1
|
Zhang P, Ran Y, Han L, Li Y, Tian W, Sun X, Jiao M, Jing L, Luo X. Nanomaterial technologies for precision diagnosis and treatment of brain hemorrhage. Biomaterials 2025; 321:123269. [PMID: 40174300 DOI: 10.1016/j.biomaterials.2025.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Brain hemorrhage events present complex clinical challenges due to their rapid progression and the intricate interplay of oxidative stress, inflammation, and neuronal damage. Traditional diagnostic and therapeutic approaches often struggle to meet the demands for timely and effective intervention. This review explores the cutting-edge role of nanomaterials in transforming cerebral hemorrhage management, focusing on both diagnostic and therapeutic advancements. Nanomaterial-enabled imaging techniques, such as optical imaging, magnetic resonance imaging, and magnetic particle imaging, significantly enhance the accuracy of hemorrhage detection by providing real-time, high-resolution assessments of blood-brain barrier (BBB) integrity, cerebral perfusion, and hemorrhage progression, which is critical for guiding intervention strategies. On the therapeutic front, nanomaterial-based systems enable the precise delivery of drugs and bioactive molecules, fostering neural repair and functional recovery while minimizing systemic side effects. Furthermore, multifunctional nanomaterials not only address the primary injury but also offer precise control over secondary injuries, such as edema and oxidative stress. Their ability to enhance neuroprotection, prevent re-bleeding, and stimulate brain tissue regeneration provides a holistic approach and marks a significant advancement in brain hemorrhage therapy. As the field continues to advance, nanotechnology is set to fundamentally reshape the clinical management and long-term outcomes of brain hemorrhages, presenting a paradigm shift towards personalized and highly effective neurological care.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yi'an Ran
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Lei Han
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Wanru Tian
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Xiao Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.
| |
Collapse
|
2
|
Chu B, Huang Y, Chen Y, Wang S, Li X. A chondroitin sulfate/chitosan composite coating for anticoagulation on cardiovascular implants. Int J Biol Macromol 2025; 307:142345. [PMID: 40118418 DOI: 10.1016/j.ijbiomac.2025.142345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Developing durable anticoagulant coatings for cardiovascular implants remains a major research challenge. Heparin, the current gold-standard anticoagulant, faces challenges due to rapid elution from coated surfaces. This article reports a new heparin-alternative anticoagulant coating system engineered through rational design of a dual-functional chondroitin sulfate derivative (methacrylated/aldehyde-modified chondroitin sulfate, CSMAO) and sulfonated chitosan (SCS). The hierarchical architecture was constructed via sequential layer-by-layer (LbL) assembly on polydopamine (PDA)-functionalized 316 L stainless steel substrates. The material characterization methods included Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). The grafting rate of glycidyl methacrylate was 20.05 %, with an aldehyde substitution degree of 48.61 %, and the sulfonation degree of SCS reached 46.96 %. The composite coating exhibited excellent biocompatibility and anticoagulant properties. Coagulation profiling indicated comparable extrinsic pathway regulation to that of heparin controls along with superior intrinsic pathway inhibition (P < 0.01). This rationally designed coating system shows translational promise for improving the hemocompatibility of cardiovascular implants.
Collapse
Affiliation(s)
- Bin Chu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China; Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China.
| | - Yibin Huang
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China
| | - Yifan Chen
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China.
| | - Xiaoli Li
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China.
