1
|
Lu X, Lin Z, Li D, Gong Z, Ma T, Wu J, Xiao W, Xu C, Guan Y, Yang S, Zhang Y, Sun C, Xia X, Lu F, Song J, Jiang J, Zhu W, Xu G, Ma X, Zou F. A novel mechanism of FBXW7 in combating intervertebral disc degeneration: Mitigating ferroptosis in nucleus pulposus cells through the regulation of mitophagy. Int Immunopharmacol 2025; 155:114668. [PMID: 40239332 DOI: 10.1016/j.intimp.2025.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
With the aging of the global population, the prevalence of intervertebral disc degeneration (IVDD) disease is gradually increasing. This disease not only leads to a substantial reduction in the quality of life of patients but also imposes a considerable burden on the health care system. At present, the understanding of its pathogenesis is relatively limited, and in-depth research is urgently needed to identify effective treatment methods. One of the main causes of IVDD is the compression of the spine caused by body weight. The objective of this study was to investigate the potential regulatory mechanism underlying IVDD induced by excessive compression. Moreover, to investigate whether FBXW7 is involved in the regulation of mitophagy and ferroptosis, we used 1 MPa pressure to induce nucleus pulposus cell (NPC) degeneration and then constructed plasmids or small interfering RNAs to overexpress or knock down FBXW7. In addition, in vivo animal experiments were performed to verify the function of FBXW7. We found that FBXW7 expression was decreased in degenerative NP tissues. Compression promoted the initiation of mitophagy, but blocked autophagic flux and ultimately caused ferroptosis in NPCs. However, overexpression of FBXW7 can activate mitophagy, improve autophagic flux, and alleviate ferroptosis. Moreover, FBXW7 can bind to mTOR and promote its ubiquitination and degradation, thus increasing the expression of PINK1 and Parkin. Taken together, the results of both in vitro and in vivo experiments suggested that FBXW7 induced mitophagy, alleviated ferroptosis, and delayed IVDD via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Dachuan Li
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Jiongdong Wu
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Wenbiao Xiao
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Chenpei Xu
- Department of Hand Surgery, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Yunzhi Guan
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Shuo Yang
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Chi Sun
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Wei Zhu
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, No. 12, middle Wulumuqi Road, Jing'an District, Fudan University, Shanghai 200040, China.
| |
Collapse
|
2
|
Cheng P, Li H, Chen HW, Wang ZQ, Li PW, Zhang HH. 5-Azacytidine inhibits endoplasmic reticulum stress and apoptosis of nucleus pulposus cells by preserving PPARγ via promoter demethylation. In Vitro Cell Dev Biol Anim 2025; 61:288-297. [PMID: 40102314 DOI: 10.1007/s11626-025-01021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/02/2025] [Indexed: 03/20/2025]
Abstract
Low back pain (LBP) is a common symptom of intervertebral disc degeneration (IDD). However, the pathogenesis of IDD is not well understood. Several studies have shown that patients with IDD experience aberrant changes in DNA methylation. 5-Azacytidine (5Aza) is a nucleoside-based DNA methyltransferase inhibitor that inhibits DNA methylation. Therefore, this study investigated whether 5Aza can improve the apoptosis of nucleus pulposus (NP) cells and ER stress (ERS) induced by il-1β by inhibiting PPARγ methylation and its potential pathogenesis. NP cell viability was detected using Cell Counting Kit-8 (CCK-8). Methylation-specific PCR (MSP) was used to evaluate the DNA methylation level. TUNEL was used to evaluate the apoptosis of NP cells. Western blot determined the expression levels of DNMT1, DNMT3a, PPARγ proteins, and ERS-related indexes (C/EBP homology protein (CHOP), GRP78, ATF-6) and apoptosis-related indexes (Bcl-2, Bax, Caspase-3) protein expression levels. 5Aza can inhibit the expression of DNMT1 and DNMT3a and promote PPARγ by modifying the methylation of PPARγ promoter. Western blot (Bcl-2, Bax, Caspase-3, CHOP, GRP78, ATF-6), TUNEL, and CHOP immunofluorescence results showed that 5Aza attenuated IL-1β-induced apoptosis and ERS of NP cells. When pretreated with PPARγ inhibitor (T0070907), the protective effect of 5Aza on IL-1β-induced apoptosis and ERS in NP cells is weakened, suggesting that 5Aza inhibits IL-1β-induced NP cell apoptosis and ERS by promoting the expression of PPARγ. 5Aza preserves PPARγ by inhibiting the expression of DNMT1/DNMT3a, which can significantly reduce IL-1β damage in NP cells. Our findings suggest that preserving PPARγ through DNA demethylation may be an attractive strategy for preventing or treating IDD.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, People's Republic of China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, 730030, People's Republic of China
| | - Huan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Hai-Wei Chen
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Zhi-Qiang Wang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Pei-Wu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, 730030, People's Republic of China.
