1
|
Li M, Li Y, Zhang D, Cheng C, Yang M, Zhang X, Yu X, Lu B, Wang M. Assisting significance of lncRNA ASB16-AS1 in the early detection and prognosis prediction of patients with deep venous thrombosis. BMC Cardiovasc Disord 2025; 25:89. [PMID: 39923021 PMCID: PMC11806716 DOI: 10.1186/s12872-025-04487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) is a kind of vascular obstruction, that commonly and widely occurs in lower limbs. Due to the lack of obvious symptoms in the early stage, the rate of misdiagnosis and missed diagnosis is high. This study evaluated the expression and significance of lncRNA ASB16-AS1 (ASB16-AS1) in DVT aiming to identify a novel biomarker for its screening and monitoring. METHODS There were 77 DVT patients and 62 healthy individuals included in this study. Plasma ASB16-AS1 level was evaluated using PCR and compared between DVT and healthy groups. The diagnostic and prognostic values of ASB16-AS1 were assessed with ROC and Cox analyses. The correlation of ASB16-AS1 with patients' conditions, inflammation, and oxidative stress was evaluated by Spearman correlation analysis. RESULTS ASB16-AS1 was significantly upregulated in DVT (P < 0.001), which could discriminate DVT patients from healthy individuals with high sensitivity and specificity (AUC of ROC = 0.858). Increased ASB16-AS1 was associated with the incidence of complications (P = 0.033) and especially for pulmonary embolism in patients (P = 0.029). ASB16-AS1 was negatively correlated with prothrombin time (PT, r = -0.763), antithrombin level (AT, r = -0.711), and international normalized ratio (INR, r = -0.764), and showed positive correlation with fibrinogen (FIB, r = 0.793) and D-dimer (D-D, r = 0.731). Additionally, ASB16-AS1 was positively correlated with pro-inflammation cytokines (rIL-6 = 0.853, rIL-10 = -0.836, rhsCRP = 0.787) and pro-oxidative stress factors (rSOD = -0.751, rMDA = 0.842, r8-isoPGF2α = 0.840). CONCLUSION Upregulated ASB16-AS1 was identified as a diagnostic and prognostic biomarker of DVT and was closely associated with inflammation and oxidative stress during DVT.
Collapse
Affiliation(s)
- Menglan Li
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yingying Li
- Cardiac and Vascular Surgical Monitoring, Jiangsu Province Hospital, Nanjing, 210000, China
| | - Dawei Zhang
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, China
| | - Cheng Cheng
- Department of Cardiovascular Medicine, Zibo Central Hospital, Zibo, 255000, China
| | - Meiying Yang
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, China
| | - Xiuyin Zhang
- Department of Burn Plastic Surgery, Zibo Central Hospital, Zibo, 255000, China
| | - Xinming Yu
- Department of Vascular Surgery, Zibo Central Hospital, No 54, Gongqingtuan Road, Zibo, 255000, China
| | - Bo Lu
- Department of Cardiology, Xi'an Central Hospital, No.161, Xiwu Road, Shaanxi, 710004, China.
| | - Min Wang
- Department of Vascular Surgery, Zibo Central Hospital, No 54, Gongqingtuan Road, Zibo, 255000, China.
| |
Collapse
|
2
|
Chi J, Wang Q, Wang Z, Zeng W, Gao Y, Li X, Wang W, Wang J, Qu M. S100 calcium-binding protein A8 exacerbates deep vein thrombosis in vascular endothelial cells. Sci Rep 2025; 15:831. [PMID: 39755911 PMCID: PMC11700128 DOI: 10.1038/s41598-025-85322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls. The fluctuation and association for S100A8 and interleukin-1 beta (IL-1β) in the specimens was assessed using enzyme-linked immunosorbent assay. We also used the human recombinant protein S100A8 to activate human umbilical vein endothelial cells and created a rat model to explore the possible relationship between them. Studies have shown that the infiltration of S100A8 sustains local inflammation and thrombus formation, which may exacerbate DVT by amplifying NLRP3/Caspase-1/IL-1β signals in the vascular endothelial cells.
