1
|
Parisay I, Moodi M, Boskabady M, Bagheri H, Salari R, Hoseinzadeh M. Physical and drug- releasing properties of a cement containing simvastatin (SimCeram). BMC Oral Health 2025; 25:684. [PMID: 40325441 PMCID: PMC12051323 DOI: 10.1186/s12903-025-06045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This in vitro study compared the physical characteristics and drug release patterns of a bioactive cement containing with 0.1 μM Simvastatin (SimCeram) with mineral trioxide aggregate (MTA; Angelus, Brazil). METHODS SimCeram, a calcium silicate-based cement was prepared with the powder composition of 25 wt% silicon-doped hydroxyapatite, 25 wt% strontium-doped hydroxyapatite, and 50 wt% tricalcium silicate/dicalcium silicate. SimCeram liquid contained 0.1 μM dissolved in distilled water. After preparing SimCeram and MTA, the initial setting time of cements was determined with a Gillmore needle. Compressive strength was measured at 1 h, 1 day, and 1 week using a Universal Testing Machine. Cement solubility was assessed according to ISO 6876 after one day, two, and four weeks. Calcium ion release was measured with an ICP-AES device, and simvastatin release was also examined using a UV-spectrophotometer at 238 nm. RESULTS MTA setting time was significantly shorter (12.33 ± 0.57 min) compared to SimCeram (36.33 ± 1.15 min; P < 0.001). MTA exhibited significantly higher compressive strength than SimCeram after 1 h and 1 day (P < 0.05). However, after 1 week, the compressive strength of SimCeram (10.82 ± 1.93 MPa) surpassed that of MTA (6.79 ± 3.24 MPa; P = 0.009). SimCeram showed greater calcium ion release and solubility throughout all time points tested compared to MTA (P < 0.05). Simvastatin release demonstrated an initial burst after 1 h and reached a plateau after 24 h. CONCLUSION SimCeram showed higher compressive strength and calcium release compared to MTA. Given simvastatin's beneficial properties-such as anti-inflammatory effects, angiogenesis promotion, and the ability to induce differentiation of dental pulp stem cells-along with the significant calcium ion release from the calcium silicate-based component of the cement, SimCeram could be a promising material for vital pulp therapy.
Collapse
Affiliation(s)
- Iman Parisay
- Department of Pediatric Dentistry, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morva Moodi
- Department of Pediatric Dentistry, Faculty of Dentistry, Gorgan University of Medical Sciences, Gorgan, Iran
| | - Marzieh Boskabady
- Department of Pediatric Dentistry, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bagheri
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roshanak Salari
- Department of Clinical Persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hoseinzadeh
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Daghrery A, Araújo IJDS, Marques JF, Alipour M, Ünsal RBK, Chathoth BM, Sivaramakrishnan G, Delgadillo-Barrera S, Chaurasia A. Role of exosomes in dental and craniofacial regeneration - A review. Tissue Cell 2025; 93:102684. [PMID: 39740273 DOI: 10.1016/j.tice.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The treatment of congenital deformities, traumatic injuries, infectious diseases, and tumors in the craniomaxillofacial (CMF) region is complex due to the intricate nature of the tissues involved. Conventional treatments such as bone grafts and cell transplantation face limitations, including the need for multiple surgeries, complications, and safety concerns. OBJECTIVE This paper aims to provide a comprehensive analysis of the role of exosomes (EXOs) in CMF and dental tissue regeneration and to explore their potential applications in regenerative dental medicine. METHODS An extensive review of advancements in tissue engineering, materials sciences, and nanotechnology was conducted to evaluate the development of delivery systems for EXOs-based therapies. The analysis included how EXOs, as nanovesicles released by cells, can be modified to target specific cells or loaded with functional molecules for drug or gene delivery. RESULTS EXOs have emerged as a promising alternative to cell transplant therapy, offering a safer method for cell communication and epigenetic control. EXOs transport important proteins and genetic materials, facilitating intercellular communication and delivering therapeutics effectively. The potential of EXOs in personalized medicine, particularly in diagnosing, customizing treatment, and predicting patient responses, is highlighted. CONCLUSION EXO-mediated therapy holds significant potential for advancing tissue regeneration, offering targeted, personalized treatment options with reduced side effects. However, challenges in purification, production, and standardized protocols need to be addressed before its clinical application can be fully realized.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | | | - Joana Faria Marques
- Faculdade de Medicina Dentária, Universidade de Lisboa, Cidade Universitária, Lisboa 1600-277, Portugal.