| |
Collapse
|
3
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
4
|
Lu X, Li D, Lin Z, Gao T, Gong Z, Zhang Y, Wang H, Xia X, Lu F, Song J, Xu G, Jiang J, Ma X, Zou F. HIF-1α-induced expression of the m6A reader YTHDF1 inhibits the ferroptosis of nucleus pulposus cells by promoting SLC7A11 translation. Aging Cell 2024; 23:e14210. [PMID: 38783692 PMCID: PMC11488328 DOI: 10.1111/acel.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The nucleus pulposus is in a hypoxic environment in the human body, and when intervertebral disc degeneration (IVDD) occurs, the hypoxic environment is disrupted. Nucleus pulposus cell (NPC) ferroptosis is one of the causes of IVDD. N6-methyladenosine (m6A) and its reader protein YTHDF1 regulate cellular activities by affecting RNA metabolism. However, the regulation of ferroptosis in NPCs by m6A-modified RNAs under hypoxic conditions has not been as well studied. In this study, through in vitro and in vivo experiments, we explored the underlying mechanism of HIF-1α and YTHDF1 in regulating ferroptosis in NPCs. The results indicated that the overexpression of HIF-1α or YTHDF1 suppressed NPC ferroptosis; conversely, the knockdown of HIF-1α or YTHDF1 increased ferroptosis levels in NPCs. Luciferase reporter assays and chromatin immunoprecipitation demonstrated that HIF-1α regulated YTHDF1 transcription by directly binding to its promoter region. Polysome profiling results showed that YTHDF1 promoted the translation of SLC7A11 and consequently the expression of the anti-ferroptosis protein GPX4 by binding to m6A-modified SLC7A11 mRNA. In conclusion, HIF-1α-induced YTHDF1 expression reduces NPC ferroptosis and delays IVDD by promoting SLC7A11 translation in a m6A-dependent manner.
Collapse
Affiliation(s)
- Xiao Lu
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Dachuan Li
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Zhidi Lin
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Tian Gao
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Zhaoyang Gong
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Hongli Wang
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jian Song
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Fei Zou
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
5
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
6
|
He K, Long X, Jiang H, Qin C. The differential impact of iron on ferroptosis, oxidative stress, and inflammatory reaction in head-kidney macrophages of yellow catfish (Pelteobagrus fulvidraco) with and without ammonia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105184. [PMID: 38643939 DOI: 10.1016/j.dci.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Ammonia toxicity in fish is closely related to ferroptosis, oxidative stress, and inflammatory responses. Iron is an essential trace element that plays a key role in many biological processes for cells and organisms, including ferroptosis, oxidative stress response, and inflammation. This study aimed to investigate the effect of iron on indicators of fish exposed to ammonia, specifically on the three aspects mentioned above. The head kidney macrophages of yellow catfish were randomly assigned to one of four groups: CON (normal control), AM (0.046 mg L-1 total ammonia nitrogen), Fe (20 μg mL-1 FeSO4), and Fe + AM (20 μg mL-1 FeSO4, 0.046 mg L-1 total ammonia nitrogen). The cells were pretreated with FeSO4 for 6 h followed by ammonia for 24 h. The study found that iron supplementation led to an excessive accumulation of iron and ROS in macrophages, but it did not strongly induce ferroptosis, oxidative stress, or inflammatory responses. This was supported by a decrease in T-AOC, and the downregulation of SOD, as well as an increase in GSH levels and the upregulation of TFR1, CAT and Nrf2. Furthermore, the mRNA expression of HIF-1, p53 and the anti-inflammatory M2 macrophage marker Arg-1 were upregulated. The results also showed that iron supplementation increased the progression of some macrophages from early apoptosis to late apoptotic cells. However, the combined treatment of iron and ammonia resulted in a stronger intracellular ferroptosis, oxidative stress, and inflammatory reaction compared to either treatment alone. Additionally, there was a noticeable increase in necrotic cells in the Fe + AM and AM groups. These findings indicate that the biological functions of iron in macrophages of fish may vary inconsistently in the presence or absence of ammonia stress.