| |
Collapse
|
3
|
Al Amin M, Nafady MH, Zehravi M, Sweilam SH, Kumar KP, Akiful Haque M, Unnisa A, Singh LP, Sayeed M, Alshehri MA, Ahmad I, Emran TB, Uddin MZ. Bird's eye view of natural products for the development of new anti-HIV agents: Understanding from a therapeutic viewpoint. Animal Model Exp Med 2025; 8:441-457. [PMID: 39921221 PMCID: PMC11904116 DOI: 10.1002/ame2.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/05/2025] [Indexed: 02/10/2025] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is the name used to describe several potentially life-threatening infections and disorders that happen when HIV has severely compromised the immune system. The primary effect of HIV is to decrease host immunity, exposing the host to external pathogens. The development of pharmaceutical drugs that directly cure the infection is crucial because of the current wide-ranging epidemic of HIV. Most therapeutic anti-HIV drugs are nucleosides. However, their high toxicity and potential for drug resistance restrict their use. Many of the most effective clinical drugs used to inhibit HIV, the activation of latent HIV, and AIDS have been obtained from natural sources. This review focuses on potential natural medicinal products for treating and managing HIV and AIDS. Notwithstanding, further clinical research studies are needed to understand the subject and its dynamics.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science TechnologyMisr University for Science and TechnologyGizaEgypt
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityBadrEgypt
- Department of Clinical Pharmacy Girls SectionPrince Sattam Bin Abdul Aziz UniversityAl‐KharjSaudi Arabia
| | - Kusuma Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research University (DPSRU), Govt. of N.C.T. of DelhiNew DelhiIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of PharmacyAnurag UniversityHyderabadIndia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of Ha'ilHa'ilSaudi Arabia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaram (Rohtas)BiharIndia
| | - Mohammed Sayeed
- Department of Pharmacology, School of PharmacyAnurag UniversityHyderabadTelanganaIndia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Md. Zia Uddin
- Department of Pharmacy, Faculty of Pharmaceutical SciencesUniversity of Science and Technology ChittagongChattogramBangladesh
| |
Collapse
|
4
|
He S, Zheng L, Li J, Liu S. Epilepsy Treatment and Diagnosis Enhanced by Current Nanomaterial Innovations: A Comprehensive Review. Mol Neurobiol 2025; 62:946-961. [PMID: 38951470 DOI: 10.1007/s12035-024-04328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Epilepsy is a complex disease in the brain. Complete control of seizure has always been a challenge in epilepsy treatment. Currently, clinical management primarily involves pharmacological and surgical interventions, with the former being the preferred approach. However, antiepileptic drugs often exhibit low bioavailability due to inherent limitations such as poor water solubility and difficulty penetrating the blood-brain barrier (BBB). These issues significantly reduce the drugs' effectiveness and limit their clinical application in epilepsy treatment. Additionally, the diagnostic accuracy of current imaging techniques and electroencephalography (EEG) for epilepsy is suboptimal, often failing to precisely localize epileptogenic tissues. Accurate diagnosis is critical for the surgical management of epilepsy. Thus, there is a pressing need to enhance both the therapeutic outcomes of epilepsy medications and the diagnostic precision of the condition. In recent years, the advancement of nanotechnology in the biomedical sector has led to the development of nanomaterials as drug carriers. These materials are designed to improve drug bioavailability and targeting by leveraging their large specific surface area, facile surface modification, ability to cross the BBB, and high biocompatibility. Furthermore, nanomaterials have been utilized as contrast agents in imaging and as materials for EEG electrodes, enhancing the accuracy of epilepsy diagnoses. This review provides a comprehensive examination of current research on nanomaterials in the treatment and diagnosis of epilepsy, offering new strategies and directions for future investigation.
Collapse
Affiliation(s)
- Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Ebrahimi F, Kumari A, Ghadami S, Al Abdullah S, Dellinger K. The Potential for Extracellular Vesicles in Nanomedicine: A Review of Recent Advancements and Challenges Ahead. Adv Biol (Weinh) 2024:e2400623. [PMID: 39739455 DOI: 10.1002/adbi.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising tools in diagnostics and therapy for chronic diseases, including cancer and Alzheimer's. Small EVs, also called exosomes, are lipid-bound particles (≈30-150 nm) that play a role in healthy and pathophysiological interactions, including intercellular communication, by transporting bioactive molecules, including proteins, lipids, and nucleic acids. Their ability to cross biological barriers, such as the blood-brain barrier, makes them ideal candidates for targeted therapeutic interventions. In the context of chronic diseases, exosomes can be engineered to deliver active agents, including small molecules and siRNAs to specific target cells, providing a novel approach to precision medicine. Moreover, exosomes show great promise as repositories for diagnostic biomarkers. Their cargo can reflect the physiological and pathological status of the parent cells, making them valuable indicators of disease progression and response to treatment. This paper presents a comprehensive review of the application of exosomes in four chronic diseases: cancer, cardiovascular disease, neurodegenerative disease, and orthopedic disease, which significantly impact global public health due to their high prevalence and associated morbidity and mortality rates. Furthermore, the potential of exosomes as valuable tools for theranostics and disease management is highlighted. Finally, the challenges associated with exosomes and their demonstrated potential for advancing future nanomedicine applications are discussed.
