1
|
Liu Z, Chu A, Bai Z, Yang C. Nobiletin ameliorates monosodium urate-induced gouty arthritis in mice by enhancing AMPK/mTOR-mediated autophagy to inhibit NF-κB/NLRP3 inflammasome activation. Immunol Lett 2025; 274:106982. [PMID: 39965668 DOI: 10.1016/j.imlet.2025.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Gouty arthritis (GA) is a common rheumatic disease caused by the release of monosodium urate crystal (MSU) deposits into joint space. Nobiletin is a polymethoxylated flavonoid isolated from citrus fruits and has many beneficial activities. This study aimed to elucidate the therapeutic efficacy of nobiletin in GA and to reveal its potential mechanisms. METHODS Phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 macrophages were primed with lipopolysaccharide (LPS) and then stimulated with MSU crystals in the presence or absence of nobiletin. Cell viability as well as the levels of proinflammatory cytokines, pathway-related proteins, NLRP3 inflammasomes, and autophagy-related proteins were evaluated. MSU was used to induce GA in mice. Hematoxylin-eosin staining was conducted to assess histological morphology changes. Immunofluorescence staining was performed to measure LC3 expression in THP-1 cells and ankle joint tissues. RESULTS For in vitro analysis, nobiletin reduced LPS and MSU-induced cell viability inhibition. Additionally, nobiletin inhibited inflammation and NF-κB/NLRP3 pathway in THP-1 cells. Moreover, nobiletin inhibited the activation of NLRP3 inflammasome by promoting AMPK/mTOR-mediated autophagy. For in vivo analysis, nobiletin attenuated MSU-induced GA in mice. Additionally, nobiletin suppressed inflammation and NF-κB/NLRP3 pathway and promoted tissue autophagy in GA mice. CONCLUSION Nobiletin prevents MSU-induced GA in mice by inhibiting NF-κB/NLRP3 inflammasome activation through AMPK/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Rheumatology and Immunology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuchang District, Wuhan, Hubei 430060, China
| | - Aichun Chu
- Department of Rheumatology and Immunology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuchang District, Wuhan, Hubei 430060, China
| | - Zhiqian Bai
- Department of Rheumatology and Immunology, Wuhan University, Renmin Hospital, 238 Jiefang Road, Wuchang District, Wuhan, Hubei 430060, China
| | - Chao Yang
- Department of Orthopedics, Maternal and Child Health Hospital of Hubei Province, No 745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Ding X, Yuan Q, Han C, Shen C, Chen M, Yin H, Zhong H, Yang C, Huang J, He C, Zuo Z. Effects and mechanisms of theabrownin from black tea in improving hyperuricemia: Evidence from animal study and clinical trial. Int J Biol Macromol 2025; 293:139373. [PMID: 39743074 DOI: 10.1016/j.ijbiomac.2024.139373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/07/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by disorders of uric acid synthesis and excretion. Theabrownin (TB), a macromolecular water-soluble pigment from black tea, can bring beneficial effects on human health. The effects and underlying molecular mechanisms of TB on HUA animals and patients are still unclear. This study aimed to explore the potential function and the possible mechanisms of TB in improving HUA. Our results demonstrated that TB could reduce the levels of serum uric acid and improve renal pathological damage in HUA mice by inhibiting xanthine oxidase (XOD) activity in the liver and increasing the expression of uric acid transporter proteins in the kidney. Furthermore, TB was proven to suppress autophagy, inflammation, and fibrosis in the kidney of HUA mice. Moreover, a self-controlled clinical trial showed that TB drinking daily for 12 weeks could decrease serum uric acid levels in HUA patients without any adverse effects. In conclusion, TB exhibits significant potential in decreasing serum uric acid levels both in HUA mice and patients, offering a novel approach to HUA treatment.
