1
|
Chen X, Zhong X, Guo J, Jin T, Guan H, Lin J, Zeng M, Zhang Y, Lin Y, Chang D, Zheng Y, Zhou X, Huang M, Su Y. Phytochemical characterization and pharmacological mechanisms of Huazhuo Sanjie Chubi Decoction in treating gouty arthritis: A multivariant approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119731. [PMID: 40187625 DOI: 10.1016/j.jep.2025.119731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huazhuo Sanjie Chubi Decoction (HSCD), a Chinese herbal formula, is traditionally used for the treatment of spleen deficiency with dampness accumulation and is commonly used to treat gouty arthritis (GA). However, the potential active compounds and mechanisms of HSCD remain unclear. AIM OF THE STUDY To elucidate the key bioactive compounds and pharmacological mechanisms of HSCD in treating GA. MATERIALS AND METHODS The chemical compounds in HSCD were qualitatively and quantitatively analyzed using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Network pharmacology and molecular docking were employed to identify key active compounds and associated molecular pathways. Monosodium urate (MSU)-induced RAW264.7 macrophages and GA rat model were used to explore the potential therapeutic effects and mechanisms of HSCD in treating GA. RESULTS UPLC-MS/MS identified 184 compounds in HSCD, with 28 key compounds quantified. Network pharmacology revealed that verbenalin, limonin, and quercitrin are strongly associated with the molecular mechanisms of HSCD in treating GA via the PI3K-AKT signaling pathway. These compounds exhibited strong binding affinity to PI3K and AKT proteins. In RAW264.7 cells, HSCD and the three identified compounds dose-dependently reduced inflammation by inhibiting nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). They also downregulated both the PI3K-AKT and apoptosis signaling pathways. In rats, HSCD exerted therapeutic effects against acute GA by alleviating swelling and pathological damage to the ankle joints. Moreover, the molecular mechanisms in vivo were confirmed to be associated with the PI3K-AKT and apoptosis signaling pathways. CONCLUSION This study employed a multivariant approach to demonstrate the main bioactive compounds and molecular mechanisms of HSCD in treating GA, thereby supporting its traditional use.
Collapse
Affiliation(s)
- Xueting Chen
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Xiaomei Zhong
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Jiemei Guo
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilition, Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Tong Jin
- College of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Huaying Guan
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Jing Lin
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Minjie Zeng
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Yiqian Zhang
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Yanxiang Lin
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Yanfang Zheng
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Mingqing Huang
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China.
| | - Youxin Su
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilition, Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
2
|
Li X, Zhao Z, Ke Y, Jiang Y, Liu Y, Liu Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth Analg 2025; 140:616-627. [PMID: 39110636 PMCID: PMC11805490 DOI: 10.1213/ane.0000000000007096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 02/09/2025]
Abstract
One of the functions of organism cells is to maintain energy homeostasis to promote metabolism and adapt to the environment. The 3 major pathways of cellular energy metabolism are glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Neurons, astrocytes, and microglia are crucial in allodynia, hyperalgesia, and sensitization in nociceptive pathways. This review focused on these 3 major cellular energy metabolism pathways, aiming to elucidate the relationship between neurocyte and pain sensation and present the reprogramming of energy metabolism on pain, as well as the cellular and molecular mechanism underlying various forms of pain. The clinical and preclinical drugs involved in pain treatment and molecular mechanisms via cellular energy metabolism were also discussed.
Collapse
Affiliation(s)
- Xiongjuan Li
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuwen Ke
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yonghan Jiang
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhiheng Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
3
|
Cai R, Li X, Liang H, Chen S, Huang Y, Chai H, Lin R, Jiang G. High-Resolution LC-MS Simultaneous Quantification of Forty-Six Compounds from Jatropha podagrica Fruit Recommends Four Top Antioxidant Contributors as Q-Markers. Molecules 2025; 30:722. [PMID: 39942825 PMCID: PMC11821128 DOI: 10.3390/molecules30030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
There has been no chemical analysis of the fruit of medicinal plant Jatropha podagrica until now. The current study aimed to qualitatively and quantitatively analyze the J. podagrica fruit using a high-resolution LC-MS strategy, i.e., library-comparison ultra-high-performance liquid chromatography-Quadrupole-Orbitrap-tandem mass spectrometry. The strategy putatively identified 46 compounds from fresh fruit. During the putative identification, 10 isomers (e.g., (vitexin vs. isovitexin) were completely distinguished from each other. Thereafter, all 46 compounds were simultaneously quantified using authentic standard comparison method. Finally, they were also subjected to the 2,2'-azino bis (3-ethylbenzothiazolin-6-sulfonic acid radical (ABTS+•)-scavenging assay to characterize their relative antioxidant capacities. Their antioxidant capacities were thus multiplied by chemical contents to calculate their antioxidant contribution values, respectively. Corilagin, gallic acid, ellagic acid, and phillygenin exhibited the highest antioxidant contribution percentages and thereby were suggested as the four top antioxidant contributors. The four are recommended to build up a quality-markers (Q-markers) system of J. podagrica fruits. All these findings can help to develop J. podagrica fruits as a potential resource of natural medicine.