Collapse
Affiliation(s)
- Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Samaneh Ghadami
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| |
Collapse
|
6
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
8
|
Shah IA, Kavitake D, Tiwari S, Devi PB, Reddy GB, Jaiswal KK, Jaiswal AK, Shetty PH. Chemical modification of bacterial exopolysaccharides: Antioxidant properties and health potentials. Curr Res Food Sci 2024; 9:100824. [PMID: 39263207 PMCID: PMC11388717 DOI: 10.1016/j.crfs.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
In recent years, there has been a burgeoning interest in the utilization of microbial exopolysaccharides (EPS) because of the added advantage of their renewable, biocompatible, and biodegradable nature in addition to intended applications. The endowed properties of bacterial EPS make them valuable candidates for a wide array of industrial applications. Modification of native EPS is known to enhance various physico-chemical and functional properties. Various modifications such as physical, chemical, biological, and enzymatic modifications were practiced improving the bioactivity of EPS. This paper comprehensively aims to review the most recent chemical modification techniques employed to modify the physico-chemical and functional changes of bacterial EPS in comparison with the unmodified forms. Chemical modification entails strategic alterations to the structure and properties of EPS through various synthetic and semi-synthetic methodologies. Emphasis is given to the antioxidant potential and functional role of these EPS derivatives in human health. Antioxidant properties reveal a significant augmentation in activity compared to their native counterparts. Such enhancement holds a strong promise for potential benefits and therapeutic applications. Chemical derivatives of EPS with overwhelming functional benefits could surely encourage EPS application, particularly as potential hydrocolloids in industrial and biomedical contexts.
Collapse
Affiliation(s)
- Irshad Ahmad Shah
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - Digambar Kavitake
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Swati Tiwari
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland
| | | |
Collapse
|
9
|
Udriște AS, Burdușel AC, Niculescu AG, Rădulescu M, Balaure PC, Grumezescu AM. Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis. Polymers (Basel) 2024; 16:1421. [PMID: 38794614 PMCID: PMC11125450 DOI: 10.3390/polym16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases (CVDs), the world's most prominent cause of mortality, continue to be challenging conditions for patients, physicians, and researchers alike. CVDs comprise a wide range of illnesses affecting the heart, blood vessels, and the blood that flows through and between them. Advances in nanomedicine, a discipline focused on improving patient outcomes through revolutionary treatments, imaging agents, and ex vivo diagnostics, have created enthusiasm for overcoming limitations in CVDs' therapeutic and diagnostic landscapes. Nanomedicine can be involved in clinical purposes for CVD through the augmentation of cardiac or heart-related biomaterials, which can be functionally, mechanically, immunologically, and electrically improved by incorporating nanomaterials; vasculature applications, which involve systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials, or tissue-nanoengineered solutions; and enhancement of sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. Therefore, this review discusses the latest studies based on applying organic nanoparticles in cardiovascular illness, including drug-conjugated polymers, lipid nanoparticles, and micelles. Following the revised information, it can be concluded that organic nanoparticles may be the most appropriate type of treatment for cardiovascular diseases due to their biocompatibility and capacity to integrate various drugs.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
10
|
Khadanga V, Mishra PC. A review on toxicity mechanism and risk factors of nanoparticles in respiratory tract. Toxicology 2024; 504:153781. [PMID: 38493948 DOI: 10.1016/j.tox.2024.153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 μg, 0.00332 μg, 0.00297 μg, 0.00291 μg, and 0.00383 μg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.
Collapse
Affiliation(s)
- Vidyasri Khadanga
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Purna Chandra Mishra
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
11
|
Arshad I, Kanwal A, Zafar I, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117795. [PMID: 38043894 DOI: 10.1016/j.envres.2023.117795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.
Collapse
Affiliation(s)
- Ihtesham Arshad
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
| | - Hanane Mouada
- Department of Process Engineering, Institute of science University Center of Tipaza, Tipaza, Algeria.
| | | | - Safina Arif
- Medical Lab Technology, University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
13
|
Mohanta YK, Mishra AK, Panda J, Chakrabartty I, Sarma B, Panda SK, Chopra H, Zengin G, Moloney MG, Sharifi-Rad M. Promising applications of phyto-fabricated silver nanoparticles: Recent trends in biomedicine. Biochem Biophys Res Commun 2023; 688:149126. [PMID: 37951153 DOI: 10.1016/j.bbrc.2023.149126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/13/2023]
Abstract
The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi, Meghalaya, 793101, India.