Collapse
Affiliation(s)
- Junyu Chi
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qitao Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhen Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wenjie Zeng
- Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Yangyang Gao
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Xin Li
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wanpeng Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jiali Wang
- Graduate School of Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ming Qu
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
3
|
Ren W, Li W, Cha X, Wang S, Cai B, Wang T, Li F, Li T, Xie Y, Xu Z, Wang Z, Liu H, Yu Y. Single-cell transcriptomic atlas of taste papilla aging. Aging Cell 2024; 23:e14308. [PMID: 39169434 PMCID: PMC11634696 DOI: 10.1111/acel.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Taste perception is one of the important senses in mammals. Taste dysfunction causes significant inconvenience in daily life, leading to subhealth and even life-threatening condition. Aging is a major cause to taste dysfunction, while the underlying feature related to gustatory aging is still not known. Using single-cell RNA Sequencing, differentially expressed genes between aged and young taste papillae are identified, including upregulated mt-Nd4l and Xist, as well as downregulated Hsp90ab1 and Tmem59. In the Tmem59-/- circumvallate papillae (CVP), taste mature cell generation is impaired by reduction in the numbers of PLCβ2+ and Car4+ cells, as well as decreases in expression levels of taste transduction genes. Tmem59-/- mice showed deficits in sensitivities to tastants. Through screening by GenAge and DisGeNET databases, aging-dependent genes and oral disease-associated genes are identified in taste papillae. In the CVP, aging promotes intercellular communication reciprocally between (cycling) basal cell and mature taste cell by upregulated Crlf1/Lifr and Adam15/Itga5 signaling. By transcriptional network analysis, ribosome proteins, Anxa1, Prdx5, and Hmgb1/2 are identified as transcriptional hubs in the aged taste papillae. Chronological aging-associated transcriptional changes throughout taste cell maturation are revealed. Aged taste papillae contain more Muc5b+ cells that are not localized in gustatory gland. Collectively, this study shows molecular and cellular features associated with taste papilla aging.
Collapse
Affiliation(s)
- Wenwen Ren
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
- Olfactory Disorder Diagnosis and Treatment CenterEye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Xudong Cha
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Shenglei Wang
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Boyu Cai
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Tianyu Wang
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Fengzhen Li
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Tengfei Li
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Yingqi Xie
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Zengyi Xu
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Zhe Wang
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Huanhai Liu
- Department of OtolaryngologyThe Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital)ShanghaiChina
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
- Olfactory Disorder Diagnosis and Treatment CenterEye & ENT Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Plasma microRNA Environment Linked to Tissue Factor Pathway and Cancer-Associated Thrombosis: Prognostic Significance in Ovarian Cancer. Biomolecules 2024; 14:928. [PMID: 39199316 PMCID: PMC11352941 DOI: 10.3390/biom14080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Ovarian cancer (OC) is a leading cause of death among gynaecological malignancies. The haemostatic system, which controls blood flow and prevents clotting disorders, paradoxically drives OC progression while increasing the risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) have emerged as crucial in understanding VTE pathogenesis. Exploring the connection between cancer and thrombosis through these RNAs could lead to novel biomarkers of cancer-associated thrombosis (CAT) and OC, as well as potential therapeutic targets for tumour management. Thus, this study examined the impact of eight plasma miRNAs targeting the tissue factor (TF) coagulation pathway-miR-18a-5p, -19a-3p, -20a-5p, -23a-3p, -27a-3p, -103a-3p, -126-5p and -616-3p-in 55 OC patients. Briefly, VTE occurrence post-OC diagnosis was linked to shorter disease progression time (log-rank test, p = 0.024) and poorer overall survival (OS) (log-rank test, p < 0.001). High pre-chemotherapy levels of miR-20a-5p (targeting coagulation factor 3 (F3) and tissue factor pathway inhibitor 2 (TFPI2)) and miR-616-3p (targeting TFPI2) predicted VTE after OC diagnosis (χ2, p < 0.05). Regarding patients' prognosis regardless of VTE, miR-20a-5p independently predicted OC progression (adjusted hazard ratio (aHR) = 6.13, p = 0.005), while miR-616-3p significantly impacted patients' survival (aHR = 3.72, p = 0.020). Further investigation is warranted for their translation into clinical practice.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
5
|
