainly LRRs), and activation/deactivation of virus resistance pathways, including RNA interference (RNAi) via Argonaute (AGO), Dicer-like proteins, and the ubiquitin-proteasome system (UPS) via RING/U-box and ubiquitin ligases. Genes associated with redox signaling, WRKY transcription factors, and cell modification were also differentially expressed. Additionally, the expression of translation initiation and elongation factors, eIF4E and eIF4G, correlated with the presence of MLN viruses. These findings provide valuable insights into the molecular mechanisms of MLN resistance and highlight potential gene candidates for engineering or selecting MLN-resistant maize germplasm for SSA.
Collapse
Affiliation(s)
- Ann Murithi
- Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA; (G.P.); (M.J.)
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, Texcoco 56237, Mexico; (Z.W.); (K.S.D.)
- Genetics and Genomics Graduate Program, Iowa State University, 2014 Molecular Building, 2437 Pammel Dr., Ames, IA 5001, USA
| | | | - Zhengyu Wen
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, Texcoco 56237, Mexico; (Z.W.); (K.S.D.)
- Keygene, Inc., 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Michael S. Olsen
- Bayer, Crop Science Division, 800 N. Lindbergh Blvd., St. Louis, MO 63167, USA;
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 716 Farm House Lane, Ames, IA 50011, USA;
| | - Kanwarpal S. Dhugga
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, Texcoco 56237, Mexico; (Z.W.); (K.S.D.)
| | - Mark Jung
- Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA; (G.P.); (M.J.)
| |
Collapse
|
3
|
Jiang Y, Li M, Qian Y, Rong H, Xie T, Wang S, Zhao H, Yang L, Wang Q, Cao Y. Analysis of the Transcriptome Provides Insights into the Photosynthate of Maize Response to Salt Stress by 5-Aminolevulinic Acid. Int J Mol Sci 2025; 26:786. [PMID: 39859501 PMCID: PMC11765576 DOI: 10.3390/ijms26020786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Salt stress is a significant environmental factor that impedes maize growth and yield. Exogenous 5-aminolevulinic acid (ALA) has been shown to mitigate the detrimental effects of various environmental stresses on plants. However, its regulatory role in the photosynthesis mechanisms of maize seedlings under salt stress remains poorly understood. Transcriptome sequencing and physiological index measurements were conducted on the leaves of the "Zhengdan 958" cultivar subjected to three different treatments. Differential expression analysis revealed 4634 differentially expressed genes (DEGs), including key transcription factor (TF) families such as NAC, MYB, WRKY, and MYB-related, across two comparisons (SS_vs_CK and ALA_SS_vs_SS). Significant enrichment was observed in the metabolic pathways related to porphyrin metabolism, photosynthesis-antenna proteins, photosynthesis, and carbon fixation in photosynthetic organisms. ALA treatment modulated the expression of photosynthesis-related genes, increased photosynthetic pigment content, and enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), thereby mitigating the excessive accumulation of reactive oxygen species (ROS). Furthermore, ALA increased starch content under salt stress. These findings establish a foundational understanding of the molecular mechanisms through which ALA regulates photosynthesis under salt stress in maize seedlings. Collectively, exogenous ALA enhances maize's salt tolerance by regulating photosynthesis-related pathways.
Collapse
Affiliation(s)
- Ying Jiang
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Min Li
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Yumei Qian
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Hao Rong
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Tao Xie
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Shanshan Wang
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Hong Zhao
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Liangli Yang
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (Y.J.); (M.L.); (Y.Q.); (H.R.); (T.X.); (S.W.); (H.Z.); (L.Y.)
| | - Qingyun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, Hefei 230036, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
4
|
Hua Y, Pei M, Song H, Liu Y, Zhou T, Chao H, Yue C, Huang J, Qin G, Feng Y. Boron confers salt tolerance through facilitating BnaA2.HKT1-mediated root xylem Na + unloading in rapeseed (Brassica napus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1326-1342. [PMID: 39453388 DOI: 10.1111/tpj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Boron (B) is an important limiting factor for plant growth and yield in saline soils, but the underlying molecular mechanisms remain poorly understood. In this study, we found that appropriate B supply obviously complemented rapeseed (Brassica napus L.) growth under salinity accompanied by higher biomass production and less reactive oxygen species accumulation. Determination of Na+ content in shoots and roots indicated that B significantly repressed root-to-shoot Na+ translocation, and non-invasive micro-tests of root xylem sap demonstrated that B increased xylem Na+ unloading in the roots of rapeseed plants under salinity. Comparative transcriptomic profiling revealed that B strongly upregulated BnaHKT1s expression, especially BnaA2.HKT1, in rapeseed roots exposed to salinity. In situ hybridizations analysis showed that BnaA2.HKT1 was significantly induced in root stelar tissues by high B (HB) under salinity. Green fluorescent protein and yeast heterologous expression showed that BnaA2.HKT1 functioned as a plasma membrane-localized Na+ transporter. Knockout of BnaA2.HKT1 by CRISPR/Cas9 resulted in hypersensitive of rapeseed plants to salinity even under HB condition, with higher shoot Na+ accumulation and lower biomass production. By contrast, overexpression of BnaA2.HKT1 ameliorated salinity-induced growth inhibition under B deficiency and salinity. Overall, our results proposed that B functioned as a positive regulator for the rapeseed growth and seed production under salt stress through facilitating BnaA2.HKT1-mediated root xylem Na+ unloading. This study may also provide an alternative strategy for the improvement of crop growth and development in saline soils.