Collapse
Affiliation(s)
- Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Qin Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Mingyue Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Hongbin Zhong
- The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
陈 志, 杨 永, 黄 霞, 成 彦, 瞿 媛, 衡 琪, 符 羽, 李 可, 顾 宁. Differential expressions of exosomal miRNAs in patients with chronic heart failure and hyperuricemia: diagnostic values of miR-27a-5p and miR-139-3p. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:43-51. [PMID: 39819711 PMCID: PMC11744294 DOI: 10.12122/j.issn.1673-4254.2025.01.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To analyze the differentially expressed exosomal miRNAs in patients with chronic heart failure (CHF) complicated by hyperuricemia (HUA) and explore their potential as novel diagnostic molecular markers and their target genes. METHODS This study was conducted among 30 CHF patients with HUA (observation group) and 30 healthy volunteers (control group) enrolled between September, 2020 and September, 2023. Peripheral blood samples were collected from 6 CHF patients with HUA for analyzing exosomal miRNAs by high-throughput sequencing, and the results were validated in the remaining 24 patients using qRT-PCR. GO and KEGG enrichment analyses were performed to predict the the target genes of the identified differential miRNAs. We also validated the differentially expressed miRNAs by animal experiment. RESULTS A total of 42 differentially expressed exosomal miRNAs were detected in observation group by high-throughput sequencing; among them, miR-27a-5p was significantly upregulated (P=0.000179), and miR-139-3p was significantly downregulated (P=0.000058). In the 24 patients with both CHF and PUA, qRT-PCR validated significant upregulation of miR-27a-5p (P=0.004) and downregulation of miR-139-3p (P=0.005) in serum exosomes. When combined, miR-27a-5p and miR-139-3p had a maximum area under the curve (AUC) of 0.899 (95% CI: 0812-0.987) for predicting CHF complicated by HUA. GO and KEGG enrichment analyses suggested that the differential expressions of miR-27a-5p and miR-139-3p was associated with the activation of the AMPK-mTOR signaling pathway to activate the autophagic response. We obtained the same conclusion from animal experiment. CONCLUSIONS Upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p expression can serve as a novel molecular marker for diagnosis of CHF complicated by HUA, and their differential expression may promote autophagy in cardiomyocytes by activating the AMPK-mTOR signaling pathway.
Collapse
|
4
|
Chen Z, Shi J, Huang X, Yang Y, Cheng Y, Qu Y, Gu N. Exosomal miRNAs in patients with chronic heart failure and hyperuricemia and the underlying mechanisms. Gene 2025; 933:148920. [PMID: 39241970 DOI: 10.1016/j.gene.2024.148920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic heart failure (CHF) combined with hyperuricemia (HUA) is a comorbidity that is hard to diagnose by a single biomarker. Exosomal miRNAs are differentially expressed in cardiovascular diseases and are closely associated with regulating most biological functions. This study aimed to provide evidence for miRNA as a new molecular marker for precise diagnosis of the comorbidity of CHF with HUA and further analyze the potential targets of differentially expressed miRNA. This controlled study included 30 CHF patients combined with HUA (Group T) and 30 healthy volunteers (Group C). 6 peripheral blood samples from Group T and Group C were analyzed for exosomal miRNAs by high-throughput sequencing and then validated in the remaining 24 peripheral blood samples from Group T and Group C by applying real-time PCR (RT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software to predict the differential miRNAs' action targets. 42 differentially expressed miRNAs were detected (18 upregulated and 24 downregulated), in which miR-27a-5p was significantly upregulated (P<0.01), and miR-139-3p was significantly downregulated (P<0.01) in Group T. The combination of miR-27a-5p and miR-139-3p predicted the development of CHF combined with HUA with a maximum area under the curve (AUC) of 0.899 (95 % CI: 0.812-0.987, SEN=79.2 %, SPE=91.7 %, J value = 0.709). GO and KEGG enrichment analysis revealed that the differentially expressed miRNAs had a role in activating the AMPK-mTOR signaling pathway to activate the autophagic response. Collectively, our findings suggest that upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p can be used as a novel molecular marker for precise diagnosis of CHF combined with HUA and enhanced autophagy by AMPK-mTOR signaling pathway may be one pathogenesis of the differentially expressed miRNAs.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Jun Shi