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Iran; Departments of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, USA.
| | - Revan Birke Koca Ünsal
- Department of Periodontology, University of Kyrenia, Faculty of Dentistry, Kyrenia, Cyprus.
| | | | | | - Sara Delgadillo-Barrera
- Grupo de Investigacion Básica y Aplicada en Odontología - IBAPO, Facultad de Odontologia, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences. King George's Medical University, Lucknow, India.
| |
Collapse
|
3
|
Tsuchiya K, Sauro S, Sano H, Matinlinna JP, Yamauti M, Hoshika S, Toida Y, Islam R, Tomokiyo A. Clinical applications and classification of calcium silicate-based cements based on their history and evolution: a narrative review. Clin Oral Investig 2025; 29:187. [PMID: 40095151 DOI: 10.1007/s00784-025-06274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVES The objective of this narrative review was to analyze the evolution of the calcium silicate-based cement (CSC) products since 1993 and classify them to better understand their appropriate use in clinical practice and foster innovation in dental material development. MATERIALS AND METHODS A narrative review of the relevant literature was conducted, collecting findings from computerized databases (PubMed, Science Direct, SCOPUS, and Web of Science) to provide historical background, classification, and modifications of CSCs published between 1993 and 2024. RESULTS We classified CSCs into six distinct generations based on previous literature. This classification revealed that the improvement in CSC's drawbacks, especially in physio-chemical properties, have led to the development of novel CSCs products. It also exhibited little to no variation in the bioactivity of CSCs across different generations and raised concerns regarding the biocompatibility of resin-modified CSC. CONCLUSIONS No CSC has yet emerged as a potential gold-standard material for endodontic treatments. Therefore, clinical applications tailored to the characteristics of each generation of CSCs are essential. Future advancements are anticipated to enable CSCs to induce the regeneration of tissues such as dentin, cementum, periodontal ligament, and dental pulp by incorporating regulatory signals. CLINICAL RELEVANCE This comprehensive classification system would assist clinicians in choosing the appropriate CSCs for various clinical situations by considering critical factors. This systematic approach enables clinicians to rely on evidence-based material selection rather than marketing claims. Furthermore, the insights into their evolution, classification, and clinical applications would fill a knowledge gap for clinicians and researchers.
Collapse
Affiliation(s)
- Kenta Tsuchiya
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan.
- Dental Biomaterials and Minimally Invasive Dentistry, Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, Valencia, Spain.
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, Valencia, Spain
| | - Hidehiko Sano
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Monica Yamauti
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan
- Department of Biomedical and Applied Science, Indiana University School of Dentistry, 1121 W. Michigan St, Indianapolis, IN, USA
| | - Shuhei Hoshika
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan
| | - Yu Toida
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan
| | - Rafiqul Islam
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
5
|
Alipour M, Habibivand E, Sekhavati S, Aghazadeh Z, Ranjkesh M, Ramezani S, Aghazadeh M, Ghorbani M. Evaluation of therapeutic effects of nanofibrous mat containing mycophenolate mofetil on oral lichen planus: In vitro and clinical trial study. Biomater Investig Dent 2023; 10:2283177. [PMID: 38204471 PMCID: PMC10763882 DOI: 10.1080/26415275.2023.2283177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives Recently, topical drug delivery system has gained increasing interest in the treatment of oral lesions. Lichen planus is a chronic inflammatory disease affecting mucous membranes and skin. The current study aimed to fabricate a drug delivery system containing mycophenolate mofetil for the treatment of oral lichen planus lesions. Methods Firstly, a nanofibrous mat containing mycophenolate mofetil, zinc oxide nanoparticles, and aloe vera was designed and fabricated. The antimicrobial, cytocompatibility, anti-inflammatory, and antioxidative characteristics of fabricated scaffolds were evaluated. Then, this nanofibrous mat was applied to 12 patients suffering from