1
|
Sae-Khow K, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Boonmee A, Benjaskulluecha S, Palaga T, Leelahavanichkul A. Less Severe Polymicrobial Sepsis in Conditional mgmt-Deleted Mice Using LysM-Cre System, Impacts of DNA Methylation and MGMT Inhibitor in Sepsis. Int J Mol Sci 2023; 24:10175. [PMID: 37373325 DOI: 10.3390/ijms241210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase (MGMT) is a DNA suicide repair enzyme that might be important during sepsis but has never been explored. Then, the proteomic analysis of lipopolysaccharide (LPS)-stimulated wild-type (WT) macrophages increased proteasome proteins and reduced oxidative phosphorylation proteins compared with control, possibly related to cell injury. With LPS stimulation, mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated less profound inflammation; supernatant cytokines (TNF-α, IL-6, and IL-10) and pro-inflammatory genes (iNOS and IL-1β), with higher DNA break (phosphohistone H2AX) and cell-free DNA, but not malondialdehyde (the oxidative stress), compared with the littermate control (mgmtflox/flox; LysM-Cre-/-). In parallel, mgmt null mice (MGMT loss only in the myeloid cells) demonstrated less severe sepsis in the cecal ligation and puncture (CLP) model (with antibiotics), as indicated by survival and other parameters compared with sepsis in the littermate control. The mgmt null protective effect was lost in CLP mice without antibiotics, highlighting the importance of microbial control during sepsis immune modulation. However, an MGMT inhibitor in CLP with antibiotics in WT mice attenuated serum cytokines but not mortality, requiring further studies. In conclusion, an absence of mgmt in macrophages resulted in less severe CLP sepsis, implying a possible influence of guanine DNA methylation and repair in macrophages during sepsis.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
SerpinB2 is involved in cellular response upon UV irradiation. Sci Rep 2019; 9:2753. [PMID: 30808882 PMCID: PMC6391458 DOI: 10.1038/s41598-019-39073-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Ultraviolet light induced pyrimidine dimer is a helix distortion DNA damage type, which recruits repair complexes. However, proteins of these complexes that take part in both DNA damage recognition and repair have been well-described, the regulation of the downstream steps of nucleotide excision repair (NER) have not been clearly clarified yet. In a high-throughput screen, we identified SerpinB2 (SPB2) as one of the most dramatically upregulated gene in keratinocytes following UV irradiation. We found that both the mRNA and the protein levels of SPB2 were increased upon UV irradiation in various cell lines. Additionally, UV damage induced translocation of SPB2 from the cytoplasm to the nucleus as well as the damage induced foci formation of it. Here we show that SPB2 co-localizes with XPB involved in the NER pathway at UV-induced repair foci. Finally, we demonstrated that UV irradiation promoted the association of SPB2 with ubiquitylated proteins. In basal cell carcinoma tumour cells, we identified changes in the subcellular localization of SPB2. Based on our results, we conclude that SPB2 protein has a novel role in UV-induced NER pathway, since it regulates the removal of the repair complex from the damaged site leading to cancerous malformation.
Collapse
|
3
|
Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS One 2015; 10:e0130600. [PMID: 26075903 PMCID: PMC4468109 DOI: 10.1371/journal.pone.0130600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.
Collapse
|
4
|
Sudhakar JN, Chow KC. Human RAD23 homolog A is required for the nuclear translocation of apoptosis-inducing factor during induction of cell death. Biol Cell 2014; 106:359-76. [DOI: 10.1111/boc.201400013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/16/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Janaki N. Sudhakar
- Graduate Institute of Biomedical Sciences; National Chung Hsing University; Taichung Taiwan, Republic of China
| | - Kuan-Chih Chow
- Graduate Institute of Biomedical Sciences; National Chung Hsing University; Taichung Taiwan, Republic of China
- Agricultural Biotechnology Centre; National Chung Hsing University; Taichung Taiwan, Republic of China
| |
Collapse
|
5
|
Identification of Scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia. BMC Genomics 2010; 11:386. [PMID: 20565887 PMCID: PMC3017767 DOI: 10.1186/1471-2164-11-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists. RESULTS Here, we have analysed the Giardia genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms. CONCLUSION This is the first report of S/MAR elements from the protozoan parasite Giardia lamblia. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.