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, PR China
| | - Xia Huang
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Yonggang Yang
- Biochemical Labororatory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Yan Cheng
- Pharmaceutical Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Yuan Qu
- Emergency Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China
| | - Ning Gu
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Chen D, Chen X, Zheng X, Zhu J, Xue T. Combined metabolomic and transcriptomic analysis reveals the key genes for triterpenoid biosynthesis in Cyclocarya paliurus. BMC Genomics 2024; 25:1197. [PMID: 39695362 PMCID: PMC11654178 DOI: 10.1186/s12864-024-11125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cyclocarya paliurus is a high-value tree, and it contains a variety of bioactive secondary metabolites which have broad application prospects in medicine, food and health care. Triterpenoids can improve the bioactive function of C. paliurus health tea and also improve the efficacy of health care tea. RESULTS The results of this study showed that there were 69 kinds were terpenoids, and triterpenoids accounted for more than 80%. We excavated 5 kinds of triterpenoid metabolites with high content and significant difference dynamics, namely, corosolic acid, asiatic acid, maslinic acid, ursolic acid and oleanolic acid. The co-expression analysis identified CYP71D8 and CYP716A15 co-expressed with β-AS may generate oleanane type triterpenoids by modifying β-amyrin, while CYP71AN24 and CYP98A2 co-expressed with LUS may play a key role in lupine type triterpenoids biosynthesis. MYB,Whirly,WRKY and bHLH families, which showed strong correlation with function genes, may play an important role in the regulation of P450 and OSC expression. A total of 20 modules were identified by WGCNA analysis, and CYP71AU50 and CYP716A15 in tan and orange modules may play a major role in the synthesis of oleanolic acid, ursolic acid and asiatic acid, while CYP82D47 in lightcyan 1 module may be the hub gene for the biosynthesis of corosolic acid and maslinic acid. CONCLUSIONS Our findings mined candidate genes closely related to triterpenoid synthesis in C. paliurus. The results of this paper can provide scientific reference for breeding high-content triterpenoid varieties of C. paliurus.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Xupeng Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
6
|
Zhang S, Li D, Fan M, Yuan J, Xie C, Yuan H, Xie H, Gao H. Mechanism of Reactive Oxygen Species-Guided Immune Responses in Gouty Arthritis and Potential Therapeutic Targets. Biomolecules 2024; 14:978. [PMID: 39199366 PMCID: PMC11353092 DOI: 10.3390/biom14080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by monosodium urate (MSU) crystals deposited in the joint tissues causing severe pain. The disease can recur frequently and tends to form tophus in the joints. Current therapeutic drugs for the acute phase of GA have many side effects and limitations, are unable to prevent recurrent GA attacks and tophus formation, and overall efficacy is unsatisfactory. Therefore, we need to advance research on the microscopic mechanism of GA and seek safer and more effective drugs through relevant targets to block the GA disease process. Current research shows that the pathogenesis of GA is closely related to NLRP3 inflammation, oxidative stress, MAPK, NET, autophagy, and Ferroptosis. However, after synthesizing and sorting out the above mechanisms, it is found that the presence of ROS is throughout almost the entire spectrum of micro-mechanisms of the gout disease process, which combines multiple immune responses to form a large network diagram of complex and tight connections involved in the GA disease process. Current studies have shown that inflammation, oxidative stress, cell necrosis, and pathological signs of GA in GA joint tissues can be effectively suppressed by modulating ROS network-related targets. In this article, on the one hand, we investigated the generative mechanism of ROS network generation and its association with GA. On the other hand, we explored the potential of related targets for the treatment of gout and the prevention of tophus formation, which can provide effective reference ideas for the development of highly effective drugs for the treatment of GA.