Collapse
Affiliation(s)
- Rongxin Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.C.); (H.L.)
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.H.); (H.C.); (R.L.)
| | - Honghong Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.C.); (H.L.)
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.H.); (H.C.); (R.L.)
| | - Yuting Huang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.H.); (H.C.); (R.L.)
| | - Hanxiao Chai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.H.); (H.C.); (R.L.)
| | - Rongrong Lin
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.H.); (H.C.); (R.L.)
| | - Guihua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.C.); (H.L.)
| |
Collapse
|
4
|
Zhang N, Ma Y, Li Y, Wang Y, Zhang L, Zheng M, Tian Y, Zhang R, Yang K, Li J, Yan F, Liu H, Zhang Y, Xu J, Yu C, Xu J. Paeonol prevents sepsis-associated encephalopathy via regulating the HIF1A pathway in microglia. Int Immunopharmacol 2024; 143:113287. [PMID: 39362015 DOI: 10.1016/j.intimp.2024.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Paeonol, a phenolic acid compound extracted from the Cortex Moutan, exhibits significant anti-inflammatory, antioxidant, and anti-apoptotic properties. This study aimed to investigate the effects of paeonol on neuroinflammation and depressive-like symptoms, and the underlying mechanisms in a mouse model of sepsis-associated encephalopathy (SAE) induced by lipopolysaccharide (LPS). To assess the therapeutic potential of paeonol in mice treated with LPS, behavioral assessments were conducted using the open-field test (OFT), tail suspension test (TST), and forced swimming test (FST), and quantitative PCR (qPCR), Western blot, and immunofluorescent staining were utilized to determine the expression levels of inflammatory molecules in the hippocampus in vivo and microglial cells in vitro. Our results revealed that paeonol significantly alleviated anxiety and depressive-like symptoms, as evidenced by improved activity in OFT, reduced immobility time in TST and FST, and decreased levels of inflammatory markers such as IL6, TNFα, and PFKFB3. Further in vitro experiments confirmed that paeonol downregulated the expression of pro-inflammatory molecules. A network pharmacology-based strategy combined with molecular docking and cellular thermal shift assay highlighted HIF1A as a potential target for paeonol. Similar anti-inflammatory effects of a HIF1A inhibitor were also observed in microglia treated with LPS. Furthermore, these effects were reversed by CoCl2, a HIF1A agonist, indicating the critical role of the HIF1A signaling pathway in mediating the therapeutic effects of paeonol. These findings highlight the potential of paeonol in modulating the HIF1A pathway, offering a promising therapeutic strategy for neuroinflammation in SAE.
Collapse
Affiliation(s)
- Ning Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yongjie Ma
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yuqing Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yiqi Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Lisheng Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Mincheng Zheng
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yu Tian
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Ruiying Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Kanlin Yang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jieyuan Li
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Haimei Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yaxing Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jinwen Xu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China.
| | - Cong Yu
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, China.
| | - Jiean Xu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China.