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Nagarwara, Bangalore, 560045, Karnataka, India.
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, 787057, Assam, India.
| | - Sujogya Kumar Panda
- Centre of Environment Climate Change and Public Health, RUSA 2.0, Deapartment of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and TechnicalSciences, Chennai, 602105, Tamil Nadu, India.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mark G Moloney
- The Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
14
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
15
|
Babu AK, Raja MKMM, Zehravi M, Mohammad BD, Anees MI, Prasad C, Yahya BA, Sultana R, Sharma R, Singh J, Khan KA, Siddiqui FA, Khan SL, Emran TB. An overview of polymer surface coated synthetic quantum dots as therapeutics and sensors applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:1-12. [PMID: 37652186 DOI: 10.1016/j.pbiomolbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Quantum dots (QDs) are a class of remarkable materials that have garnered significant attention since their initial discovery. It is noteworthy to mention that it took approximately a decade for these materials to be successfully implemented in practical applications. While QDs have demonstrated notable optical properties, it is important to note that these attributes alone have not rendered them a feasible substitute for traditional organic dyes. Furthermore, it is worth noting that the substance under investigation exhibited inherent toxicity and instability in its initial state, primarily due to the presence of a heavy metal core. In the initial stages of research, it was observed that the integration of nanocomposites had a positive impact on the properties of QDs. The discovery of these nanocomposites was motivated by the remarkable properties exhibited by biocomposites found in nature. Recent discoveries have shed light on the potential utilization of QDs as a viable strategy for drug delivery, offering a promising avenue to enhance the efficacy of current pharmaceuticals and pave the way for the creation of innovative therapeutic approaches. The primary objective of this review was to elucidate the distinctive characteristics that render QDs highly suitable for utilization as nanocarriers. In this study, we will delve into the multifaceted applications of QDs as sensing nanoprobes and their utilization in diverse drug delivery systems. The focus of our investigation was directed toward the utilization of QD/polymer composites in sensing applications, with particular emphasis on their potential as chemical sensors, biosensors, and physical sensors.
Collapse
Affiliation(s)
- Ancha Kishore Babu
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, KPJ Healthcare University College, 71800, Nilai, Malaysia
| | - M K Mohan Maruga Raja
- Parul Institute of Pharmacy & Research, Parul University, Vadodara, Gujarat, 391110, India
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Badrud Duza Mohammad
- Department of Pharmaceutical Chemistry, G R T Institute of Pharmaceutical Education and Research, GRT Mahalakshmi Nagar, Tiruttani 631209, Tamil Nadu, India
| | - Mohammed Imran Anees
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431003, India
| | | | - Barrawaz Aateka Yahya
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431003, India
| | - Rokeya Sultana
- Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Deralakatte, 575022, Mangalore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Falak A Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India; Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad, India
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India; Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad, India.
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
16
|
Perera B, Wu Y, Nguyen NT, Ta HT. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater Today Bio 2023; 22:100767. [PMID: 37600355 PMCID: PMC10433009 DOI: 10.1016/j.mtbio.2023.100767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.