Collapse
Affiliation(s)
- Sai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Daocheng Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Mingyuan Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Haipo Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| |
Collapse
|
7
|
Zhang X, Liu J, Sun Y, Zhou Q, Ding X, Chen X. Chinese herbal compound Huangqin Qingrechubi capsule reduces lipid metabolism disorder and inflammatory response in gouty arthritis via the LncRNA H19/APN/PI3K/AKT cascade. PHARMACEUTICAL BIOLOGY 2023; 61:541-555. [PMID: 36994890 PMCID: PMC10064824 DOI: 10.1080/13880209.2023.2191641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gouty arthritis (GA) is a characteristically inflammatory disease often associated with lipid metabolism disorder. Huangqin Qingrechubi capsule (HQC) has been used for the treatment of GA. OBJECTIVE To explore the mechanism of HQC in the treatment of GA. MATERIALS AND METHODS A total of 30 GA patients (GA group) and 30 healthy subjects [normal control (NC) group] were recruited. The GA group was treated with HQC (3.6 g/d) for 10 days. Lipid metabolism and inflammation indexes were detected. Five herbal names of HQC, or 'gouty arthritis', 'hyperlipidemia' and 'inflammation' were used as key words to search related databases for network pharmacological analysis. Subsequently, GA-fibroblast-like synoviocytes (FLSs) were stimulated with GA-peripheral blood mononuclear cells (PBMCs) (3:1) and treated with HQC drug-containing serum (20%). RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of HQC in improving GA. RESULTS In clinical observation, HQC decreased the expression of lncRNA H19 and IL-1β, and increased the expression of adiponectin (APN) and IL-4 in the GA group (about half). Through network pharmacology, the PI3K/AKT signaling pathway was identified. Cell experiments showed that HQC treatment reduced the viability of GA-FLSs (49.61%), up-regulated the expression of IL-4 (155.18%), IL-10 (165.13%), and APN (31.24%), and down-regulated the expression of lncRNA H19 (33.70%), IL-1β (64.70%), TNF-α (78.32%), p-PI3K (48.80%), and p-AKT (53.48%). DISCUSSION AND CONCLUSIONS HQC improved lipid metabolism disorder and inflammatory response of GA by regulating the lncRNA H19/APN/PI3K/AKT. Maintaining the stability of lipid metabolism may be an effective way to alleviate GA.
Collapse
Affiliation(s)
- Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Zhou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Huang S, Wang Y, Lin S, Guan W, Liang H, Shen J. Neutrophil autophagy induced by monosodium urate crystals facilitates neutrophil extracellular traps formation and inflammation remission in gouty arthritis. Front Endocrinol (Lausanne) 2023; 14:1071630. [PMID: 37810893 PMCID: PMC10557066 DOI: 10.3389/fendo.2023.1071630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/17/2023] [Indexed: 10/10/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are composed of chromatin filaments coated with granular and cytosolic proteins, which contribute to the pathogenesis and progression of immune-related diseases. NETs are frequently observed in gouty arthritis, but the related mechanisms remain poorly understood. The aim of our study was to systematically elucidate the molecular mechanisms of self-remitting effects in gouty arthritis, and the causative relationship between neutrophil autophagy and NETs. The air pouch and paw edema model were used to simulate gouty arthritis in mice. Neutrophil infiltration and the formation of NETs were found in gouty arthritis. Interestingly, monosodium urate (MSU) crystals could induce the formation of NETs, degrade inflammatory factors, and alleviate the inflammatory response in gouty arthritis. In addition, MSU crystals resulted in profound molecular alterations in neutrophils using RNA-seq analysis, including autophagy activation. MSU crystals could activate neutrophil autophagy in vitro, and autophagy activators and inhibitors could regulate the formation of NETs. Furthermore, we explored the mechanism of autophagy-induced NETs. Autophagy related protein 7 (ATG7) produced by neutrophils stimulated with MSU crystals worked synergistically with p53 to enter the nucleus, promoting peptidyl arginine deiminase 4 (PAD4) expression, and inducing the formation of NETs. Finally, we substantiated that neutrophil autophagy regulates the severity of gouty arthritis via the formation of NETs in PAD4 -/- mice. Our results indicated that the autophagy of neutrophils regulates the formation of NETs and degrades inflammatory factors. Regulating autophagy and interfering with the formation of NETs represents a potential therapeutic approach against gouty arthritis during clinical practice.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Endocrinology, The Affiliated Jinling Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shibo Lin
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Guan
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Liang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiajia Shen
