1
|
Yosri N, Kamal N, Mediani A, AbouZid S, Swillam A, Swilam M, Ayyat AM, Jantan I. Immunomodulatory Activity and Inhibitory Effects of Viscum album on Cancer Cells, Its Safety Profiles and Recent Nanotechnology Development. PLANTA MEDICA 2024; 90:1059-1079. [PMID: 39313198 DOI: 10.1055/a-2412-8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Viscum album has been employed traditionally to treat various ailments including as add-on therapy for cancer treatment. V. album formulations have been employed as adjuvants in cancer treatment due to their immunomodulatory activities as well as to alleviate the side effects of conventional cancer therapies. The present review provides updated information from the past 10 years on the immunomodulatory activity and inhibitory effects of V. album on cancer cells, its safety profile, and recent nanotechnology development. V. album extracts and their bioactive phytochemicals, particularly lectins, viscotoxins, and polyphenols, have demonstrated immunomodulatory activity and inhibitory effects against various types of cancer, with low cytotoxicity and side effects, in experimental studies and demonstrated promising anticancer activity in clinical studies in cancer patients. V. album extracts have been shown to enhance immune function by promoting cytokine secretion and inducing both innate and adaptive immune responses, which can help improve immune surveillance against cancer cells. The development of V. album nanoparticles has boosted their biological activities, including inhibitory activity on cancer cells, and could possibly reduce undesired side effects of the plant. Further prospective studies on the plant as a source of new medicinal agents for use as an adjuvant in the treatment of cancer must be performed to provide sufficient efficacy and safety data.
Collapse
Affiliation(s)
- Nermeen Yosri
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Nurkhalida Kamal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sameh AbouZid
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Swillam
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
- Faculty of Pharmacy, Menoufia University, Shebin El-Koom, Egypt
| | - Mahmoud Swilam
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
- Faculty of Pharmacy, Menoufia University, Shebin El-Koom, Egypt
| | - Ahmed M Ayyat
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
- Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
2
|
Korcan SE, Çankaya N, Azarkan SY, Bulduk İ, Karaaslan EC, Kargıoğlu M, Konuk M, Güvercin G. Determination of Antioxidant Activities of
Viscum album
L.: First Report on Interaction of Phenolics with Survivin Protein using
in silico Analysis. ChemistrySelect 2023. [DOI: 10.1002/slct.202300130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Qian Y, Yin J, Ni J, Chen X, Shen Y. A Network Pharmacology Method Combined with Molecular Docking Verification to Explore the Therapeutic Mechanisms Underlying Simiao Pill Herbal Medicine against Hyperuricemia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2507683. [PMID: 36817858 PMCID: PMC9935928 DOI: 10.1155/2023/2507683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 02/11/2023]
Abstract
Objective Hyperuricemia (HUA) is a common metabolic disease caused by disordered purine metabolism. We aim to reveal the mechanisms underlying the anti-HUA function of Simiao pill and provide therapeutic targets. Methods Simiao pill-related targets were obtained using Herbal Ingredients' Targets (HIT), Traditional Chinese Medicine Systems Pharmacology (TCMSP), and Traditional Chinese Medicine Integrated Database (TCMID). HUA-associated targets were retrieved from GeneCards, DisGeNET, and Therapeutic Targets Database (TTD). Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, ggraph and igraph R packages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfiler. The top 10 core targets were identified through cytoHubba. Molecular docking was conducted using PyMOL and AutoDock high-performance liquid chromatograph (HPLC) analysis was performed to identify effective compounds of Simiao pill. Results Simiao pill-HUA target network contained 80 targets. The key targets were mainly involved in inflammatory responses. Insulin (INS), tumor necrosis factor (TNF), interleukin-6 (IL6), interleukin 1 beta (IL1B), vascular endothelial growth factor A (VEGFA), leptin (LEP), signal transducer and activator of transcription 3 (STAT3), C-C motif chemokine ligand 2 (CCL2), interleukin-10 (IL10), and toll like receptor 4 (TLR4) were the top 10 targets in the PPI network. GO analysis demonstrated the main implication of the targets in molecular responses, production, and metabolism. KEGG analysis revealed that Simiao pill might mitigate HUA through advanced glycation end-product- (AGE-) receptor for AGE- (RAGE-) and hypoxia-inducible factor-1- (HIF-1-) associated pathways. IL1B, IL6, IL10, TLR4, and TNF were finally determined as the promising targets of Simiao pill treating HUA. Through molecular docking and HPLC analysis, luteolin, quercetin, rutaecarpine, baicalin, and atractylenolide I were the main active compounds. Conclusions Simiao pill can mitigate HUA by restraining inflammation, mediating AGE-RAGE- and HIF-1-related pathways, and targeting IL1B, IL6, IL10, TLR4, and TNF.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, China
| | - Juemin Ni
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Xiaona Chen
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Yan Shen
- Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| |
Collapse
|
4
|
Chinese medicinal plant Polygonum cuspidatum ameliorates silicosis via suppressing the Wnt/β-catenin pathway. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Polygonum cuspidatum (PC) extract has effect on silica-induced pulmonary fibrosis. This study aimed to explore the anti-pulmonary-fibrosis effects and mechanism of PC. Sprague–Dawley rat model was constructed by inhalation of silicon dioxide suspension through tracheal intubation method. And histopathological examination showed that PC inhibited inflammatory cell infiltration, fibrous and collagen hyperplasia, and protected the normal structure of alveoli. TUNEL assay declared that PC retarded cell apoptosis. Meanwhile, up-regulation of basic fibroblast growth factor, plated-derived growth factor, and TNF-α in silicosis rats was decreased by PC addition. In addition, human fetal lung fibroblasts (HFL-1) cells were stimulated with transforming growth factor-β1 (TGF-β1). PC administration increased the proliferation and invasion of TGF-β1-stimulated HFL-1 cells whereas decreased cell apoptosis. Moreover, western blotting exhibited that PC treatment decreased the expression of α-smooth muscle actin, collagen I, and collagen III in silicosis rats and TGF-β1-stimulated HFL-1 cells. Furthermore, the levels of Wnt/β-catenin pathway proteins were up-regulated in silicosis rats and TGF-β1-stimulated HFL-1 cells, which were weakened by PC treatment. Meanwhile, Wnt3a (an activator of Wnt/β-catenin) addition reversed the effect of PC addition. In conclusion, PC prevents silica-induced fibrosis through inhibiting the Wnt/β-catenin pathway.