bilateral erythematous/erosive Oral Lichen planus (OLP) lesions for 2 weeks. The treatment outcomes, including oral symptoms and lesion size, were compared with the routine topical treatment of these lesions; Triamcinolone ointment. Results The characterization of nanofibrous mat approved the successful fabrication of scaffolds. The fabricated nanofibers showed notable antimicrobial activity. The amounts of TNF 𝛼, IL6, and reactive oxygen species (ROS) of stimulated human gingival fibroblasts were decreased after exposure to NFs/Myco/Alv/ZnO scaffolds. The clinical trial results demonstrated the same therapeutic effects compared to the commercial ointment, while the symptoms of patients were significantly improved in the mats group.Significance. Considering the successful results of this study, the application of nanofibrous mat can be a promising product for improving treatment outcomes of OLP.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Habibivand
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shayesteh Sekhavati
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Sina Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramezani
- Nanofiber Research Center, Asian Nanostructures Technology Co. (ANSTCO), Zanjan, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bioscience Research, Department of Medicine – Cardiology, Department of Microbiology, Immunology & Biochemistry, University of Tennessee, Tennessee, USA
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Reitano G, Lo Giudice A, Isola G. Impact exerted by scaffolds and biomaterials in periodontal bone and tissue regeneration engineering: new challenges and perspectives for disease treatment. EXPLORATION OF MEDICINE 2023:215-234. [DOI: 10.37349/emed.2023.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 10/01/2024] Open
Abstract
The periodontium is an appropriate target for regeneration, as it cannot restore its function following disease. Significantly, the periodontium's limited regenerative capacity could be enhanced through the development of novel biomaterials and therapeutic approaches. Notably, the regenerative potential of the periodontium depends not only on its tissue-specific architecture and function but also on its ability to reconstruct distinct tissues and tissue interfaces, implying that the development of tissue engineering techniques can offer new perspectives for the organized reconstruction of soft and hard periodontal tissues. With their biocompatible structure and one-of-a-kind stimulus-responsive property, hydrogels have been utilized as an excellent drug delivery system for the treatment of several oral diseases. Furthermore, bioceramics and three-dimensional (3D) printed scaffolds are also appropriate scaffolding materials for the regeneration of periodontal tissue, bone, and cartilage. This work aims to examine and update material-based, biologically active cues and the deployment of breakthrough bio-fabrication technologies to regenerate the numerous tissues that comprise the periodontium for clinical and scientific applications.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Catania 95123, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Giuseppe Reitano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania 95124, Italy
| |
Collapse
|
7
|
Alipour M, Sharifi S, Samiei M, Shahi S, Aghazadeh M, Dizaj SM. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry. Sci Rep 2023; 13:2076. [PMID: 36746996 PMCID: PMC9902453 DOI: 10.1038/s41598-023-28267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Hesperetin (HS), a metabolite of hesperidin, is a polyphenolic component of citrus fruits. This ingredient has a potential role in bone strength and the osteogenic differentiation. The bone loss in the orofacial region may occur due to the inflammation response of host tissues. Nanotechnology applications have been harshly entered the field of regenerative medicine to improve the efficacy of the materials and substances. In the current study, the hesperetin nanocrystals were synthesized and characterized. Then, the anti-inflammatory and antioxidative effects of these nanocrystals were evaluated on inflamed human Dental Pulp Stem Cells (hDPSCs) and monocytes (U937). Moreover, the osteoinduction capacity of these nanocrystals was assessed by gene and protein expression levels of osteogenic specific markers including RUNX2, ALP, OCN, Col1a1, and BSP in hDPSCs. The deposition of calcium nodules in the presence of hesperetin and hesperetin nanocrystals was also assessed. The results revealed the successful fabrication of hesperetin nanocrystals with an average size of 100 nm. The levels of TNF, IL6, and reactive oxygen species (ROS) in inflamed hDPSCs and U937 significantly decreased in the presence of hesperetin nanocrystals. Furthermore, these nanocrystals induced osteogenic differentiation in hDPSCs. These results demonstrated the positive and effective role of fabricated nanocrystal forms of this natural ingredient for regenerative medicine purposes.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| |
