1
|
Alshareef SA, Albalawi AE. Unveiling the diverse bioactivity of cobalt oxide nanoparticles produced through carboxymethyl cellulose extraction. Int J Biol Macromol 2024; 279:135028. [PMID: 39182892 DOI: 10.1016/j.ijbiomac.2024.135028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
This study explores an eco-friendly method for synthesizing Cobalt oxide nanoparticles (Co3O4NPs) using extracted carboxymethyl cellulose (CMC) as a reducing and stabilizing agent. The Co3O4NPs, characterized via various analyses, demonstrated a crystalline structure with sizes ranging from 10.9 to 28.2 nm. Microscopic imaging confirmed a uniform spherical morphology with an average diameter of 27.2 nm. The biological activities of Co3O4NPs were investigated extensively, highlighting their superior antibacterial efficacy compared to amoxicillin-clavulanic acid. These nanoparticles exhibited potent antioxidant properties and demonstrated safety for potential applications based on erythrocyte viability results. Additionally, Co3O4NPs displayed significant potency against Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and showed promising α-amylase enzyme inhibitory activity, highlighting their multifunctional therapeutic potential as antioxidant, antibacterial, anticancer, and alpha-amylase inhibition assay.
Collapse
Affiliation(s)
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia.
| |
Collapse
|
2
|
Annu, Sahu M, Singh S, Prajapati S, Verma DK, Shin DK. From green chemistry to biomedicine: the sustainable symphony of cobalt oxide nanoparticles. RSC Adv 2024; 14:32733-32758. [PMID: 39429933 PMCID: PMC11483901 DOI: 10.1039/d4ra05872k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Deciphering the importance of nanostructures in advanced technologies for a broad application spectrum has far-reaching implications for humans and the environment. Cost-effective, abundant cobalt oxide nanoparticles (NPs) are among the most attractive and extensively utilized materials in biomedical sciences due to their high chemical stability, and biocompatibility. However, the methods used to develop the NPs are hazardous for human health and the environment. This article precisely examines diverse green synthesis methods employing plant extracts and microbial sources, shedding light on their mechanism, and eco-friendly attributes with more emphasis on biocompatible properties accompanied by their challenges and avenues for further research. An in-depth analysis of the synthesized cobalt oxide NPs by various characterization techniques reveals their multifaceted functionalities including cytotoxicity, larvicidal, antileishmanial, hemolytic, anticoagulating, thrombolytic, anticancer and drug sensing abilities. This revelatory and visionary article helps researchers to contribute to advancing sustainable practices in nanomaterial synthesis and illustrates the potential of biogenically derived cobalt oxide NPs in fostering green and efficient technologies for biomedical applications.
Collapse
Affiliation(s)
- Annu
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan-si Gyeongsanbuk-do 38541 Republic of Korea
| | - Muskan Sahu
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Somesh Singh
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Satypal Prajapati
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Dinesh K Verma
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V.B.S. Purvanchal University Jaunpur-222003 India
| | - Dong Kil Shin
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan-si Gyeongsanbuk-do 38541 Republic of Korea
| |
Collapse
|
3
|
El-Din NGS, Hafez MSMAE, El-Wahab MGA, Ibrahim HAH. Biological activities of derived pigments and polyphenols from the newly recorded alga Phyllymenia gibbesii. Sci Rep 2024; 14:21284. [PMID: 39261518 PMCID: PMC11390728 DOI: 10.1038/s41598-024-70825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
The newly recorded Phyllymenia gibesii in the Mediterranean Sea at Alexandria coast of Egypt is regarded as a significant source of bioactive substances and is applied as an antioxidant, anti-inflammatory, and antimicrobial agent. According to the HPLC chromatograms, the acetone extract of P. gibesii comprised ten photosynthetic pigments (chlorophyll-a, chlorophyll-d, α-carotene, β-carotene, phycocyanin, allophycocyanin, antheraxanthin, β-cryptoxanthin, lutein, and violaxanthin). Total carotenoids were the dominant class in the pigments' profile, achieving a concentration of 257 g/g dry weight. The P. gibbesii extract had a total content of phenols (146.67 mg/g) and a total content of flavonoids (104.40 mg/g). The capacity of all the investigated biological activities augmented with the concentration of the algal extract. The maximal DPPH scavenging capacity was 81.44%, with an inhibitory concentration (IC50) of 9.88 μg/mL. Additionally, the highest ABTS scavenging capacity was 89.62%, recording an IC50 of 21.77 μg/mL. The hemolytic activity of P. gibbesii attained a maximum capacity of 49.88% with an IC50 of 100.25 μg/mL. Data also showed the maximum anti-inflammatory effectiveness at 81.25%, with an IC50 of 99.75 μg/mL. Furthermore, the extract exhibited antimicrobial capacity against all reference strains, particularly at high concentrations (0.1 mg/mL), with the greatest effect on C. albicans and E. coli.
Collapse
Affiliation(s)
| | - Mohamed S M Abd El Hafez
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
- Faculty of Health Science Technology, Borg Al Arab Technological University, Alexandria, Egypt
| | - Miral G Abd El-Wahab
- Faculty of Technological Industry and Energy, Thebes Technological University, Thebes, Luxor, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), Borg Al Arab Al Gadida city, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
- Microbiology Department, NIOF, Kayet Bay, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
5
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
7
|
Almutairi T, Al-Rasheed HH, Alaqil ZM, Hajri AK, Elsayed NH. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS OMEGA 2023; 8:32067-32077. [PMID: 37692231 PMCID: PMC10483690 DOI: 10.1021/acsomega.3c04117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Iron oxide nanoparticles (Fe3O4NPs) are a fascinating field of study due to their wide range of practical applications in environmental and medical contexts. This study presents a straightforward, environmentally friendly method for producing Fe3O4NPs utilizing β-cyclodextrin (β-CD) as a reducing and capping agent. This approach results in the rapid and effective eco-friendly synthesis of β-CD/Fe3O4NPs. The properties and characteristics of β-CD/Fe3O4NPs were investigated using various methods, including ultraviolet-visible (UV/vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA), and vibrating-sample magnetometry (VSM). The absorption of β-CD/Fe3O4NPs caused a distinct peak at 349 nm, as evidenced by the results of UV/vis studies. This peak was attributed to the absorption of surface plasmon resonance. The crystalline nature of β-CD/Fe3O4NPs was confirmed through XRD analysis. The SEM and TEM analyses have verified the geometry and structural characteristics of β-CD/Fe3O4NPs. The β-CD/Fe3O4NPs exhibited remarkable effectiveness in the decomposing efficiency (%) of methylene blue (MB) dye with 52.2, 94.1, and 100% for 0.2, 0.4, and 0.6 g β-CD/Fe3O4NPs, respectively. In addition, the highest efficiency in hunting radicals was observed (347.2 ± 8.2 mg/g) at 100 mg/mL β-CD/Fe3O4NPs; the combination of β-CD/Fe3O4NPs exhibited remarkable effectiveness in inhibiting the growth of some bacteria that cause infections. The capabilities of β-CD/Fe3O4NPs for various applications showed that these materials could be used in photocatalytic, antioxidants, and antibacterial. Additionally, the eco-friendly synthesis of these materials makes them a promising option for the remediation of harmful pollutants and microbes.
Collapse
Affiliation(s)
- Tahani
M. Almutairi
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab M. Alaqil
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nadia H. Elsayed
- Department
of Polymers and Pigments, National Research
Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|