Collapse
Affiliation(s)
- Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Minnan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haili Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Liu
- School of Biological Engineering, Xinxiang Institute of Engineering, Xinxiang, 453700, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Caipeng Yue
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingna Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Alsamadany H, Anayatullah S, Zia-ur-Rehman M, Usman M, Ameen T, Alharby HF, Alharbi BM, Abdulmajeed AM, Yong JWH, Rizwan M. Residual efficiency of iron-nanoparticles and different iron sources on growth, and antioxidants in maize plants under salts stress: life cycle study. Heliyon 2024; 10:e28973. [PMID: 38601603 PMCID: PMC11004812 DOI: 10.1016/j.heliyon.2024.e28973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Exogenous application of iron (Fe) may alleviate salinity stress in plants growing in saline soils. This comparative study evaluated the comparative residual effects of iron nanoparticles (FNp) with two other Fe sources including iron-sulphate (FS) and iron-chelate (FC) on maize (Zea mays L.) crop grown under salt stress. All three Fe sources were applied at the rate of 15 and 25 mg/kg of soil before the sowing of wheat (an earlier crop; following the sequence of crop rotation) and no further Fe amendments were added later for the maize crop. Results revealed that FNp application at 25 mg/kg (FNp-2) substantially increased maize height, root length, root dry weight, shoot dry weight, and grain weightby 80.7%, 111.1%, 45.7%, 59.5%, and 77.2% respectively, as compared to the normal controls; and 62.6%, 81.3%, 65.1%, 78%, and 61.2% as compared to salt-stressed controls, respectively. The FNp-2 treatment gave higher activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase compared to salt stressed control (50.6%, 51%, 48.5%, and 49.2%, respectively). The FNp-2 treatment also produced more photosynthetic pigments and better physiological markers: higher chlorophyll a contents by 49.9%, chlorophyll b contents by 67.2%, carotenoids by 62.5%, total chlorophyll contents by 50.3%, membrane stability index by 59.1%, leaf water relative contents by 60.3% as compared to salt stressed control. The highest Fe and Zn concentrations in maize roots, shoots, and grains were observed in FNp treatment as compared to salts stressed control. Higher application rates of Fe from all the sources also delivered better outcomes in alleviating salinity stress in maize compared to their respective low application rates. The study demonstrated that FNp application alleviated salinity stress, increased nutrient uptake and enhanced the yield of maize grown on saline soils.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Zia-ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Talha Ameen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj, 46429, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
7
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
8
|
Diogo-Jr R, de Resende Von Pinho EV, Pinto RT, Zhang L, Condori-Apfata JA, Pereira PA, Vilela DR. Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families. STRESS BIOLOGY 2023; 3:37. [PMID: 37981586 PMCID: PMC10482818 DOI: 10.1007/s44154-023-00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/05/2023] [Indexed: 11/21/2023]
Abstract
Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.
Collapse
Affiliation(s)
- Rubens Diogo-Jr
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA.
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil.
| | | | - Renan Terassi Pinto
- Faculty of Philosophy and Sciences at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, (14040-901), Brazil
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
| | - Jorge Alberto Condori-Apfata
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
- Faculty of Engineering and Agricultural Sciences, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas (UNTRM), Chachapoyas, AM, (01001), Peru
| | - Paula Andrade Pereira
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| | - Danielle Rezende Vilela
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| |
Collapse
|
9
|
Duan H, Xue Z, Ju X, Yang L, Gao J, Sun L, Xu S, Li J, Xiong X, Sun Y, Wang Y, Zhang X, Ding D, Zhang X, Tang J. The genetic architecture of prolificacy in maize revealed by association mapping and bulk segregant analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:182. [PMID: 37555969 DOI: 10.1007/s00122-023-04434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023]
Abstract
KEY MESSAGE Here, we revealed maize prolificacy highly correlated with domestication and identified a causal gene ZmEN1 located in one novel QTL qGEN261 that regulating maize prolificacy by using multiple-mapping methods. The development of maize prolificacy (EN) is crucial for enhancing yield and breeding specialty varieties. To achieve this goal, we employed a genome-wide association study (GWAS) to analyze the genetic architecture of EN in maize. Using 492 inbred lines with a wide range of EN variability, our results demonstrated significant differences in genetic, environmental, and interaction effects. The broad-sense heritability (H2) of EN was 0.60. Through GWAS, we identified 527 significant single nucleotide polymorphisms (SNPs), involved 290 quantitative trait loci (QTL) and 806 genes. Of these SNPs, 18 and 509 were classified as major effect loci and minor loci, respectively. In addition, we performed a bulk segregant analysis (BSA) in an F2 population constructed by a few-ears line Zheng58 and a multi-ears line 647. Our BSA results identified one significant QTL, qBEN1. Importantly, combining the GWAS and BSA, four co-located QTL, involving six genes, were identified. Three of them were expressed in vegetative meristem, shoot tip, internode and tip of ear primordium, with ZmEN1, encodes an unknown auxin-like protein, having the highest expression level in these tissues. It suggested that ZmEN1 plays a crucial role in promoting axillary bud and tillering to encourage the formation of prolificacy. Haplotype analysis of ZmEN1 revealed significant differences between different haplotypes, with inbred lines carrying hap6 having more EN. Overall, this is the first report about using GWAS and BSA to dissect the genetic architecture of EN in maize, which can be valuable for breeding specialty maize varieties and improving maize yield.