Collapse
|
6
|
Identification and functional characterization of the Rad23 gene of the silkworm, Bombyx mori. Biosci Rep 2009; 30:19-26, 2 p following 26. [DOI: 10.1042/bsr20080169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rad23 is an NER (nucleotide excision repair) protein and it plays an important role in the UPP (ubiquitin–proteasome pathway). In the present study, BmRad23 (a homologous gene of Rad23 from Bombyx mori) was cloned and designated as BmRad23. The ORF (open reading frame) of the BmRad23 cDNA encoded deduced 324 amino acids with a calculated molecular mass of 36.13 kDa and an estimated pI of 4.50. The deduced amino acid sequence of the BmRad23 cDNA revealed several indispensable domains for the function of the Rad23 protein family, such as one UbL (ubiquitin-like) region domain and two UBA (ubiquitin-associated) domains. UV irradiation and treatment with chemical DNA-damaging reagent increased the expression of BmRad23. The BmRad23 gene was expressed in all the examined organs, and elevated expression was observed in testis and ovary. Northern blot and immunoblot analyses showed enhanced expression of BmRad23 after day 3 of the wandering stage in the silk gland. From the present results it is suggested that BmRad23 functions in the UPP during the silkworm metamorphosis as well as participating in the NER when the genetic material is damaged by UV irradiation and other genotoxic stresses.
Collapse
|
7
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med 2009; 13:3006-3018. [PMID: 19522845 PMCID: PMC4516461 DOI: 10.1111/j.1582-4934.2009.00824.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/03/2009] [Indexed: 11/28/2022] Open
Abstract
DNA repair is a fundamental cellular function, indispensable for cell survival, especially in conditions of exposure to environmental or pharmacological effectors of DNA damage. The regulation of this function requires a flexible machinery to orchestrate the reversal of harmful DNA lesions by making use of existing proteins as well as inducible gene products. The accumulation of evidence for the involvement of ubiquitin-proteasome system (UPS) in DNA repair pathways, that is reviewed here, has expanded its role from a cellular waste disposal basket to a multi-dimensional regulatory system. This review is the first of two that attempt to illustrate the nature and interactions of all different DNA repair pathways where UPS is demonstrated to be involved, with special focus on cancer- and chemotherapy-related DNA-damage repair. In this first review, we will be presenting the proteolytic and non-proteolytic roles of UPS in the post-translational regulation of DNA repair proteins, while the second review will focus on the UPS-dependent transcriptional response of DNA repair after DNA damage and stress.
Collapse
|
8
|
Kim HW, Cho KJ, Park SC, Kim HJ, Kim GW. The adenoviral vector-mediated increase in apurinic/apyrimidinic endonuclease inhibits the induction of neuronal cell death after transient ischemic stroke in mice. Brain Res 2009; 1274:1-10. [PMID: 19374886 DOI: 10.1016/j.brainres.2009.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/31/2022]
Abstract
Despite the correlation between changes in the levels of apurinic/apyrimidinic endonuclease and ischemic neuronal damage, no studies have addressed the question of whether increased APE/Ref-1 can prevent ischemic neuronal cell death in vivo. Using an adenoviral vector, we investigated whether increased APE/Ref-1 can inhibit the loss of APE/Ref-1 and thereby prevent oxidative DNA damage after transient focal cerebral ischemia. Mice were subjected to intraluminal suture occlusion of the middle cerebral artery for 1 h, followed by reperfusion. Pre-ischemic treatment of the adenoviral vector was introduced intracerebrally. An adenoviral vector harboring the entire APE/Ref-1 gene sequence or a control virus without the APE/Ref-1 sequence was introduced 3 days before ischemia/reperfusion (I/R). The reduction of APE/Ref-1 occurred before DNA fragmentation, which was shown by temporal and spatial analysis. Increased APE/Ref-1 significantly decreased DNA damage and infarct volume after I/R. In conclusion, increased APE/Ref-1 enhanced DNA repair and inhibited the induction of ischemic oxidative DNA damage and cerebral infarction after I/R.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Neurology and Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Motegi A, Murakawa Y, Takeda S. The vital link between the ubiquitin-proteasome pathway and DNA repair: impact on cancer therapy. Cancer Lett 2009; 283:1-9. [PMID: 19201084 DOI: 10.1016/j.canlet.2008.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/23/2008] [Accepted: 12/27/2008] [Indexed: 01/05/2023]
Abstract
Proteasome-dependent protein degradation is involved in a variety of biological processes, including cell-cycle regulation, apoptosis, and stress-responses. Growing evidence from translational research and clinical trials proved the effectiveness of proteasome inhibitors (PIs) in treating several types of hematological malignancies. Although various key molecules in ubiquitin-dependent cellular processes have been proposed as relevant targets of therapeutic proteasome inhibition, our current understanding is far from complete. Recent rapid progress in DNA repair research has unveiled a crucial role of the ubiquitin-proteasome pathway (UPP) in regulating DNA repair. These findings thus bring up the idea that DNA repair pathways could be effective targets of PIs in mediating their cytotoxicity and enhancing the effect of radiotherapy and some DNA-damaging chemotherapeutic agents, such as cisplatin and camptothecin. In this review, we present the current perspective on the UPP-dependent regulatory mechanisms of DNA repair and discuss their therapeutic potential in the application of PIs to a broad spectrum of human cancers.