Zeng W, Gao Y, Wang Q, Chi J, Zhu Z, Diao Q, Li X, Wang Z, Qu M, Shi Y. Preliminary clinical analysis and pathway study of S100A8 as a biomarker for the diagnosis of acute deep vein thrombosis. Sci Rep 2024; 14:13298. [PMID: 38858401 PMCID: PMC11164926 DOI: 10.1038/s41598-024-61728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Herein, we aimed to identify blood biomarkers that compensate for the poor specificity of D-dimer in the diagnosis of deep vein thrombosis (DVT). S100A8 was identified by conducting protein microarray analysis of blood samples from patients with and without DVT. We used ELISA to detect S100A8, VCAM-1, and ICAM-1 expression levels in human blood and evaluated their correlations. Additionally, we employed human recombinant protein S100A8 to induce human umbilical vein endothelial cells and examined the role of the TLR4/MAPK/VCAM-1 and ICAM-1 signaling axes in the pathogenic mechanism of S100A8. Simultaneously, we constructed a rat model of thrombosis induced by inferior vena cava stenosis and detected levels of S100A8, VCAM-1, and ICAM-1 in the blood of DVT rats using ELISA. The associations of thrombus tissue, neutrophils, and CD68-positive cells with S100A8 and p38MAPK, TLR4, and VCAM-1 expression levels in vein walls were explored. The results revealed that blood S100A8 was significantly upregulated during the acute phase of DVT and activated p38MAPK expression by combining with TLR4 to enhance the expression and secretion of VCAM-1 and ICAM-1, thereby affecting the occurrence and development of DVT. Therefore, S100A8 could be a potential biomarker for early diagnosis and screening of DVT.
Collapse
Affiliation(s)
- Wenjie Zeng
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Yangyang Gao
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qitao Wang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Junyu Chi
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ziyan Zhu
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qingfei Diao
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Xin Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhen Wang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ming Qu
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Yongquan Shi
- Department of Clinical Laboratory Center, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Cong F, Gu L, Lin J, Liu G, Wang Q, Zhang L, Chi M, Xu Q, Zhao G, Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front Microbiol 2024; 15:1383509. [PMID: 38655086 PMCID: PMC11035880 DOI: 10.3389/fmicb.2024.1383509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1β, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1β levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Zhou K, Li N, Qi J, Tu P, Yang Y, Duan H. Diagnostic and prognostic potential of long non-coding RNA NORAD in patients with acute deep vein thrombosis and its role in endothelial cell function. Thromb J 2024; 22:3. [PMID: 38167080 PMCID: PMC10763087 DOI: 10.1186/s12959-023-00575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) is the common clinical cardiovascular disease, and easily develops into post-thrombotic syndrome (PTS). The study aimed to examine the clinical value of long non-coding RNA NORAD gene in the development of DVT and PTS. In vitro, the underlying mechanism was explored. METHODS Serum levels of lncRNA NORAD gene in 85 DVT cases and 85 healthy individuals were tested. The role of lncRNA NORAD gene in human umbilical vein endothelial cells (HUVECs) proliferation, migration and inflammation was examined. The candidate downstream target gene was predicted via bioinformatic analysis. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were done for the function annotation and pathway enrichment. RESULTS LncRNA NORAD gene was at high expression in the serum of DVT patients, it can distinguish DVT patients from healthy controls with the area under the curve of 0.919. Elevated expression of lncRNA NORAD gene in PTS patients was detected, DVT cases with high expression of lncRNA NORAD gene were more susceptible to PTS. LncRNA NORAD gene knockdown promoted HUVECs' proliferation, migration while suppressing cell apoptosis and inflammation. MiR-93-5p served as a target of lncRNA NORAD gene, and its overexpression reversed the role of lncRNA NORAD gene in the biological function of HUVECs. The target genes of miR-93-5p were enriched in HIF-1 signaling, TGF-beta signaling and PI3K-Akt signaling, protein-protein interaction (PPI) network indicated STAT3, MAPK1 to be the key targets. CONCLUSIONS Upregulation of expression of lncRNA NORAD gene was a potential diagnostic biomarker for DVT and related to the development of PTS. LncRNA NORAD/miR-93-5p axis was involved in the progress of DVT through regulating endothelial cell function.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Breast Thyroid Vascular Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Na Li
- Department of Hematology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Jia Qi
- Department of Ophthalmology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Pingping Tu
- Department of Ophthalmology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Yan Yang
- Department of Breast Thyroid Vascular Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Hui Duan
- Department of Emergency, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, No.32, Renmin South Road, 442000, Shiyan, Huibei Province, China.
