1
|
Cen Z, Lv S, Li Q, Zhang J, Mei S, Hu X, Yang A. Acute exposure to antimony elicits endocrine disturbances, leading to PCOS and ovarian fibrosis in female zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110198. [PMID: 40174734 DOI: 10.1016/j.cbpc.2025.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Antimony (Sb) is an estrogenic metal. Exogenous exposure to Sb can affect estrogen levels and their receptor expression in organisms, exerting estrogen-disrupting effects and even inducing polycystic ovary syndrome (PCOS), which is accompanied by the progression of ovarian fibrosis. To investigate the pathological mechanism of this reproductive damage caused by Sb exposure, we exposed female zebrafish to Sb solution for 18 days for acute toxicity experiments. The results showed that Sb exposure affected the changes of GnRH, FSH, LH, E2 and T levels on the HPG axis, which disrupted the balance of sex steroid hormones in the internal environment of zebrafish and progression of PCOS. Furthermore, Sirius red staining revealed significant fibrosis in the ovarian tissues of Sb-exposed female zebrafish. This study adopted transcriptome sequencing and Western Blotting to explore the mechanisms of action. The biological processes and signaling pathways potentially associated with Sb-induced ovarian fibrosis were predicted by using GO annotation and KEGG pathway enrichment analysis, such as ECM receptors, TGF-β/Smad and WNT/β-catenin. The experiment results showed that Sb induced up-regulation of the transcription levels of the pro-fibrotic factors tgf-β3, wnt10a, ctnnb1, and β-catenin protein expression, suggesting the activation of the WNT/β-catenin pathways and TGF-β/Smad. Sb exposure led to up-regulation of ECM-related genes col2a1a, itgb1b.2, lamc1, fn1a and up-regulation of fibrosis markers α-SMA, Fn1a, col4a2 protein expression, Therefore, we hypothesized that Sb exposure activates the TGF-β/Smad and WNT/β-catenin pathways, leading to abnormal ECM deposition and promoting the progression of ovarian fibrosis in zebrafish.
Collapse
Affiliation(s)
- Zhongqian Cen
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Shenghan Lv
- Guizhou Fishery Science Research Institute, Guiyang 550025, China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - ShiXue Mei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
International BR. Retracted: lncRNA Vgll3 Regulates the Activated Proliferation of Mouse Myocardial Fibroblasts through TGF- β3-Related Pathway. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9808939. [PMID: 38188783 PMCID: PMC10769625 DOI: 10.1155/2023/9808939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/2055738.].
Collapse
|
3
|
Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway. Front Pharmacol 2023; 14:1092148. [PMID: 36843918 PMCID: PMC9947662 DOI: 10.3389/fphar.2023.1092148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Cardiac fibrosis is a serious public health problem worldwide that is closely linked to progression of many cardiovascular diseases (CVDs) and adversely affects both the disease process and clinical prognosis. Numerous studies have shown that the TGF-β/Smad signaling pathway plays a key role in the progression of cardiac fibrosis. Therefore, targeted inhibition of the TGF-β/Smad signaling pathway may be a therapeutic measure for cardiac fibrosis. Currently, as the investigation on non-coding RNAs (ncRNAs) move forward, a variety of ncRNAs targeting TGF-β and its downstream Smad proteins have attracted high attention. Besides, Traditional Chinese Medicine (TCM) has been widely used in treating the cardiac fibrosis. As more and more molecular mechanisms of natural products, herbal formulas, and proprietary Chinese medicines are revealed, TCM has been proven to act on cardiac fibrosis by modulating multiple targets and signaling pathways, especially the TGF-β/Smad. Therefore, this work summarizes the roles of TGF-β/Smad classical and non-classical signaling pathways in the cardiac fibrosis, and discusses the recent research advances in ncRNAs targeting the TGF-β/Smad signaling pathway and TCM against cardiac fibrosis. It is hoped, in this way, to give new insights into the prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Chunjun Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangxiang Meng
- College of Marxism, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Wang
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Dai
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Xia Dai,
| |
Collapse
|