Collapse
Affiliation(s)
- Binura Perera
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
17
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
18
|
Zenze M, Daniels A, Singh M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023; 15:398. [PMID: 36839720 PMCID: PMC9961584 DOI: 10.3390/pharmaceutics15020398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The formulation of nanoscale systems with well-defined sizes and shapes is of great interest in applications such as drug and gene delivery, diagnostics and imaging. Dendrimers are polymers that have attracted interest due to their size, shape, branching length, amine density, and surface functionalities. These unique characteristics of dendrimers set them apart from other polymers, their ability to modify nanoparticles (NPs) for biomedical applications. Dendrimers are spherical with multiple layers over their central core, each representing a generation. Their amphiphilic nature and hollow structure allow for the incorporation of multiple drugs or genes, in addition to enabling easy surface modification with cellular receptor-targeting moieties to ensure site-specific delivery of therapeutics. Dendrimers are employed in chemotherapeutic applications for the delivery of anticancer drugs. There are many inorganic NPs currently being investigated for cancer therapy, each with their own unique biological, chemical, and physical properties. To favor biomedical applications, inorganic NPs require suitable polymers to ensure stability, biodegradability and target specificity. The success of dendrimers is dependent on their unique structure, good bioavailability and stability. In this review, we describe the properties of dendrimers and their use as modifiers of inorganic NPs for enhanced therapeutic delivery. Herein, we review the significant developments in this area from 2015 to 2022. Databases including Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central (BMC), and PubMed were searched for articles using dendrimers, inorganic nanoparticles and cancer as keywords.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
19
|
Mehmood Y, Shahid H, Barkat K, Ibraheem M, Riaz H, Badshah SF, Chopra H, Sharma R, Nepovimova E, Kuca K, Valis M, Emran TB. Designing of SiO 2 mesoporous nanoparticles loaded with mometasone furoate for potential nasal drug delivery: Ex vivo evaluation and determination of pro-inflammatory interferon and interleukin mRNA expression. Front Cell Dev Biol 2023; 10:1026477. [PMID: 36684440 PMCID: PMC9853011 DOI: 10.3389/fcell.2022.1026477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The main objective of the current research work was to synthesize mesoporous silica nanoparticles for controlled delivery of mometasone furoate for potential nasal delivery. The optimized sol-gel method was used for the synthesis of mesoporous silica nanoparticles. Synthesized nanoparticles were processed through Zeta sizer, SEM, TEM, FTIR, TGA, DSC, XRD, and BET analysis for structural characterization. The in vitro dissolution test was performed for the inclusion compound, while the Franz diffusion experiment was performed for permeability of formulation. For the determination of expression levels of anti-inflammatory cytokines IL-4 and IL-5, RNA extraction, reverse transcription, and polymerase chain reaction (RT-PCR) were performed. The MTT assay was also performed to determine cell viability. Synthesized and functionalized mesoporous silica nanoparticles showed controlled release of drugs. FT-IR spectroscopy confirmed the presence of the corresponding functional groups of drugs within mesoporous silica nanoparticles. Zeta sizer and thermal analysis confirmed the delivery system was in nano size and thermally stable. Moreover, a highly porous system was observed during SEM and TEM evaluation, and further it was confirmed by BET analysis. Greater cellular uptake with improved permeability characteristics was also observed. As compared to the crystalline drug, a significant improvement in the dissolution rate was observed. It was concluded that stable mesoporous silica nanoparticles with significant porosity were synthesized, efficiently delivering the loaded drug without any toxic effect.
Collapse
Affiliation(s)
- Yasir Mehmood
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad, Pakistan
- Saffron Pharmaceuticals (Pvt.) Ltd., Faisalabad, Pakistan
| | - Hira Shahid
- Saffron Pharmaceuticals (Pvt.) Ltd., Faisalabad, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Ibraheem
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad, Pakistan
| | - Humayun Riaz
- Rashid Latif College of Pharmacy, Rashid Latif Khan University, Lahore, Pakistan
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Korsah MA, Jeevanandam J, Tan KX, Danquah MK. Phytosynthesized nanomaterials for cardiovascular applications. EMERGING PHYTOSYNTHESIZED NANOMATERIALS FOR BIOMEDICAL APPLICATIONS 2023:115-143. [DOI: 10.1016/b978-0-12-824373-2.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Islam F, Khadija JF, Islam MR, Shohag S, Mitra S, Alghamdi S, Babalghith AO, Theyab A, Rahman MT, Akter A, Al Mamun A, Alhumaydhi FA, Emran TB. Investigating Polyphenol Nanoformulations for Therapeutic Targets against Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5649156. [PMID: 35832521 PMCID: PMC9273389 DOI: 10.1155/2022/5649156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Theyab
- Deputy Manager of Laboratory & Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia
| | | | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
22
|
Chakrabartty I, Mohanta YK, Nongbet A, Mohanta TK, Mahanta S, Das N, Saravanan M, Sharma N. Exploration of Lamiaceae in Cardio Vascular Diseases and Functional Foods: Medicine as Food and Food as Medicine. Front Pharmacol 2022; 13:894814. [PMID: 35774598 PMCID: PMC9237463 DOI: 10.3389/fphar.2022.894814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the current scenario, cardiovascular disease (CVD) is one of the most life-threatening diseases that has caused high mortality worldwide. Several scientists, researchers, and doctors are now resorting to medicinal plants and their metabolites for the treatment of different diseases, including CVD. The present review focuses on one such family of medicinal plants, called Lamiaceae, which has relieving and preventive action on CVD. Lamiaceae has a cosmopolitan distribution and has great importance in the traditional system of medicine. Lamiaceae members exhibit a wide range of activities like antioxidant, antihyperlipidemic, vasorelaxant, and thrombolytic effect, both in vitro and in vivo–these are mechanisms that contribute to different aspects of CVD including stroke, heart attack, and others. These plants harbour an array of bioactive compounds like phenolic acids, flavonoids, alkaloids, and other phytochemicals responsible for these actions. The review also highlights that these plants are a rich source of essential nutrients and minerals like omega-3 and hence, can serve as essential sources of functional foods—this can have an additional role in the prevention of CVDs. However, limitations still exist, and extensive research needs to be conducted on the Lamiaceae family in the quest to develop new and effective plant-based drugs and functional foods that can be used to treat and prevent cardiovascular diseases worldwide.