| |
Collapse
|
8
|
Almalki WH. Unraveling the role of Xist RNA in cardiovascular pathogenesis. Pathol Res Pract 2024; 253:154944. [PMID: 38006839 DOI: 10.1016/j.prp.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Understanding the molecular pathways behind cardiovascular illnesses is crucial due to the enormous worldwide health burden they impose. New insights into the role played by Xist (X-inactive specific transcript) RNA in the onset and progression of cardiovascular diseases have emerged from recent studies. Since its discovery, Xist RNA has been known for its role in X chromosome inactivation during embryogenesis; however, new data suggest that its function extends well beyond the control of sex chromosomes. The regulatory roles of Xist RNA are extensive, encompassing epigenetic changes, gene expression, cellular identity, and sex chromosomal inactivation. There is potential for the involvement of this complex regulatory web in a wide range of illnesses, including cardiovascular problems. Atherosclerosis, hypertrophy, and cardiac fibrosis are all conditions linked to dysregulation of Xist RNA expression. Alterations in DNA methylation and histones are two examples of epigenetic changes that Xist RNA orchestrates, leading to modifications in gene expression patterns in different cardiovascular cells. Additionally, Xist RNA has been shown to contribute to the development of cardiovascular illnesses by modulating endothelial dysfunction, inflammation, and oxidative stress responses. New treatment approaches may become feasible with a thorough understanding of the complex function of Xist RNA in cardiovascular diseases. By focusing on Xist RNA and the regulatory network with which it interacts, we may be able to slow the progression of atherosclerosis, cardiac hypertrophy, and fibrosis, thereby opening novel therapeutic options for cardiovascular diseases amenable to precision medicine. This review summarizes the current state of knowledge concerning the impact of Xist RNA in cardiovascular disorders.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
9
|
Bhat AA, Afzal O, Agrawal N, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Kukreti N, Chakraborty A, Singh SK, Dua K, Gupta G. A comprehensive review on the emerging role of long non-coding RNAs in the regulation of NF-κB signaling in inflammatory lung diseases. Int J Biol Macromol 2023; 253:126951. [PMID: 37734525 DOI: 10.1016/j.ijbiomac.2023.126951] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Public health globally faces significant risks from conditions like acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and various inflammatory lung disorders. The NF-κB signaling system partially controls lung inflammation, immunological responses, and remodeling. Non-coding RNAs (lncRNAs) are crucial in regulating gene expression. They are increasingly recognized for their involvement in NF-κB signaling and the development of inflammatory lung diseases. Disruption of lncRNA-NF-κB interactions is a potential cause and resolution factor for inflammatory respiratory conditions. This study explores the therapeutic potential of targeting lncRNAs and NF-κB signaling to alleviate inflammation and restore lung function. Understanding the intricate relationship between lncRNAs and NF-κB signaling could offer novel insights into disease mechanisms and identify therapeutic targets. Regulation of lncRNAs and NF-κB signaling holds promise as an effective approach for managing inflammatory lung disorders. This review aims to comprehensively analyze the interaction between lncRNAs and the NF-κB signaling pathway in the context of inflammatory lung diseases. It investigates the functional roles of lncRNAs in modulating NF-κB activity and the resulting inflammatory responses in lung cells, focusing on molecular mechanisms involving upstream regulators, inhibitory proteins, and downstream effectors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| | - Gaurav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