| |
Collapse
|
5
|
Zhao J, Zhang H, Zhao Y, Lin Z, Lin F, Wang Z, Mo Q, Lu G, Zhao G, Wang G. Exploratory Research for HIF-1α Overexpression Tumor Antigen in the Activation of Dendritic Cells and the Potent Anti-Tumor Immune Response. Cancer Manag Res 2024; 16:1813-1822. [PMID: 39713567 PMCID: PMC11662640 DOI: 10.2147/cmar.s482363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024] Open
Abstract
Background Tumor-specific antigens play an important role in dendritic cell (DC)-based immunotherapy. The acquisition of tumor-specific antigens, which are essential for DC-based immunotherapy, poses a significant challenge. This study aimed to explore the efficacy of hypoxia inducible factor-1α (HIF-1α) overexpression tumor antigens in DC-based immunotherapy. Methods An HIF-1α over-expression cell line was constructed to prepare HIF-1α overexpression tumor antigens. The expression of CD14, CD40, CD80, CD86, and HLA-DR on the surface of dendritic cells derived from monocytes was assessed using flow cytometry after stimulation with tumor antigens enriched in HIF-1α. T cell proliferation was analyzed by CFSE division following incubation with mature DCs. The apoptotic tumor cells were detected through annexin V/PI staining following coculture with dendritic cells (DCs) stimulated by HIF-1α enriched antigens. The detection of damage-associated molecular pattern molecules (DAMPs) HMGB1 and calreticulin (CALR) was performed using Western blotting. Results The results demonstrated that HIF-1α-enriched tumor antigens significantly upregulated the expression of CD40, CD80, CD86, and HLA-DR in DCs compared to normal tumor antigens. Furthermore, co-incubation with HIF-1α-enriched tumor antigen-activated DCs enhanced T cell proliferation and stimulated the T cell-mediated cytotoxicity. Notably, the expression of DAMPs, such as HMGB1 and CALR, was elevated in HIF-1α-enriched tumor antigens. Conclusion Our findings demonstrate that tumor antigens enriched with HIF-1α may encompass tumor-specific antigens capable of stimulating DC activation, thereby enhancing T cell proliferation and cytotoxicity. These results provide support for the further advancement of HIF-1α enriched tumor antigens in preclinical and clinical investigations pertaining to tumor treatment.
Collapse
Affiliation(s)
- Jinjin Zhao
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Key Laboratory of Nano-Drug Delivery System Construction and Application in Xinxiang City, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Haiguang Zhang
- Department of Gynecology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yilin Zhao
- Department of Cardiology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhiqiang Lin
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fei Lin
- Department of Cardiology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Cardiovascular Repair Engineering Technology Research Center, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhiyin Wang
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Qingjiang Mo
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guangjian Lu
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guoan Zhao
- Department of Cardiology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Cardiovascular Repair Engineering Technology Research Center, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guoqiang Wang
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
6
|
Hu D, Qing G, Liu X, Cheng J, Zhang K, He L. A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson's Syndrome. Molecules 2024; 29:5160. [PMID: 39519801 PMCID: PMC11547941 DOI: 10.3390/molecules29215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Levodopa (LD) is the first discovered and the most promising and effective medication for Parkinson's disease (PD). As the first identified natural source of LD, Vicia faba L. (broad beans), especially its sprouts, has been confirmed to contain many other potential bioactive compounds that could also be therapeutic for PD. In this study, the bioactive components obtained from broad bean sprout extraction (BSE) that could be beneficial for PD treatment were screened, and the related mechanisms were explored. Solvent extraction combined with column chromatography was used to isolate bioactive fractions and monomer compounds, while UPLC-ESI-MS/MS, HRESI-MS and (1H, 13C) NMR were employed for compound identification. Network pharmacology techniques were applied to screen for potential mechanisms. A total of 52 compounds were identified in a 50% MeOH extract of broad bean sprouts. Moreover, twelve compounds were isolated and identified from ethyl acetate and n-butanol portions, including caffeic acid (1), trans-3-indoleacrylic acid (2), p-coumaric acid (3), protocatechualdehyde (4), isovitexin (5), isoquercetin (6), grosvenorine (7), kaempferol-3-O-rutinoside (8), isoschaftoside (9), narcissin (10), kaempferitrin (11) and trigonelline HCl (12). Compounds 2, 4, 7, 8 and 12 were isolated from Vicia faba L. for the first time. The potential mechanisms were determined by analyzing 557 drug targets, 2334 disease targets and 199 intersections between them using a protein-protein interaction (PPI) network, gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. Further in vitro experiments confirmed that caffeic acid (compound 1) and p-coumaric acid (compound 3) have neuroprotective effects in 6-hydroxydopamine-treated SH-SY5Y cells and lipopolysaccharide-treated PC-12 cells through anti-inflammatory and antioxidant mechanisms. In conclusion, this study explored effective components in broad bean sprouts and performed in vitro evaluations.