Collapse
Affiliation(s)
- Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta, ; Tapan Kumar Mohanta, ; Nanaocha Sharma,
| | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- *Correspondence: Yugal Kishore Mohanta, ; Tapan Kumar Mohanta, ; Nanaocha Sharma,
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, India
| | - Nibedita Das
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, India
- *Correspondence: Yugal Kishore Mohanta, ; Tapan Kumar Mohanta, ; Nanaocha Sharma,
| |
Collapse
|
23
|
Mitra S, Islam F, Das R, Urmee H, Akter A, Idris AM, Khandaker MU, Almikhlafi MA, Sharma R, Emran TB. Pharmacological Potential of Avicennia alba Leaf Extract: An Experimental Analysis Focusing on Antidiabetic, Anti-inflammatory, Analgesic, and Antidiarrheal Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7624189. [PMID: 35572728 PMCID: PMC9106461 DOI: 10.1155/2022/7624189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Avicennia alba is a mangrove plant that is extensively used to treat severe health issues. This focus of this study was to investigate the antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activities of methanolic extract of A. alba leaves in Swiss albino mouse model. The antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activities of the leaf extract were performed using alloxan-monohydrate, carrageenan-induced paw edema, acetic acid-induced writhing test and the hot plate method, and castor oil-induced method, respectively. The extract was used at doses ranging from 200 to 500 mg/kg to conduct the investigation. Leaf extract at 400 and 500 mg/kg showed potent antidiabetic activity in alloxan-induced diabetic mice. Advanced research is needed to control blood glucose levels and carrageenan paw edema-based anti-inflammatory effects. Both tests showed statistically significant result in a dose-dependent manner. The maximum dose (500 mg/kg) demonstrated potent analgesic activity in both writhing test and hot plate method. The plant extract also showed significant antidiarrheal activity at 400 and 500 mg/kg in experimental mice. However, more research is needed to explore the possible mechanisms and isolate the compounds associated with these bioactivities from the leaf extract of A. alba.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, Collage of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
24
|
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA, Emran TB, Cavalu S. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022; 27:2165. [PMID: 35408561 PMCID: PMC9000328 DOI: 10.3390/molecules27072165] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh;
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
25
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|
26
|
Khalil MS, Shakeel M, Gulfam N, Ahmad SU, Aziz A, Ahmad J, Bibi S, Chopra H, Alhumaydhi FA, Idris AM, Khandaker MU, Hassan ME, Emran TB. Fabrication of Silver Nanoparticles from Ziziphus nummularia Fruit Extract: Effect on Hair Growth Rate and Activity against Selected Bacterial and Fungal Strains. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/3164951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/06/2022] [Indexed: 09/01/2023]
Abstract
Nanoparticles are extensively used in biomedical and biotechnological research. Their large surface area, excellent physical properties, high permeability, and retention effect make them ideal for biomedical applications including diagnosis and treatment. Silver nanoparticles proved to be the safest for therapeutic uses. In the present study, silver nanoparticles (AgNPs) were prepared using various ratios of Ziziphus nummularia fruit extract and silver nitrate solution. The nanoparticles were investigated for hair growth and antibacterial and antifungal activities. Characterization of AgNPs was done by using UV‐spectrophotometer, scanning electron microscope (SEM), X‐ray diffractometer (XRD), thermogravimeter (TG), energy dispersive X‐ray (EDX), Fourier transform infrared spectroscopy (FTIR), and master sizer. UV‐spectrophotometer results showed the