1
|
Shi J, Yu Y, Yuan H, Li Y, Xue Y. Mitochondrial dysfunction in AMI: mechanisms and therapeutic perspectives. J Transl Med 2025; 23:418. [PMID: 40211347 PMCID: PMC11987341 DOI: 10.1186/s12967-025-06406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/20/2025] [Indexed: 04/13/2025] Open
Abstract
Acute myocardial infarction (AMI) and the myocardial ischemia-reperfusion injury (MI/RI) that typically ensues represent a significant global health burden, accounting for a considerable number of deaths and disabilities. In the context of AMI, percutaneous coronary intervention (PCI) is the preferred treatment option for reducing acute ischemic damage to the heart. Despite the modernity of PCI therapy, pathological damage to cardiomyocytes due to MI/RI remains an important target for intervention that affects the long-term prognosis of patients. In recent years, mitochondrial dysfunction during AMI has been increasingly recognized as a critical factor in cardiomyocyte death. Damaged mitochondria play an active role in the formation of an inflammatory environment by triggering key signaling pathways, including those mediated by cyclic GMP-AMP synthase, NOD-like receptors and Toll-like receptors. This review emphasizes the dual role of mitochondria as both contributors to and regulators of inflammation. The aim is to explore the complex mechanisms of mitochondrial dysfunction in AMI and its profound impact on immune dysregulation. Specific interventions including mitochondrial-targeted antioxidants, membrane-stabilizing peptides, and mitochondrial transplantation therapies have demonstrated efficacy in preclinical AMI models.
Collapse
Affiliation(s)
- Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Zhi F, Pu X, Wei W, Liu L, Liu C, Chen Y, Chang X, Xu H. Modulating mitochondrial dynamics ameliorates left ventricular dysfunction by suppressing diverse cell death pathways after diabetic cardiomyopathy. Int J Med Sci 2024; 21:2324-2333. [PMID: 39310254 PMCID: PMC11413890 DOI: 10.7150/ijms.98065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.
Collapse
Affiliation(s)
- Fumin Zhi
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wei
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunyan Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ye Chen
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hongtao Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
3
|
Zaruba MM, Staggl S, Ghadge SK, Maurer T, Gavranovic-Novakovic J, Jeyakumar V, Schönherr P, Wimmer A, Pölzl G, Bauer A, Messner M. Roxadustat Attenuates Adverse Remodeling Following Myocardial Infarction in Mice. Cells 2024; 13:1074. [PMID: 38994928 PMCID: PMC11240812 DOI: 10.3390/cells13131074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.
Collapse
Affiliation(s)
- Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Simon Staggl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Santhosh Kumar Ghadge
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Thomas Maurer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Vivek Jeyakumar
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Patric Schönherr
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Andreas Wimmer
- Department of Surgery, Kardinal Schwarzenberg Klinikum GmbH, 5620 Salzburg, Austria;
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Axel Bauer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| | - Moritz Messner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.-M.Z.); (S.S.); (S.K.G.); (T.M.); (J.G.-N.); (P.S.); (G.P.); (A.B.)
| |
Collapse
|
4
|
Wang H, Dou L. Single-cell RNA sequencing reveals hub genes of myocardial infarction-associated endothelial cells. BMC Cardiovasc Disord 2024; 24:70. [PMID: 38267885 PMCID: PMC10809747 DOI: 10.1186/s12872-024-03727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a cardiovascular disease that seriously threatens human health. Dysangiogenesis of endothelial cells (ECs) primarily inhibits recovery from MI, but the specific mechanism remains to be further elucidated. METHODS In this study, the single-cell RNA-sequencing data from both MI and Sham mice were analyzed by the Seurat Package (3.2.2). The number of ECs in MI and Sham groups were compared by PCA and tSNE algorithm. FindMarkers function of Seurat was used to analyze the DEGs between the MI and Sham groups. Then, the ECs was further clustered into 8 sub-clusters for trajectory analysis. The BEAM was used to analyze the branch point 3 and cluster the results. In addition, the DEGs in the microarray data set of MI and Sham mice were cross-linked, and the cross-linked genes were used to construct PPI networks. The key genes with the highest degree were identified and analyzed for functional enrichment. Finally, this study cultured human umbilical vein endothelial cells (HUVECs), established hypoxia models, and interfered with hub gene expression in cells. The impact of hub genes on the migration and tube formation of hypoxic-induced HUVECs were verified by Wound healing assays and tubule formation experiments. RESULTS The number and proportion of ECs in the MI group were significantly lower than those in the Sham group. Meantime, 225 DEGs were found in ECs between the MI and Sham groups. Through trajectory analysis, EC4 was found to play an important role in MI. Then, by using BEAM to analyze the branch point 3, and clustering the results, a total of 495 genes were found to be highly expressed in cell Fate2 (mainly EC4). In addition, a total of 194 DEGs were identified in Micro array dataset containing both MI and Sham mice. The hub genes (Timp1 and Fn1) with the highest degree were identified. Inhibiting Timp1 and Fn1 expression promoted the migration and tube formation of HUVECs. CONCLUSIONS Our data highlighted the non-linear dynamics of ECs in MI, and provided a foothold for analyzing cardiac homeostasis and pro-angiogenesis in MI.