Collapse
Affiliation(s)
- Danni Hu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| | - Guanglei Qing
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| | - Xuecheng Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
| | - Lingyun He
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| |
Collapse
|
7
|
Wang S, Zhang J, Chen J, Tang L, Ke M, Xue Y, He Y, Gong Y, Li Z. ω-3PUFAs Inhibit Hypoxia-Induced Retinal Neovascularization via Regulating Microglial Pyroptosis through METTL14-Mediated m6A Modification of IFNB1 mRNA. Appl Biochem Biotechnol 2024; 196:5936-5952. [PMID: 38175416 DOI: 10.1007/s12010-023-04795-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Retinal neovascular disease is the leading reason of vision impairment in all ages. Here, we figured out the function and mechanism of omega-3 polyunsaturated fatty acids (ω-3PUFAs) in hypoxia-induced retinal neovascularization by focusing on microglial pyroptosis. Microglia BV-2 cells were given ω-3PUFAs treatment and co-cultured with mouse retinal microvascular endothelial cells (MRMECs) under hypoxia. Tube formation assay, transwell assay and wound healing assay were utilized to monitor the MRMEC angiogenesis. Cell counting kit-8, western blot, lactate dehydrogenase assay, and enzyme-linked immunosorbent assay were used to assess pyroptosis of BV-2 cells. RNA sequencing and methylated RNA immunoprecipitation-polymerase chain reaction were utilized to identify the target gene of methyltransferase-like 14 (METTL14) and its N6-methyladenosine (m6A) level in BV-2 cells. BV-2 cells prominently enhanced MRMEC angiogenesis under hypoxia, but this effect was abolished after ω-3PUFAs treatment. ω-3PUFAs inhibited pyroptosis in hypoxia-induced BV-2 cells, and BV-2 cell pyroptosis boosted angiogenesis of MRMECs. Additionally, ω-3PUFAs markedly augment the expression of MELLL14 in BV-2 cells, and METTL14 knockdown promoted BV-2 cell pyroptosis and BV-2 cell-mediated angiogenesis in MEMECs. Mechanistically, interferon beta 1 (IFNB1) was a target of METTL14, and METTL14 silencing increased the mRNA expression and decreased the m6A modification of IFNB1 in BV-2 cells. Our results uncovered that ω-3PUFAs diminished hypoxia-induced retinal neovascularization through controlling microglial pyroptosis via METTL14-mediated m6A modification. This study offers a novel potential target for the treatment of retinal neovascular diseases.
Collapse
Affiliation(s)
- Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Chen
- Department of Ophthalmology, The People's Hospital of Huangmei, Huangmei Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanlan Tang
- Department of Ophthalmology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ying He
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
Han JW, Shin SK, Bae HR, Lee H, Moon SY, Seo WD, Kwon EY. Wheat seedlings extract ameliorates sarcopenia in aged mice by regulating protein synthesis and degradation with anti-inflammatory and mitochondrial biogenesis effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155747. [PMID: 38788397 DOI: 10.1016/j.phymed.2024.155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Chronic inflammation, which becomes more prevalent during aging, contributes to sarcopenia by reducing muscle mass and strength. PURPOSE Wheat seedlings extract (WSE) is known for its various physiological activities, including anti-inflammation and antioxidant effects. However, its efficacy against sarcopenia is not well documented. STUDY DESIGN 8-week-old and 50-week-old C57BL/6 J mice were used as young control (YC group) and aged controls (AC group), respectively. Then, aged mice were randomly divided into 5 groups (WSE100mg/kg, WSE200mg/kg, WSE400mg/kg, and schizandrin as a positive control) and fed each experimental diet for 10 weeks. METHOD We investigated the effects of WSE on muscle quality and protein homeostasis pathways based on improvements in mitochondrial function and chronic inflammation. We then used TNFα-treated C2C12 to investigate the effects of isoorientin (ISO) and isoschaftoside (ISS), the active substances of WSE, on the myogenic pathway. RESULTS We administered WSE to aging mice and observed an increase in muscle mass, thickness, protein content, and strength in mice treated with WSE at a dose of 200 mg/kg or 400 mg/kg. Furthermore, the administration of WSE led to a reduction in inflammatory factors (TNFα, IL-1, and IL-6) and an increase in mitochondrial biogenesis (p-AMPK/SIRT3/PGC1α) in muscle. This effect was also observed in TNFα-induced muscle atrophy in C2C12 cells, and we additionally identified the upregulation of myogenic regulatory factors, including Myf5, Myf6, MyoD, and myogenin, by WSE, ISO, and ISS. CONCLUSION These findings suggest that WSE could function as a dietary anti-inflammatory factor and mitochondrial activator, potentially exerting modulatory effects on the metabolism and mechanical properties of skeletal muscles in the aging population. Furthermore, Our results demonstrate the potential value of ISO and ISS as functional food ingredients for preventing muscle atrophy.