Collapse
Affiliation(s)
- Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Zhengjie Xue
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Xiaolong Ju
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Lu Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, People's Republic of China
| | - Jionghao Gao
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yan Wang
- Zhucheng Mingjue Tender Company Limited, Weifang, People's Republic of China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, People's Republic of China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, People's Republic of China.
| |
Collapse
|
10
|
Shabaan M, Asghar HN, Akhtar MJ, Saleem MF. Assessment of cumulative microbial respiration and their ameliorative role in sustaining maize growth under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:33-42. [PMID: 36689831 DOI: 10.1016/j.plaphy.2023.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Cumulative microbial respiration reflects microbial activities and their potential to support plant growth, where salt tolerant rhizobacteria can optimize their respiration, and ensure plant survival under salt stress. We evaluated cumulative microbial respiration of different salt tolerant rhizobacterial strains at different salinity levels, and checked their ability to sustain plant growth under natural saline conditions by using maize as test crop. Our results revealed that at the highest EC level (10 dS m-1), strain 'SUA-14' performed significantly better, and exhibited the greatest cumulative respiration (4.2 fold) followed by SHM-13 (3.8 fold), as compared to un-inoculated control. Moreover, results of the field trial indicated a similar trend, where significant improvements in shoot fresh weight (59%), root fresh weight (80%), shoot dry weight (56%), root dry weight (1.4 fold), leaf area (1.9 fold), straw yield (41%), cob diameter (33%), SPAD value (84%), yield (99%), relative water contents (91%), flavonoid (55%), 1000 grain weight (∼100%), soluble sugars (41%) and soluble proteins (45%) were observed due to inoculation of strain 'SUA-14' as compared to un-inoculated control. Similarly, substantial decline in leaf Na+ (34%), Na+/K+ ratio (69%), electrolyte leakage (8%), catalase (54%), peroxidase (73%), and H2O2 (50%) activities were observed after inoculation of 'SUA-14' with a concomitant increment in the leaf K+ contents (70%) under salinity stress than un-inoculated control. Hence, among all the tested rhizobacterial isolates, 'SUA-14' served as the most efficient strain in alleviating the detrimental impacts of salinity on maize growth and yield. The 16S rRNA sequencing identified it as Acinetobacter johnsonii.
Collapse
Affiliation(s)
- Muhammad Shabaan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
11
|
Arslan Ö, Çulha Erdal Ş, Ekmekçi Y. Salt Pretreatment-Mediated Alleviation of Boron Toxicity in Safflower Cultivars: Growth, Boron Accumulation, Photochemical Activities, Antioxidant Defense Response. PLANTS 2022; 11:plants11172316. [PMID: 36079698 PMCID: PMC9460468 DOI: 10.3390/plants11172316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
The study aims to elucidate alleviant effects of boron (B) toxicity by salt pretreatment (SP) on growth response, phytoremediation capacity, photosynthesis, and defense mechanisms in two safflower cultivars (Carthamus tinctorius L.; Dinçer and Remzibey-05). Eighteen-day-old plants were divided into two groups: SP (75 mM NaCl for 5 days) and/or B treatment (C, 2, 4, 6, and 8 mM B for 10 days). Depending on the applied B toxicity, B concentrations in roots and leaves of both cultivars, necrotic areas of leaves, ion leakage (RLR), and H2O2 synthesis increased, while shoot and root length as well as biomass, water, chlorophyll a+b, and carotenoid content decreased. In addition, chlorophyll a fluorescence results revealed that every stage of the light reactions of photosynthesis was adversely affected under B toxicity, resulting in decreases in performance indexes (PIABS and PITOT). However, the cultivars tended to induce the synthesis of anthocyanins and flavonoids and increase the activity of antioxidant enzymes (SOD, POD, APX, and GR) to detoxify reactive oxygen species (ROS) under B toxicity. SP mitigated the negative effects of toxic B on biomass, water and pigment content, membrane integrity, photosynthetic activity, and defense systems. Considering all results, Remzibey-05 was able to better overcome the biochemical and physiological changes that may be caused by B toxicity by more effectively rendering B harmless, although it accumulated more B than Dinçer.
Collapse
Affiliation(s)
- Özlem Arslan
- Department of Food Processing, University College of Espiye, University of Giresun, 28600 Giresun, Turkey
| | - Şeküre Çulha Erdal
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Yasemin Ekmekçi
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
- Correspondence:
| |
Collapse
|