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiovascular Medicine, Zhejiang Greentown Cardiovascular Hospital, No.409 Gudun Road, Hangzhou, 310000, Zhejiang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
5
|
Gao D, Hu L, Lv H, Lian L, Wang M, Fan X, Xie Y, Zhang J. Ferroptosis Involved in Cardiovascular Diseases: Mechanism Exploration of Ferroptosis' Role in Common Pathological Changes. J Cardiovasc Pharmacol 2024; 83:33-42. [PMID: 37890084 DOI: 10.1097/fjc.0000000000001507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Regulated cell death is a controlled form of cell death that protects cells by adaptive responses in pathophysiological states. Ferroptosis has been identified as a novel method of controlling cell death in recent years. Several cardiovascular diseases (CVDs) are shown to be profoundly influenced by ferroptosis, and ferroptosis is directly linked to the majority of cardiovascular pathological alterations. Despite this, it is still unclear how ferroptosis affects the pathogenic alterations that take place in CVDs. Based on a review of the mechanisms that regulate ferroptosis, this review explores the most recent research on the role of ferroptosis in the major pathological changes associated with CVDs, to provide new perspectives and strategies for cardiovascular research and clinical treatment.
Collapse
Affiliation(s)
- Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Gao J, Gao Z. The regulatory role and mechanism of USP14 in endothelial cell pyroptosis induced by coronary heart disease. Clin Hemorheol Microcirc 2024; 86:495-508. [PMID: 38073382 DOI: 10.3233/ch-232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The present study probes into the role and mechanism of ubiquitin specific peptidase 14 (USP14) in coronary heart disease (CHD)-triggered endothelial cell pyroptosis. METHODS An in vitro CHD model was established by inducing human coronary artery endothelial cells (HCAECs) with oxidized low-density lipoprotein (ox-LDL). HCAECs were transfected with si-USP14, followed by evaluation of cell viability by CCK-8 assay, detection of lactate dehydrogenase (LDH) activity by assay kit, detection of USP14, miR-15b-5p, NLRP3, GSDMD-N, and Cleaved-Caspase-1 expressions by qRT-PCR or Western blot, as well as IL-1β and IL-18 concentrations by ELISA. Co-IP confirmed the binding between USP14 and NLRP3. The ubiquitination level of NLRP3 in cells was measured after protease inhibitor MG132 treatment. Dual-luciferase reporter assay verified the targeting relationship between miR-15b-5p and USP14. RESULTS USP14 and NLRP3 were highly expressed but miR-15b-5p was poorly expressed in ox-LDL-exposed HCAECs. USP14 silencing strengthened the viability of ox-LDL-exposed HCAECs, reduced the intracellular LDH activity, and diminished the NLRP3, GSDMD-N, Cleaved-Caspase-1, IL-1β, and IL-18 expressions. USP14 bound to NLRP3 protein and curbed its ubiquitination. Repression of NLRP3 ubiquitination counteracted the inhibitory effect of USP14 silencing on HCAEC pyroptosis. miR-15b-5p restrained USP14 transcription and protein expression. miR-15b-5p overexpression alleviated HCAEC pyroptosis by suppressing USP14/NLRP3. CONCLUSION USP14 stabilizes NLRP3 protein expression through deubiquitination, thereby facilitating endothelial cell pyroptosis in CHD. miR-15b-5p restrains endothelial cell pyroptosis by targeting USP14 expression.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
7
|
Teixeira RB, Pfeiffer M, Zhang P, Shafique E, Rayta B, Karbasiafshar C, Ahsan N, Sellke FW, Abid MR. Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction. Basic Res Cardiol 2023; 118:3. [PMID: 36639609 PMCID: PMC9839395 DOI: 10.1007/s00395-022-00976-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.
Collapse
Affiliation(s)
- Rayane Brinck Teixeira
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Melissa Pfeiffer
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Peng Zhang
- Vascular Research Laboratory/Providence VA Medical Center and Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ehtesham Shafique
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Bonnie Rayta
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Proteomics Core Facility, Center for Cancer Research and Development, Rhode Island Hospital, Providence, RI, 02903, USA
- Department of Chemistry and Biochemistry, Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA.
| |
Collapse
|