Collapse
Affiliation(s)
- Ji-Won Han
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea; Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea; Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea
| | - Heekyong R Bae
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea; Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea
| | - HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, South Korea
| | - So Yeon Moon
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, South Korea
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, South Korea
| | - Eun-Young Kwon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu 41566, South Korea.
| |
Collapse
|
9
|
Chroho M, Bailly C, Bouissane L. Ethnobotanical Uses and Pharmacological Activities of Moroccan Ephedra Species. PLANTA MEDICA 2024; 90:336-352. [PMID: 38423032 DOI: 10.1055/a-2269-2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ephedra species are among the most popular herbs used in traditional medicine for a long time. The ancient Chinese medical book "Treatise on Febrile Diseases" refers to the classic traditional Chinese medicine prescription Ge Gen decoction, which consists of seven herbs, including an Ephedra species. Ephedra species are utilized all over the world to treat symptoms of the common cold and coughs, and to combat major human diseases, such as asthma, cancers, diabetes, cardiovascular and digestive disorders, and microbial infections. This study aimed at identifying specific Ephedra species used traditionally in Morocco for therapeutic purposes. The plant parts, their preparation process, and the treated pathologies were identified and analyzed. The results revealed five ethnobotanically important species of Ephedra: Ephedra alata Decne, Ephedra altissima Desf., Ephedra distachya L., Ephedra fragilis Desf., and Ephedra nebrodensis Tineo. These species are used traditionally in Morocco for treating people with diabetes, cancer, rheumatism, cold and asthma, hypertension, influenza virus infection, and respiratory ailments. In addition, they are occasionally used as calefacient agents, to regulate weight, or for capillary care. Few studies have underlined the antibacterial and antioxidant activities of some of these Moroccan Ephedra species, but little information is available regarding the natural products at the origin of the bioactivities. Further phytochemical investigations and clinical data are encouraged to better support the use of these plants.
Collapse
Affiliation(s)
- Mounia Chroho
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol, Faculty of Pharmacy, University of Lille, France
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| |
Collapse
|
10
|
Sahu B, Sahu M, Sahu M, Yadav M, Sahu R, Sahu C. An Updated Review on Nelumbo Nucifera Gaertn: Chemical Composition, Nutritional Value and Pharmacological Activities. Chem Biodivers 2024; 21:e202301493. [PMID: 38327030 DOI: 10.1002/cbdv.202301493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nelumbo nucifera Gaertn is a recognised herbal plant in ancient medical sciences. Each portion of the plant leaf, flower, seed and rhizome is utilised for nutritional and medicinal purposes. The chemical compositions like phenol, alkaloids, glycoside, terpenoids and steroids have been isolated. The plant contains various nutritional values like lipids, proteins, amino acids, minerals, carbohydrates, and fatty acids. Traditional medicine confirms that the phytochemicals of plants give significant benefits to the treatment of various diseases such as leukoderma, smallpox, dysentery, haematemesis, coughing, haemorrhage, metrorrhagia, haematuria, fever, hyperlipidaemia, cholera, hepatopathy and hyperdipsia. To verify the traditional claims, researchers have conducted scientific biological in vivo and in vitro screenings, which have exhibited that the plant keeps various notable pharmacological activities such as anticancer, hepatoprotective, antioxidant, antiviral, hypolipidemic, anti-obesity, antipyretic, hypoglycaemic, antifungal, anti-inflammatory and antibacterial activities. This review, summaries the nutritional composition, chemical constituents and biological activities substantiated by the researchers done in vivo and in vitro.
