1
|
Liu S, Wang L, Zhang Z, Leng Y, Yang Y, Fu X, Xie H, Gao H, Xie C. The potential of astragalus polysaccharide for treating diabetes and its action mechanism. Front Pharmacol 2024; 15:1339406. [PMID: 38659573 PMCID: PMC11039829 DOI: 10.3389/fphar.2024.1339406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.
Collapse
Affiliation(s)
- Shiyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luyao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuLin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Zhen Z, Wei S, Yunfei W, Jie X, Jienan X, Yiting S, Wen X, Shuyu G, Yue L, Xuanyu W, Yumei Z, Huafa Q. Astragalus polysaccharide improves diabetic ulcers by promoting M2-polarization of macrophages to reduce excessive inflammation via the β-catenin/ NF-κB axis at the late phase of wound-healing. Heliyon 2024; 10:e24644. [PMID: 38390059 PMCID: PMC10881534 DOI: 10.1016/j.heliyon.2024.e24644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Ethnopharmacological relevance Astragalus polysaccharide (APS), the most biologically active ingredient of Astragali Radix, is used to treat diabetes mellitus (DM)-related chronic wounds in traditional Chinese medicine for several decades. This herb possesses an anti-inflammatory effect. Our study proved that APS can reduce excessive inflammation at the late phase of wound-healing in diabetic ulcers. Aim of the study To clarify the molecular mechanism of APS in promoting wound-healing via reducing excessive inflammation in diabetic ulcers during the late stages of wound-healing. Methods and materials The rat model of the diabetic ulcers was established via intraperitoneal injection of streptozocin (60 mg/kg). We detected the regulation of APS on diabetic ulcers by measuring wound-healing rates. Bioinformatics was used to predict the target genes of APS, and autodocking was used to predict the combination of APS and target genes. Immunohistochemistry, Enzyme-linked immunosorbent assay, Western blot, immunofluorescence staining, flow cytometry, and flow cytometric sorting were investigated. Results The results demonstrated that APS promoted wound-healing and inhibited excessive inflammation at the late phase of wound-healing in diabetic rats. Mechanistic findings showed that APS promoted the expression of β-catenin and Rspo3 while inhibiting the expression of NF-KB and GSK-3β, which leads to the transformation of M1-type macrophages into M2-type macrophages and thus reducing excessive inflammation at the late phase of wound-healing in diabetic ulcers. Conclusion We found an interesting finding that APS promoted the polarization of macrophages towards M2-type through the β-catenin/NF-κB axis to reduce excessive inflammation at the late phase of wound-healing. Therefore, APS may be a promising drug for treating diabetic ulcers in clinic.
Collapse
Affiliation(s)
- Zhang Zhen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shan Wei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Yunfei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jie
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xu Jienan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shen Yiting
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiao Wen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guo Shuyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Liang Yue
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Xuanyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhong Yumei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Que Huafa
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|