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol 2023; 14:1137822. [PMID: 37051231 PMCID: PMC10083392 DOI: 10.3389/fimmu.2023.1137822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Gout arthritis (GA) is a common and curable type of inflammatory arthritis that has been attributed to a combination of genetic, environmental and metabolic factors. Chronic deposition of monosodium urate (MSU) crystals in articular and periarticular spaces as well as subsequent activation of innate immune system in the condition of persistent hyperuricemia are the core mechanisms of GA. As is well known, drugs for GA therapy primarily consists of rapidly acting anti-inflammatory agents and life-long uric acid lowering agents, and their therapeutic outcomes are far from satisfactory. Although MSU crystals in articular cartilage detected by arthrosonography or in synovial fluid found by polarization microscopy are conclusive proofs for GA, the exact molecular mechanism of NLRP3 inflammasome activation in the course of GA still remains mysterious, severely restricting the early diagnosis and therapy of GA. On the one hand, the activation of Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome requires nuclear factor kappa B (NF-κB)-dependent transcriptional enhancement of NLRP3, precursor (pro)-caspase-1 and pro-IL-1β, as well as the assembly of NLRP3 inflammasome complex and sustained release of inflammatory mediators and cytokines such as IL-1β, IL-18 and caspase-1. On the other hand, NLRP3 inflammasome activated by MSU crystals is particularly relevant to the initiation and progression of GA, and thus may represent a prospective diagnostic biomarker and therapeutic target. As a result, pharmacological inhibition of the assembly and activation of NLRP3 inflammasome may also be a promising avenue for GA therapy. Herein, we first introduced the functional role of NLRP3 inflammasome activation and relevant biological mechanisms in GA based on currently available evidence. Then, we systematically reviewed therapeutic strategies for targeting NLRP3 by potentially effective agents such as natural products, novel compounds and noncoding RNAs (ncRNAs) in the treatment of MSU-induced GA mouse models. In conclusion, our present review may have significant implications for the pathogenesis, diagnosis and therapy of GA.
Collapse
Affiliation(s)
- Ya-ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory, State Administration of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| | - Jie-quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| |
Collapse
|
10
|
Liu P, Xu Y, Ye J, Tan J, Hou J, Wang Y, Li J, Cui W, Wang S, Zhao Q. Qingre Huazhuo Jiangsuan Decoction promotes autophagy by inhibiting PI3K/AKT/mTOR signaling pathway to relieve acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115875. [PMID: 36328206 DOI: 10.1016/j.jep.2022.115875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout belongs to the category of "arthralgia syndrome" in traditional Chinese medicine. It is believed that gout is caused by stagnation of blood stasis, heat, and turbid toxin. Qingre Huazhuo Jiangsuan Decoction (QHJD) is a traditional Chinese medicine prescription developed from the classic Chinese medicine prescription Simiao powder to clear heat, remove turbidity, reduce acid, and reduce inflammation. Now Traditional Chinese Medicine (TCM) physicians often apply it to treat acute gouty arthritis (AGA). However, the mechanism of QHJD in relieving acute gouty arthritis is still unclear, and further research is needed. AIM OF THE STUDY Here, we aim to explore the potential mechanism of QHJD in relieving acute gouty arthritis. MATERIALS AND METHODS Acute gouty arthritis model was established by injecting monosodium urate (MSU) suspension into knee joint. The pathological state of synovial tissue in each group was evaluated by hematoxylin-eosin (HE) staining. The level of TNF-α, IL-6, and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA). qRT-PCR was used to detect the mRNA expression of NLRP3, ATG5, ATG7, PI3K, AKT, and mTOR. The protein expression of LC3II/I, p62, ULK1, P-ULK1, Beclin-1, PI3K, AKT, mTOR, P-PI3K, P-AKT, and P-mTOR were detected by Western blot. RESULTS (1) The level of autophagy protein (mRNA) was significantly up-regulated in QHJD group and rapamycin, while the expression of autophagy protein (mRNA) was significantly downregulated in the 3-methyladenoenoic acid (3 MA) group; (2) QHJD and rapamycin significantly inhibited PI3K/AKT/mTOR pathway, while 3 MA group activated this pathway. (3) It was worth noting that after treatment with QHJD and rapamycin, the inflammatory pathological state of AGA synovial tissue was significantly reduced with the activation of the autophagy gene in knee synovial tissue, and the inhibition of PI3K/AKT/mTOR pathway. CONCLUSIONS This research revealed that QHJD activates autophagy by inhibiting PI3K/AKT/mTOR pathway, thereby relieving acute gouty arthritis.