Collapse
Affiliation(s)
- Bhaskar Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mahendra Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mukesh Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Megha Yadav
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Rakesh Sahu
- Sanjivani Institute of Pharmacy, Bilaspur, Chhattisgarh, 497101, India
| | - Chandana Sahu
- Columbia College of Nursing, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
11
|
Zhao Y, Zhang X, Lang Z, Zhang C, Li L, He Y, Liu N, Zhu Y, Hong G. Comparison of Nutritional Diversity in Five Fresh Legumes Using Flavonoids Metabolomics and Postharvest Botrytis cinerea Defense Analysis of Peas Mediated by Sakuranetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6053-6063. [PMID: 38452150 DOI: 10.1021/acs.jafc.3c08968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Legumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different. In addition to analyzing common and species-specific flavonoids in the five legumes, we also generalized representative flavonoids of various subclasses. We related these to the health-promoting effects of legumes. Furthermore, legumes' total flavonoid content and antioxidant system activity were also detected. Intriguingly, sakuranetin, the sole flavonoid phytoalexin that can be induced by UV radiation, was detected only in the peas by metabolomics. Meanwhile, we found that UV treatment could significantly increase the sakuranetin content and the postharvest Botrytis cinerea resistance of pea pods. This study provides clues for the target diet, industrial development of legumes, and a new idea for the postharvest preservation of peas.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuoliang Lang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
12
|
Grădinaru TC, Gilca M, Vlad A, Dragoș D. Relevance of Phytochemical Taste for Anti-Cancer Activity: A Statistical Inquiry. Int J Mol Sci 2023; 24:16227. [PMID: 38003415 PMCID: PMC10671173 DOI: 10.3390/ijms242216227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting inflammation and the pathways linking inflammation with cancer is an innovative therapeutic strategy. Tastants are potential candidates for this approach, since taste receptors display various biological functions, including anti-inflammatory activity (AIA). The present study aims to explore the power different tastes have to predict a phytochemical's anti-cancer properties. It also investigates whether anti-inflammatory phytocompounds also have anti-cancer effects, and whether there are tastes that can better predict a phytochemical's bivalent biological activity. Data from the PlantMolecularTasteDB, containing a total of 1527 phytochemicals, were used. Out of these, only 624 phytocompounds met the inclusion criterion of having 40 hits in a PubMed search, using the name of the phytochemical as the keyword. Among them, 461 phytochemicals were found to possess anti-cancer activity (ACA). The AIA and ACA of phytochemicals were strongly correlated, irrespective of taste/orosensation or chemical class. Bitter taste was positively correlated with ACA, while sweet taste was negatively correlated. Among chemical classes, only flavonoids (which are most frequently bitter) had a positive association with both AIA and ACA, a finding confirming that taste has predictive primacy over chemical class. Therefore, bitter taste receptor agonists and sweet taste receptor antagonists may have a beneficial effect in slowing down the progression of inflammation to cancer.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dorin Dragoș
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- 1st Internal Medicine Clinic, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050098 Bucharest, Romania
| |
Collapse
|
13
|
Arrieta-Echeverri MC, Fernandez GJ, Duarte-Riveros A, Correa-Álvarez J, Bardales JA, Villanueva-Mejía DF, Sierra-Zapata L. Multi-omics characterization of the microbial populations and chemical space composition of a water kefir fermentation. Front Mol Biosci 2023; 10:1223863. [PMID: 37849822 PMCID: PMC10577418 DOI: 10.3389/fmolb.2023.1223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Infectious Diseases Biology and Control Group (BCEI), Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Javier Correa-Álvarez
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | | | - Laura Sierra-Zapata
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
14
|
Kong X, Liu W, Zhang X, Zhou C, Sun X, Cheng L, Lin J, Xie Z, Li J. HIF-1α inhibition in macrophages preserves acute liver failure by reducing IL-1β production. FASEB J 2023; 37:e23140. [PMID: 37584647 DOI: 10.1096/fj.202300428rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The development of acute liver failure (ALF) is dependent on its local inducer. Inflammation is a high-frequency and critical factor that accelerates hepatocyte death and liver failure. In response to injury stress, the expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages is promoted by both oxygen-dependent and oxygen-independent mechanisms, thus promoting the expression and secretion of the cytokine interleukin-1β (IL-1β). IL-1β further induces hepatocyte apoptosis or necrosis by signaling through the receptor (IL-1R) on hepatocyte. HIF-1α knockout in macrophages or IL-1R knockout in hepatocytes protects against liver failure. However, whether HIF-1α inhibition in macrophages has a protective role in ALF is unclear. In this study, we revealed that the small molecule HIF-1α inhibitor PX-478 inhibits the expression and secretion of IL-1β, but not tumor necrosis factor α (TNFα), in bone marrow-derived macrophages (BMDMs). PX-478 pretreatment alleviates liver injury in LPS/D-GalN-induced ALF mice by decreasing the hepatic inflammatory response. In addition, preventive or therapeutic administration of PX-478 combined with TNFα neutralizing antibody markedly improved LPS/D-GalN-induced ALF. Taken together, our data suggest that PX-478 administration leads to HIF-1α inhibition and decreased IL-1β secretion in macrophages, which represents a promising therapeutic strategy for inflammation-induced ALF.
Collapse
Affiliation(s)
- Xiangrong Kong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Wei Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xinwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Chendong Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Long Cheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinxia Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou, P.R. China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|