Collapse
Affiliation(s)
- Kewei He
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xinran Long
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China; College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, 310058, China.
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641112, China
| |
Collapse
|
7
|
He P, Li Y, Hu J, Deng B, Tan Z, Chen Y, Yu B, Dong W. Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155316. [PMID: 38518635 DOI: 10.1016/j.phymed.2023.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE To explore the efficacy and potential mechanism of PTE in treating GC. METHODS We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.
Collapse
Affiliation(s)
- Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
Zhang B, Zhang M, Tian J, Zhang X, Zhang D, Li J, Yang L. Advances in the regulation of radiation-induced apoptosis by polysaccharides: A review. Int J Biol Macromol 2024; 263:130173. [PMID: 38360238 DOI: 10.1016/j.ijbiomac.2024.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Mingyu Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Dan Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jiabao Li
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Lei Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
9
|
Liu CX, Guo XY, Zhou YB, Wang H. Therapeutic Role of Chinese Medicine Targeting Nrf2/HO-1 Signaling Pathway in Myocardial Ischemia/Reperfusion Injury. Chin J Integr Med 2024:10.1007/s11655-024-3657-0. [PMID: 38329655 DOI: 10.1007/s11655-024-3657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Acute myocardial infarction (AMI), characterized by high incidence and mortality rates, poses a significant public health threat. Reperfusion therapy, though the preferred treatment for AMI, often exacerbates cardiac damage, leading to myocardial ischemia/reperfusion injury (MI/RI). Consequently, the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy. Chinese medicine, recognized for its multi-component, multi-pathway, and multi-target capabilities, provides a novel approach for alleviating MI/RI. A key area of interest is the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. This pathway is instrumental in regulating inflammatory responses, oxidative stress, apoptosis, endoplasmic reticulum stress, and ferroptosis in MI/RI. This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI. Additionally, it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment.
Collapse
Affiliation(s)
- Chang-Xing Liu
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xin-Yi Guo
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Ya-Bin Zhou
- Department of Cardiology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - He Wang
- Department of Cardiology, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
10
|
Chen X, Wang Z, Deng R, Yan H, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res 2023; 72:1811-1828. [PMID: 37665342 DOI: 10.1007/s00011-023-01784-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.