Collapse
Affiliation(s)
- Akira Motegi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
10
|
Gil MA, Sherwood KE, Maupin-Furlow JA. Transcriptional linkage of Haloferax volcanii proteasomal genes with non-proteasomal gene neighbours including RNase P, MOSC domain and SAM-methyltransferase homologues. MICROBIOLOGY-SGM 2007; 153:3009-3022. [PMID: 17768244 DOI: 10.1099/mic.0.2007/008177-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comparative genomics reveals a common theme of 20S proteasome and proteasome-activating nucleotidase genes dispersed throughout archaeal genomes yet arranged in conserved linkages with gene homologues of translation and/or transcription machineries. To provide biological evidence for these linkages as well as insight into proteasome operon organization, transcripts of the five proteasomal genes of the halophilic archaeon Haloferax volcanii were analysed by Northern (RNA) blotting, RT-PCR and primer extension. These included psmA, psmB and psmC, encoding the 20S proteasomal subunits alpha1, beta and alpha2, as well as panA and panB, encoding the PanA and PanB proteasome-activating nucleotidase proteins, respectively. All five of these genes are dispersed throughout the H. volcanii genome. For each proteasomal gene, a distinct transcript was detected by Northern blotting that was similar in size to the respective coding region. For both psmA and psmC, an additional transcript was detected that was 1.34 and 0.85 kb greater, respectively, than the coding region. Further analysis by Northern blotting and RT-PCR revealed that psmA was co-transcribed with genes encoding a Pop5 homologue of the RNase P endoRNase as well as an S-adenosylmethionine (SAM)-dependent methyltransferase. Likewise, psmC was co-transcribed with a downstream gene encoding a molybdenum cofactor sulfurase C-terminal (MOSC) domain protein. Additional proteasomal and neighbouring gene-specific transcriptional linkages were detected by RT-PCR. These results provide the first evidence that proteasome and tRNA modification genes are co-transcribed, reveal that a number of additional enzymes including those predicted to facilitate metal-sulfur cluster assembly are co-regulated with proteasomes at the transcriptional level, and provide further insight into proteasome gene transcription in archaea.
Collapse
Affiliation(s)
- Malgorzata A Gil
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Katherine E Sherwood
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| |
Collapse
|
11
|
Burgis NE, Samson LD. The protein degradation response of Saccharomyces cerevisiae to classical DNA-damaging agents. Chem Res Toxicol 2007; 20:1843-53. [PMID: 18020423 DOI: 10.1021/tx700126e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome wide experiments indicate both proteasome- and vacuole-mediated protein degradation modulate sensitivity to classical DNA-damaging agents. Here, we show that global protein degradation is significantly increased upon methyl methanesulfonate (MMS) exposure. In addition, global protein degradation is similarly increased upon exposure to 4-nitroquinoline-N-oxide (4NQO) and UV and, to a lesser extent, tert-butyl hydroperoxide. The proteasomal inhibitor MG132 decreases both MMS-induced and 4NQO-induced protein degradation, while addition of the vacuolar inhibitor phenylmethanesulfonyl fluoride does not. The addition of both inhibitors grossly inhibits cell growth upon MMS exposure over and above the growth inhibition induced by MMS alone. The MMS-induced protein degradation response remains unchanged in several ubiquitin-proteasome and vacuolar mutants, presumably because these mutants are not totally deficient in either essential pathway. Furthermore, MMS-induced protein degradation is independent of Mec1, Mag1, Rad23, and Rad6, suggesting that the protein degradation response is not transduced through the classical Mec1 DNA damage response pathway or through repair intermediates generated by the base excision, nucleotide excision, or postreplication-DNA repair pathways. These results identify the regulation of protein degradation as an important factor in the recovery of cells from toxicity induced by classical DNA-damaging agents.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
12
|
Frees D, Savijoki K, Varmanen P, Ingmer H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 2007; 63:1285-95. [PMID: 17302811 DOI: 10.1111/j.1365-2958.2007.05598.