10
|
Marques IS, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, de Melo IG, Assis J, Pereira D, Medeiros R. Long Non-Coding RNAs: Bridging Cancer-Associated Thrombosis and Clinical Outcome of Ovarian Cancer Patients. Int J Mol Sci 2023; 25:140. [PMID: 38203310 PMCID: PMC10778953 DOI: 10.3390/ijms25010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) and venous thromboembolism (VTE) have a close relationship, in which tumour cells surpass the haemostatic system to drive cancer progression. Long non-coding RNAs (lncRNAs) have been implicated in VTE pathogenesis, yet their roles in cancer-associated thrombosis (CAT) and their prognostic value are unexplored. Understanding how these lncRNAs influence venous thrombogenesis and ovarian tumorigenesis may lead to the identification of valuable biomarkers for VTE and OC management. Thus, this study evaluated the impact of five lncRNAs, namely MALAT1, TUG1, NEAT1, XIST and MEG8, on a cohort of 40 OC patients. Patients who developed VTE after OC diagnosis had worse overall survival compared to their counterparts (log-rank test, p = 0.028). Elevated pre-chemotherapy MEG8 levels in peripheral blood cells (PBCs) predicted VTE after OC diagnosis (Mann-Whitney U test, p = 0.037; Χ2 test, p = 0.033). In opposition, its low levels were linked to a higher risk of OC progression (adjusted hazard ratio (aHR) = 3.00; p = 0.039). Furthermore, low pre-chemotherapy NEAT1 levels in PBCs were associated with a higher risk of death (aHR = 6.25; p = 0.008). As for the remaining lncRNAs, no significant association with VTE incidence, OC progression or related mortality was observed. Future investigation with external validation in larger cohorts is needed to dissect the implications of the evaluated lncRNAs in OC patients.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
11
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
12
|
Xiao M, Li D, Wang X, Zhang J, Wang X, Gao J. Serum levels of lead are associated with venous thromboembolism: a retrospective study based on the NHANES database (1999 to 2018). J Thorac Dis 2023; 15:4426-4433. [PMID: 37691653 PMCID: PMC10482633 DOI: 10.21037/jtd-23-1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Background Venous thromboembolism (VTE) is a common clinical problem. While lead toxicity is known to affect the nervous, hematopoietic system, skeletal, and cardiovascular system, the relationship between blood lead levels and VTE remains unclear. This study explored whether there is a correlation between the levels of serum lead and VTE through a retrospective analysis based on data from the National Health and Nutrition Examination Survey (NHANES), so as to provide a reference for follow-up research and clinical practice. Methods According to the inclusion and exclusion criteria, subjects were enrolled from the NHANES (1999 to 2018) database and divided into a VTE group and a non-VTE group. The factors related to VTE were analyzed by single factor and multiple factor logistic regression analysis. Results A total of 31,081 subjects were included, of which 59 had VTE (0.19%). The higher the levels of serum lead, the higher the incidence of VTE. The univariate analysis revealed that age, male sex, history of cigarette use, hypertension, diabetes, and serum lead levels were factors associated with VTE in the population from the NHANES database. Further multivariate analysis revealed that age, history of cigarette use, hypertension, diabetes, and serum lead levels were factors associated with VTE. Conclusions The findings of this study suggest that higher serum levels of lead may be associated with VTE.