Collapse
|
5
|
Bouslamti M, Metouekel A, Chelouati T, El Moussaoui A, Barnossi AE, Chebaibi M, Nafidi HA, Salamatullah AM, Alzahrani A, Aboul-Soud MAM, Bourhia M, Lyoussi B, Benjelloun AS. Solanum elaeagnifolium Var. Obtusifolium (Dunal) Dunal: Antioxidant, Antibacterial, and Antifungal Activities of Polyphenol-Rich Extracts Chemically Characterized by Use of In Vitro and In Silico Approaches. Molecules 2022; 27:8688. [PMID: 36557821 PMCID: PMC9783650 DOI: 10.3390/molecules27248688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 μg AAE/and 890.1 ± 7.76 μg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains-most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between -5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase.
Collapse
Affiliation(s)
- Mohammed Bouslamti
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Amira Metouekel
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF) Route de Meknes, Fez 30000, Morocco
| | - Tarik Chelouati
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30050, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30050, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez 30070, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC G1V 0A6, Canada
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Badiaa Lyoussi
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ahmed Samir Benjelloun
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
6
|
Ahmed ZR, Uddin Z, Shah SWA, Zahoor M, Alotaibi A, Shoaib M, Ghias M, Bari WU. Antioxidant, antidiabetic, and anticholinesterase potential of Chenopodium murale L. extracts using in vitro and in vivo approaches. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In this study, Chenopodium murale Linn. extracts have been evaluated for its in vitro antioxidant, enzyme inhibition, and in vivo neuropharmacological properties in streptozotocin (STZ)-induced memory impairment in rat model. First, the plant was subjected to extraction and fractionation, then quantitative phytochemical analysis was performed to estimate the major phytochemical groups in the extract where high amounts of phenolics and saponins were detected in crude and chloroform extract. The highest total phenolic contents, total flavonoid contents, and total tannin content were also recorded in crude extract and chloroform fraction. The in vitro antioxidant potential of chloroform fraction was high with IC50 value of 41.78 and 67.33 μg/mL against DPPH and ABTS radicals, respectively, followed by ethyl acetate fraction. The chloroform fraction (ChMu-Chf) also exhibited potent activity against glucosidase with IC50 of 89.72 ± 0.88 μg/mL followed by ethyl acetate extract (ChMu-Et; IC50 of 140.20 ± 0.98 μg/mL). ChMu-Chf again exhibited potent activity against acetylcholinesterase (AChE) with IC50 of 68.91 ± 0.87 μg/mL followed by ChMu-Et with IC50 of 78.57 ± 0.95 μg/mL. In vivo memory impairment was assessed using the novel object discrimination task, Y-maze, and passive avoidance task. Ex vivo antioxidant enzyme activities and oxidative stress markers like catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione were quantified, and the AChE activity was also determined in the rat brain. No significant differences were observed amongst all the groups treated with crude, chloroform, and ethyl acetate in comparison with positive control donepezil group in connection to initial latency; whereas, the STZ diabetic group displayed a significant fall in recall and retention capability. The blood glucose level was more potently lowered by chloroform extract. The crude extract also increased the SOD level significantly in the brain of the treated rat by 8.01 ± 0.51 and 8.19 ± 0.39 units/mg at 100 and 200 mg/kg body weight (P < 0.01, n = 6), whereas the chloroform extract increased the SOD level to 9.41 ± 0.40 and 9.72 ± 0.51 units/mg, respectively, at 75 and 150 mg/kg body weight as compared to STZ group. The acetylcholine level was also elevated to greater extent by chloroform fraction that might contain a potential inhibitor of acetylcholinesterase. Treatment with C. murale ameliorated cognitive dysfunction in behavioral study, and provided significant defense from neuronal oxidative stress in the brain of the STZ-induced diabetic rats. Thus C. murale Linn. could be an inspiring plant resource that needs to be further investigated for isolation of potential compounds in pure form and their evaluation as a potent neuropharmacological drug.
Collapse
Affiliation(s)
- Zubaida Rasheed Ahmed
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Zaheer Uddin
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah Bint Abdulrahman University , Riyadh 11564 , Saudi Arabia
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Wasim Ul Bari
- Department of Chemistry, University of Chitral, Seenlasht 17200, Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|