Collapse
Affiliation(s)
- Peiyu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jiaxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jingrui Tan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jie Hou
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yazhuo Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jianwei Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Weizhen Cui
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Shiyuan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| | - Qingyang Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| |
Collapse
|
11
|
Yan M, Li X, Sun C, Tan J, Liu Y, Li M, Qi Z, He J, Wang D, Wu L. Sodium Butyrate Attenuates AGEs-Induced Oxidative Stress and Inflammation by Inhibiting Autophagy and Affecting Cellular Metabolism in THP-1 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248715. [PMID: 36557849 PMCID: PMC9781837 DOI: 10.3390/molecules27248715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In recent years, sodium butyrate has gained increased attention for its numerous beneficial properties. However, whether sodium butyrate could alleviate inflammatory damage by macrophage activation and its underlying mechanism remains unclear. The present study used an advanced glycosylation products- (AGEs-) induced inflammatory damage model to study whether sodium butyrate could alleviate oxidative stress, inflammation, and metabolic dysfunction of human monocyte-macrophage originated THP-1 cells in a PI3K-dependent autophagy pathway. The results indicated that sodium butyrate alleviated the AGEs-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased malondialdehyde (MDA) and mRNA expression of pro-inflammatory cytokines of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and increased the content of superoxide dismutase (SOD). Sodium butyrate reduced the protein expression of the NLR family, pyrin domain-containing protein 3 (NLRP3) and Caspase-1, and decreased the nucleus expression of nuclear factor-kappaB (NF-κB). Sodium butyrate decreased the expression of light-chain-associated protein B (LC3B) and Beclin-1, and inhibited autophagy. Moreover, sodium butyrate inhibited the activation of the PI3K/Akt pathway in AGEs-induced THP-1 cells. In addition, the metabolomics analysis showed that sodium butyrate could affect the production of phosphatidylcholine, L-glutamic acid, UDP-N-acetylmuraminate, biotinyl-5'-AMP, and other metabolites. In summary, these results revealed that sodium butyrate inhibited autophagy and NLRP3 inflammasome activation by blocking the PI3K/Akt/NF-κB pathway, thereby alleviating oxidative stress, inflammation, and metabolic disorder induced by AGEs.
Collapse
Affiliation(s)
- Man Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Li
- Medical Laboratory Department, Huai’an Second People’s Hospital, Huai’an 223022, China
| | - Chang Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiajun Tan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, China
| | - Mengqi Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zishang Qi
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiayuan He
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhengjiang 212100, China
- Correspondence: (D.W.); (L.W.)
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (D.W.); (L.W.)
| |
Collapse
|
12
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, Xue Y, He D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol 2022; 13:888306. [PMID: 35464445 PMCID: PMC9020265 DOI: 10.3389/fimmu.2022.888306] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/03/2023] Open
Abstract
Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|