1
|
Yu Y, Sun FJ. Research progress on the role of inflammatory mediators in the pathogenesis of epilepsy. IBRAIN 2024; 11:44-58. [PMID: 40103702 PMCID: PMC11911113 DOI: 10.1002/ibra.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 03/20/2025]
Abstract
Epilepsy is an abnormal neurologic disorder distinguished by the recurrent manifestation of seizures, and the precise underlying mechanisms for its development and progression remain uncertain. In recent years, the hypothesis that inflammatory mediators and corresponding pathways contribute to seizures has been supported by experimental results. The potential involvement of neuroinflammation in the development of epilepsy has garnered growing interest. This review centers attention on the involvement of inflammatory mediators in the emergence and progression of epilepsy within recent years, focusing on both clinical research and animal models, to enhance comprehension of the intricate interplay between brain inflammation and epileptogenesis.
Collapse
Affiliation(s)
- Yue Yu
- Department of Neurosurgery Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Fei-Ji Sun
- Department of Neurosurgery Affiliated Hospital of Zunyi Medical University Zunyi China
- Department of Neurosurgery The First Affiliated Hospital of Chongqing Medical and pharmaceutical college Chongqing China
| |
Collapse
|
2
|
Jeelani M. miRNAs in epilepsy: A review from molecular signatures to therapeutic intervention. Int J Biol Macromol 2024; 263:130468. [PMID: 38417757 DOI: 10.1016/j.ijbiomac.2024.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Epilepsy is a medical disorder marked by sporadic seizures accompanied by alterations in consciousness. The molecular mechanisms responsible for epilepsy and the factors contributing to alterations in neuronal structure compromised apoptotic responses in neurons, and disturbances in regeneration pathways in glial cells remain unidentified. MicroRNAs (miRNAs) are short noncoding RNA that consist of a single strand. They typically contain 21 to 23 nucleotides. miRNAs participate in the process of RNA silencing and the regulation of gene expression after transcription by selectively binding to mRNA molecules that possess complementary sequences. The disruption of miRNA regulation has been associated with the development of epilepsy, and manipulating a single miRNA can impact various cellular processes, hence serving as a potent intervention approach. Despite existing obstacles in the delivery and safety of miRNA-based treatments, researchers are actively investigating the potential of miRNAs to operate as regulators of brain activity and as targets for treating and preventing epilepsy. Hence, the utilization of miRNA-based therapeutic intervention shows potential for future epilepsy management. The objective of our present investigation was to ascertain the involvement of miRNAs in the causation and advancement of epilepsy. Moreover, they have undergone scrutiny for their potential utilization in therapeutic intervention.
Collapse
Affiliation(s)
- Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
3
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
4
|
Methods in Medicine CAM. Retracted: The Neuroprotective Effect of miR-136 on Pilocarpine-Induced Temporal Lobe Epilepsy Rats by Inhibiting Wnt/ β-Catenin Signaling Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9863169. [PMID: 37946952 PMCID: PMC10631922 DOI: 10.1155/2023/9863169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/1938205.].
Collapse
|
5
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Lu Y, Wang W, Ma Y, Fan Z, Xiong L, Zhao J, He Y, Li C, Wang A, Xiao N, Wang T. miR-10a induces inflammatory responses in epileptic hippocampal neurons of rats via PI3K/Akt/mTOR signaling pathway. Neuroreport 2023; 34:526-534. [PMID: 37270844 DOI: 10.1097/wnr.0000000000001920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Epilepsy is a common chronic neurological disorder worldwide. MicroRNAs (miRNAs) play an important role in the pathogenesis of epilepsy. However, the mechanism of the regulatory effect of miR-10a on epilepsy is unclear. In this study, we investigated the effect of miR-10a expression on the PI3K/Akt/mTOR signaling pathway and inflammatory cytokines in epileptic hippocampal neurons of rats. The miRNA differential expression profile of rat epileptic brain was analyzed using bioinformatic approaches. Neonatal Sprague-Dawley rat hippocampal neurons were prepared as epileptic neuron models in vitro by replacing culture medium with magnesium-free extracellular solution. The hippocampal neurons were transfected with miR-10a mimics, and transcript levels of miR-10a, PI3K, Akt and mTOR were detected by quantitative reverse transcription-PCR, and PI3K, mTOR, Akt, TNF-α, IL-1β, IL-6 protein expression levels were detected by Western blot. Cytokines secretory levels were detected by ELISA. Sixty up-regulated miRNAs were identified in the hippocampal tissue of epileptic rats and might affect the PI3K-Akt signaling pathway. In the epileptic hippocampal neurons model, the expression levels of miR-10a were significantly increased, with decreasing levels of PI3K, Akt and mTOR, and increasing levels of TNF-α, IL-1β and IL-6. The miR-10a mimics promoted the expression of TNF-α, IL-1β and IL-6. Meanwhile, miR-10a inhibitor activated PI3K/Akt/mTOR pathway and inhibited cytokines secretion. Finally, cytokine secretion was increased by treated with PI3K inhibitor and miR-10a inhibitor. The miR-10a may promote inflammatory responses in rat hippocampal neurons by inhibiting the PI3K/Akt/mTOR pathway, suggesting that miR-10a may be one of the target therapeutic molecules for epilepsy treatment.