best ratio 10 : 10 of Z. nummularia fruit aqueous extract to silver solution for nanoparticle production at 400 to 430 nm wavelength. The size of AgNPs was 40 nm as measured by SEM. Characterization of AgNPs through EDX resulted in a silver peak at 3 keV. In contrast, differential scanning calorimetry (DSC) spectra show that the AgNPs are stable up to 160°C. The XED spectra gave 12 nm size of crystallite at 2 theta degree angle. FTIR bands for the metal oxides were recorded at 665 cm-1. Weight loss of the prepared nanoparticles was observed due to moisture loss when subjected to TGA, whereas particle size distribution 0.1 μm to 0.17 μm was recorded by the master seizer. The Z. nummularia fruit aqueous extract‐mediated AgNPs were noted highly effective against Gram‐positive bacteria compared to ethanolic, methanolic, chloroform, and ethyl acetate extracts of Z. nummularia fruit. The Gram‐negative bacteria fungal species showed less sensitivity to AgNPs. The hair growth activity was observed to be higher for AgNPs followed by minoxidil than ethanolic and methanolic extracts of Z. nummularia fruit. These findings have concluded that Z. nummularia‐AgNPs have an effective hair growth activity and exhibit several applications in distinctive biomedical and pharmaceutical industries.
Collapse
|
27
|
Bawazeer S, Rauf A, Emran TB, Aljohani ASM, Alhumaydhi FA, Khan Z, Ahmad L, Hemeg HA, Muhammad N, Sharma R, Maalik A, Khan I. Biogenic Synthesis of Silver Nanoparticles Using Rhazya stricta Extracts and Evaluation of Its Biological Activities. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/7365931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/27/2022] [Indexed: 09/01/2023]
Abstract
Rhazya stricta is a well‐known medicinal plant and source of numerous potential secondary metabolites including steroids, alkaloids, and tannins. R. stricta possesses multimedical applications and used for curing of various diseases such as inflammation, diabetes, sore throat, infectious, helminthiasis, arthritis, and cancer. The current investigation deals with synthesizing AgNPs using aqueous and ethanol extracts of R. stricta. The synthesized R. stricta‐AgNPs were characterized through UV‐visible, Fourier transform infrared (FTIR), and atomic force microscopy (AFM) methods. The UV‐visible analysis exhibited a characteristic absorption λmax at 475 nm in R. stricta ethanol AgNPs while this peak was absent in R. stricta aqueous crude extract. The thermal stability of R. stricta‐AgNPs demonstrated that by increasing the reduction time and temperature, the absorption of AgNPs also increased, leading to more stable NPs formation. The FTIR spectra showed a broad peak at 450‐550 cm-1 that confirmed the occurrence of AgNPs of R. stricta. The AFM study of the synthesized AgNPs revealed the spherical shape and size ranging from 30 nm to 90 nm. In antioxidant and antibacterial study, the R. stricta‐AgNPs exhibited good antioxidant activity (87.94% and 88.37%) than the ethanol crude extract (50.00% and 56.81%) at 100 μg/mL using DPPH assay. Maximum antibacterial activity was recorded against Gram‐positive bacteria (Staphylococcus aureus), which was 15 and 0 mm, while against Gram‐negative bacteria (Klebsiella pneumonia) was found to be 16 and 14 mm, respectively, whereas against Bacillus subtills, a poor activity was recorded as 14 for extract and 0 mm for AgNPs, respectively. In the acetic acid‐induced writhing model, the percent effect of extract (100 mg/kg) and AgNPs (15 mg/kg) was 79.98 and 83.23, respectively. The maximum muscle coordination effect of extracts in the inclined plan and traction test was 44% and 38% at higher doses. A mild sedative effect was also recorded against extract and AgNPs. The significant (p < 0.05) effect of extract was noted at 100 mg/kg while AgNPs was more significant (p < 0.01) at the tested dose of 15 mg/kg. These findings have concluded that R. stricta‐AgNPs is an effective bioreductant of AgNPs synthesis and exhibit several applications in distinctive biomedical and pharmaceutical industries.
Collapse
|