Collapse
Affiliation(s)
- Min Xiao
- Department of Clinical Laboratory, Strategic Support Force Medical Center, Beijing, China
| | - Dan Li
- Department of Clinical Laboratory, Strategic Support Force Medical Center, Beijing, China
| | - Xiaoqian Wang
- Department of Clinical Laboratory, Strategic Support Force Medical Center, Beijing, China
| | - Jing Zhang
- Department of Clinical Laboratory, Strategic Support Force Medical Center, Beijing, China
| | - Xiaoping Wang
- Department of Orthopedics, Strategic Support Force Medical Center, Beijing, China
| | - Jiao Gao
- Department of Clinical Laboratory, Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
13
|
Marques IS, Tavares V, Neto BV, Mota INR, Pereira D, Medeiros R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int J Mol Sci 2023; 24:12103. [PMID: 37569483 PMCID: PMC10418965 DOI: 10.3390/ijms241512103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Venous thromboembolism (VTE), a common condition in Western countries, is a cardiovascular disorder that arises due to haemostatic irregularities, which lead to thrombus generation inside veins. Even with successful treatment, the resulting disease spectrum of complications considerably affects the patient's quality of life, potentially leading to death. Cumulative data indicate that long non-coding RNAs (lncRNAs) may have a role in VTE pathogenesis. However, the clinical usefulness of these RNAs as biomarkers and potential therapeutic targets for VTE management is yet unclear. Thus, this article reviewed the emerging evidence on lncRNAs associated with VTE and with the activity of the coagulation system, which has a central role in disease pathogenesis. Until now, ten lncRNAs have been implicated in VTE pathogenesis, among which MALAT1 is the one with more evidence. Meanwhile, five lncRNAs have been reported to affect the expression of TFPI2, an important anticoagulant protein, but none with a described role in VTE development. More investigation in this field is needed as lncRNAs may help dissect VTE pathways, aiding in disease prediction, prevention and treatment.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês N. R. Mota
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| |
Collapse
|
14
|
Wang S, Wang F, Ren J, Yang H. LncRNA NEAT1 Promotes Vascular Endothelial Cell Dysfunction via miR-218-5p/GAB2 and Serves as a Diagnostic Biomarker for Deep Vein Thrombosis. Clin Appl Thromb Hemost 2023; 29:10760296231179447. [PMID: 37321605 DOI: 10.1177/10760296231179447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Deep vein thrombosis (DVT) is a common peripheral disease. This study aimed to elucidate the diagnostic biomarker of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in the DVT, and explore possible mechanisms in Human umbilical vein endothelial cells (HUVECs). METHODS 101 patients with lower extremity DVT and 82 healthy controls were enrolled. RT-qPCR was designed to resolve the mRNA levels of NEAT1, miR-218-5p, and GAB2. ROC was applied for the diagnosis of DVT. Systemic inflammation (IL-1β, IL-6, and TNF-α) and adhesion factor (SELP, VCAM-1, and ICAM-1) were examined by the ELISA. And cell proliferation, migration, and apoptosis were conducted by the CCK-8, Transwell, flow cytometry assay. The targeting relationship was validated by Dual luciferase reporter and RIP analysis. RESULTS NEAT1 and GAB2 were upregulated in patients with DVT, while miR-218-5p was decreased (P < .01). Serum NEAT1 can identify DVT patients from healthy individuals. NEAT1 was positively correalted with fibrinolysis factors, coagulation factors, and vasoconstrictors. NEAT1 inhibited the proliferation, migration, and promoted apoptosis as well as inflammation and adhesion factors secretion of HUVECs (P < .05), but all were impaired by overexpression of miR-218-5p (P < .05). NEAT1 promoted GAB2 expression in DVT by acting as a sponge for miR-218-5p. CONCLUSION Elevated NEAT1 is a possible DVT diagnostic biomarker, and is implicated in vascular endothelial cell dysfunction via miR-218-5p/GAB2 axis.
Collapse
Affiliation(s)
- Shuping Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Fei Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Juan Ren
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Hongyu Yang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| |
Collapse
|