Collapse
Affiliation(s)
- Yuanming Lu
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | - Wanshi Wang
- Air Service Department, Central Theater Air Force Hospital of Chinese PLA, Datong, Shanxi
| | - Yanping Ma
- Department of Geriatrics, Chengyang District People's Hospital, Qingdao, Shandong
| | - Zilian Fan
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | - Lan Xiong
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | - Junhao Zhao
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | - Yongwen He
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | - Chao Li
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | - Anjie Wang
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan
| | | | - Tianxun Wang
- Department of Cardiology, First People's Hospital of Guangyuan, Guangyuan, Sichuan, China
| |
Collapse
|
7
|
Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Robles M, Roldan M, Macías Conde M, Acha B, Blanco-Luquin I, Mendioroz M. circRNA from APP Gene Changes in Alzheimer's Disease Human Brain. Int J Mol Sci 2023; 24:ijms24054308. [PMID: 36901741 PMCID: PMC10002054 DOI: 10.3390/ijms24054308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of age-related dementia. Amyloid precursor protein (APP) is the precursor of Aβ peptides, and its role in AD has been widely investigated. Recently, it has been reported that a circular RNA (circRNA) originated from APP gene can serve as a template for Aβ synthesis, postulating it as an alternative pathway for the Aβ biogenesis. Moreover, circRNAs play important roles in brain development and in neurological diseases. Therefore, our aim was to study the expression of a circAPP (hsa_circ_0007556) and its linear cognate in AD human entorhinal cortex, a brain region most vulnerable to AD pathology. First, we confirmed the presence of circAPP (hsa_circ_0007556) in human entorhinal cortex samples using RT-PCR and Sanger sequencing of PCR products. Next, a 0.49-fold decrease in circAPP (hsa_circ_0007556) levels was observed in entorhinal cortex of AD cases compared to controls (p-value < 0.05) by qPCR. In contrast, APP mRNA expression did not show changes in the entorhinal cortex between AD cases and controls (Fold-change = 1.06; p-value = 0.81). A negative correlation was found between Aβ deposits and circAPP (hsa_circ_0007556) and APP expression levels (Rho Spearman = -0.56, p-value < 0.001 and Rho Spearman = -0.44, p-values < 0.001, respectively). Finally, by using bioinformatics tools, 17 miRNAs were predicted to bind circAPP (hsa_circ_0007556), and the functional analysis predicted that they were involved in some pathways, such as the Wnt-signaling pathway (p = 3.32 × 10-6). Long-term potentiation (p = 2.86 × 10-5), among others, is known to be altered in AD. To sum up, we show that circAPP (hsa_circ_0007556) is deregulated in the entorhinal cortex of AD patients. These results add to the notion that circAPP (hsa_circ_0007556) could be playing a role in the pathogenesis of AD disease.
Collapse
Affiliation(s)
- Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Maitane Robles
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Miren Roldan
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Mónica Macías Conde
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Blanca Acha
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Maite Mendioroz
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
- Correspondence: ; Tel.: +34-848422677
| |
Collapse
|
8
|
Heiskanen M, Das Gupta S, Mills JD, van Vliet EA, Manninen E, Ciszek R, Andrade P, Puhakka N, Aronica E, Pitkänen A. Discovery and Validation of Circulating microRNAs as Biomarkers for Epileptogenesis after Experimental Traumatic Brain Injury-The EPITARGET Cohort. Int J Mol Sci 2023; 24:ijms24032823. [PMID: 36769143 PMCID: PMC9918096 DOI: 10.3390/ijms24032823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) causes 10-20% of structural epilepsies and 5% of all epilepsies. The lack of prognostic biomarkers for post-traumatic epilepsy (PTE) is a major obstacle to the development of anti-epileptogenic treatments. Previous studies revealed TBI-induced alterations in blood microRNA (miRNA) levels, and patients with epilepsy exhibit dysregulation of blood miRNAs. We hypothesized that acutely altered plasma miRNAs could serve as prognostic biomarkers for brain damage severity and the development of PTE. To investigate this, epileptogenesis was induced in adult male Sprague Dawley rats by lateral fluid-percussion-induced TBI. Epilepsy was defined as the occurrence of at least one unprovoked seizure during continuous 1-month video-electroencephalography monitoring in the sixth post-TBI month. Cortical pathology was analyzed by magnetic resonance imaging on day 2 (D2), D7, and D21, and by histology 6 months post-TBI. Small RNA sequencing was performed from tail-vein plasma samples on D2 and D9 after TBI (n = 16, 7 with and 9 without epilepsy) or sham operation (n = 4). The most promising miRNA biomarker candidates were validated by droplet digital polymerase chain reaction in a validation cohort of 115 rats (8 naïve, 17 sham, and 90 TBI rats [21 with epilepsy]). These included 7 brain-enriched plasma miRNAs (miR-434-3p, miR-9a-3p, miR-136-3p, miR-323-3p, miR-124-3p, miR-212-3p, and miR-132-3p) that were upregulated on D2 post-TBI (p < 0.001 for all compared with naïve rats). The acute post-TBI plasma miRNA profile did not predict the subsequent development of PTE or PTE severity. Plasma miRNA levels, however, predicted the cortical pathology severity on D2 (Spearman ρ = 0.345-0.582, p < 0.001), D9 (ρ = 0.287-0.522, p < 0.001-0.01), D21 (ρ = 0.269-0.581, p < 0.001-0.05) and at 6 months post-TBI (ρ = 0.230-0.433, p < 0.001-0.05). We found that the levels of 6 of 7 miRNAs also reflected mild brain injury caused by the craniotomy during sham operation (ROC AUC 0.76-0.96, p < 0.001-0.05). In conclusion, our findings revealed that increased levels of neuronally enriched miRNAs in the blood circulation after TBI reflect the extent of cortical injury in the brain but do not predict PTE development.
Collapse
Affiliation(s)
- Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, 2103 SW Heemstede, The Netherlands
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|