Collapse
|
8
|
A novel injectable hydrogel containing polyetheretherketone for bone regeneration in the craniofacial region. Sci Rep 2023; 13:864. [PMID: 36650203 PMCID: PMC9845302 DOI: 10.1038/s41598-022-23708-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Polyetheretherketone (PEEK) is an organic material introduced as an alternative for titanium implants. Injectable hydrogels are the most promising approach for bone regeneration in the oral cavity to fill the defects with irregular shapes and contours conservatively. In the current study, injectable Aldehyde-cellulose nanocrystalline/silk fibroin (ADCNCs/SF) hydrogels containing PEEK were synthesized, and their bone regeneration capacity was evaluated. Structure, intermolecular interaction, and the reaction between the components were assessed in hydrogel structure. The cytocompatibility of the fabricated scaffolds was evaluated on human dental pulp stem cells (hDPSCs). Moreover, the osteoinduction capacity of ADCNCs/SF/PEEK hydrogels on hDPSCs was evaluated using Real-time PCR, Western blot, Alizarin red staining and ALP activity. Bone formation in critical-size defects in rats' cranial was assessed histologically and radiographically. The results confirmed the successful fabrication of the hydrogel and its osteogenic induction ability on hDPSCs. Furthermore, in in vivo phase, bone formation was significantly higher in ADCNCs/SF/PEEK group. Hence, the enhanced bone regeneration in response to PEEK-loaded hydrogels suggested its potential for regenerating bone loss in the craniofacial region, explicitly surrounding the dental implants.
Collapse
|
9
|
Sheela S, AlGhalban FM, Khalil KA, Laoui T, Gopinath VK. Synthesis and Biocompatibility Evaluation of PCL Electrospun Membranes Coated with MTA/HA for Potential Application in Dental Pulp Capping. Polymers (Basel) 2022; 14:polym14224862. [PMID: 36432990 PMCID: PMC9695879 DOI: 10.3390/polym14224862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop polycaprolactone (PCL) electrospun membranes coated with mineral trioxide aggregate/hydroxyapatite (MTA/HA) as a potential material for dental pulp capping. Initially, the PCL membrane was prepared by an electrospinning process, which was further surface coated with MTA (labeled as PCLMTA) and HA (labeled as PCLHA). The physico-chemical characterization of the fabricated membranes was carried out using field emission scanning electron microscopy (FE-SEM)/Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and contact angle analysis. The biocompatibility of the human dental pulp stem cells (hDPSCs) on the fabricated membranes was checked by XTT assay, and the hDPSCs adhesion and spreading were assessed by FE-SEM and confocal microscopy. The wound healing ability of hDPSCs in response to different electrospun membrane extracts was examined by scratch assay. The surface morphology analysis of the membranes by FE-SEM demonstrated a uniform nanofibrous texture with an average fiber diameter of 594 ± 124 nm for PCL, 517 ± 159 nm for PCLHA, and 490 ± 162 nm for PCLMTA. The elemental analysis of the PCLHA membrane indicated the presence of calcium and phosphorous elements related to HA, whereas the PCLMTA membrane showed the presence of calcium and silicate, related to MTA. The presence of MTA and HA in the PCL membranes was also confirmed by Raman spectroscopy. The water contact analysis demonstrated the hydrophobic nature of the membranes. The results indicated that PCL, PCLHA, and PCLMTA membranes were biocompatible, while PCLMTA exhibited better cell adhesion, spreading, and migration.
Collapse
Affiliation(s)
- Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatma Mousa AlGhalban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vellore Kannan Gopinath
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: or
| |
Collapse
|
10
|
Chitosan-based therapeutic systems and their potentials in treatment of oral diseases. Int J Biol Macromol 2022; 222:3178-3194. [DOI: 10.1016/j.ijbiomac.2022.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|