Collapse
Affiliation(s)
- Xin Chen
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Hongjie Yan
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
12
|
Wu Z, Yang Z, Liu L, Xiao Y. Natural compounds protect against the pathogenesis of osteoarthritis by mediating the NRF2/ARE signaling. Front Pharmacol 2023; 14:1188215. [PMID: 37324450 PMCID: PMC10266108 DOI: 10.3389/fphar.2023.1188215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the imbalanced homeostasis between anabolism and catabolism. Oxidative stress contributes to inflammatory responses, extracellular matrix (ECM) degradation, and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox homeostasis. Activation of the NRF2/ARE signaling may effectively suppress oxidative stress, attenuate ECM degradation, and inhibit chondrocyte apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has become a potential target for the therapeutic management of OA. Natural compounds, such as polyphenols and terpenoids, have been explored to protect against OA cartilage degeneration by activating the NRF2/ARE pathway. Specifically, flavonoids may function as NRF2 activators and exhibit chondroprotective activity. In conclusion, natural compounds provide rich resources to explore the therapeutic management of OA by activating NRF2/ARE signaling.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhouxin Yang
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yong Xiao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Xiaoyong Traditional Chinese Medicine Clinic in Yudu, Ganzhou, China
| |
Collapse
|
13
|
Li D, Lu X, Xu G, Liu S, Gong Z, Lu F, Xia X, Jiang J, Wang H, Zou F, Ma X. Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36942513 DOI: 10.1111/cns.14150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly disabling condition in spinal surgery that leads to neuronal damage and secondary inflammation. Ferroptosis is a non-apoptotic type of cell death that has only recently been identified, which is marked primarily by iron-dependent and lipid-derived reactive oxygen species accumulation, and accompanied by morphological modifications such as mitochondrial atrophy and increase in membrane density. Dihydroorotate dehydrogenase (DHODH) is a powerful inhibitor of ferroptosis and has been demonstrated to inhibit cellular ferroptosis in tumor cells, but whether it can inhibit neuronal injury following spinal cord injury remains ambiguous. METHODS In this study, the effect of DHODH on neuronal ferroptosis was observed in vivo and in vitro using a rat spinal cord injury model and erastin-induced PC12 cells, respectively. A combination of molecular and histological approaches was performed to assess ferroptosis and explore the possible mechanisms in vivo and in vitro. RESULTS First, we confirmed the existence of neuronal ferroptosis after spinal cord injury and that DHODH attenuates neuronal damage after spinal cord injury. Second, we showed molecular evidence that DHODH inhibits the activation of ferroptosis-related molecules and reduces lipid peroxide production and mitochondrial damage, thereby reducing neuronal ferroptosis. Further analysis suggests that P53/ALOX15 may be one of the mechanisms regulated by DHODH. Importantly, we determined that DHODH inhibits ALOX15 expression by inhibiting P53. CONCLUSIONS Our findings reveal a novel function for DHODH in neuronal ferroptosis after spinal cord injury, suggesting a unique therapeutic target to alleviate the disease process of spinal cord injury.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, Fu W, Jiang J, Ma X, Song J. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023; 27:3. [PMID: 36647161 PMCID: PMC9843879 DOI: 10.1186/s40824-023-00339-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) brings a heavy burden to individuals and society, and there is no effective treatment at present. Exosomes (EX) are cell secreted vesicles containing molecules such as nucleic acids and proteins, which hold promise for the treatment of SCI. Netrin-1 is an axon guidance factor that regulates neuronal growth. We investigated the effects of engineered EX enriched in netrin-1 chemically synthetic modified message RNA (modRNA) in treating SCI in an attempt to find a novel therapeutic approach for SCI. METHODS Netrin-1 modRNA was transfected into bone marrow mesenchymal stem cells to obtain EX enriched with netrin-1 (EX-netrin1). We built an inflammatory model in vitro with lipopolysaccharide (LPS) in vitro to study the therapeutic effect of EX-netrin1 on SCI. For experiments in vitro, ELISA, CCK-8 assay, immunofluorescence staining, lactate dehydrogenase release experiments test, real-time quantitative polymerase chain reaction, and western blot were conducted. At the same time, we constructed a rat model of SCI. MRI, hematoxylin-eosin and Nissl staining were used to assess the extent of SCI in rats. RESULTS In vitro experiments showed that EX had no effect on the viability of oligodendrocytes and PC12 cells. EX-netrin1 could attenuate LPS-induced inflammation and pyroptosis and accelerate axonal/dentritic growth in PC12 cells/oligodendrocytes. In addition, netrin-1 could activate the PI3K/AKT/mTOR signalling pathway upon binding to its receptor unc5b. When Unc5b and PI3K were inhibited, the effect of EX-netrin1 was weakened, which could be reversed by PI3K or mTOR activator. Our in vivo experiments indicated that EX-netrin1 could promote recovery in rats with SCI. CONCLUSION We found that EX-netrin1 regulated inflammation, pyroptosis and axon growth in SCI via the Unc5b/PI3K/AKT/mTOR pathway, which provides a new strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|