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clp proteolytic complexes consisting of a proteolytic core flanked by Clp ATPases are widely conserved in bacteria, and their biological roles have received considerable interest. In particular, mutants in the clp genes in the low-GC-content Gram-positive phyla Bacillales and Lactobacillales display a diverse range of phenotypic changes including general stress sensitivity, aberrant cell morphology, failure to initiate developmental programs, and for pathogens, severely attenuated virulence. Extensive research dedicated to unravelling the molecular mechanisms underlying these complex phenotypes has led to fascinating new insights that will be covered by this review. First, Clp ATPases and ClpP-containing proteolytic complexes play indispensable roles in cellular protein quality control systems by refolding or degrading damaged proteins in both stressed and non-stressed cells. Secondly, ClpP proteases and the chaperone activity of Clp ATPases are important for controlling stability and activity of central transcriptional regulators, thereby exerting tremendous impact on cell physiology. Targets include major stress regulators like Spx (oxidative stress), the antisigma factor RsiW (alkaline stress) and HdiR (DNA damage) in addition to regulators of developmental programs like ComK (competence development), sigmaH and Sda (sporulation). Thus, Clp proteins are central in co-ordinating developmental decisions and stress response in low GC Gram-positive bacteria.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
13
|
Silva CS, Silva SH, Pereira-Júnior OS, Cabral FJ, Costa-Cruz JM, Rodrigues V. Schistosoma mansoni: gene expression of the nucleotide excision repair factor 2 (NEF2) during the parasite life cycle, and in adult worms after exposure to different DNA-damaging agents. Acta Trop 2007; 104:52-62. [PMID: 17850756 DOI: 10.1016/j.actatropica.2007.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 07/06/2007] [Accepted: 07/26/2007] [Indexed: 01/16/2023]
Abstract
DNA is often damaged by many environmental agents, which lead to the up-regulation of several genes involved in different repair pathways. Schistosoma mansoni has a complex life cycle, being exposed to a subset of DNA-damaging agents, such as those present in the environment and host immune response. Recently, studies showed that nucleotide excision repair (NER) is an indispensable mechanism for removing a broad spectrum of different DNA lesions. In the present report, we showed the gene expression of nucleotide excision repair factor 2 (NEF2) SmRad23 and SmRad4, in different developmental stages of S. mansoni, as well as the differential expression of these genes in S. mansoni adult worms treated with DNA-damaging agents. Furthermore, it was revealed the correlation of these genes with their orthologues in other eukaryotes. Our reports suggest that NER is an important repair pathway during the complex life cycle of S. mansoni.
Collapse
Affiliation(s)
- Camila S Silva
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Blickwedehl J, McEvoy S, Wong I, Kousis P, Clements J, Elliott R, Cresswell P, Liang P, Bangia N. Proteasomes and proteasome activator 200 kDa (PA200) accumulate on chromatin in response to ionizing radiation. Radiat Res 2007; 167:663-74. [PMID: 17523843 DOI: 10.1667/rr0690.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 11/28/2006] [Indexed: 11/03/2022]
Abstract
Proteasome activator 200 kDa (PA200) forms nuclear foci after exposure of cells to ionizing radiation and enhances proteasome activity in vitro. Within cells, it is unclear whether PA200 responds to radiation alone or in association with proteasomes. In the present study, we identified three forms of cellular PA200 (termed PA200i, ii and iii) at the mRNA and protein levels. Neither PA200ii nor PA200iii appears to associate with proteasomes. All detectable PA200i is associated with proteasomes, which indicates that PA200i and proteasomes function together within the cell. Consistent with this idea, we find that exposure of cells to radiation leads to an equivalent accumulation of both PA200i and core proteasomes on chromatin. This increase in PA200 and proteasomes on chromatin is not specific to the stage of cell cycle arrest since it occurs in cells that arrest in G(2)/M and cells that arrest in G(1)/S after exposure to radiation. These data provide evidence that PA200 and proteasomes function together within cells and respond to a specific radiation-induced damage independent of the stage of cell cycle arrest.
Collapse
Affiliation(s)
- Jennifer Blickwedehl
- Department of Immunology, Rosewell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reed SH, Gillette TG. Nucleotide excision repair and the ubiquitin proteasome pathway--do all roads lead to Rome? DNA Repair (Amst) 2007; 6:149-56. [PMID: 17150417 DOI: 10.1016/j.dnarep.2006.10.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 10/10/2006] [Indexed: 01/25/2023]
Abstract
It is clear that components of the proteasome and the ubiquitin proteasome pathway play a direct mechanistic role in the regulation of a variety of DNA repair processes. Intriguingly, a wealth of evidence suggests that this is also the case during the regulation of gene transcription. Here we review our current understanding of how the ubiquitin proteasome pathway influences nucleotide excision repair, and discuss how studies that investigate the role of this pathway in the regulation of gene transcription might also contribute to our mechanistic understanding of its role in DNA repair.
Collapse
Affiliation(s)
- Simon H Reed
- The Department of Pathology, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | |
Collapse
|
16
|
Díaz-Martínez LA, Kang Y, Walters KJ, Clarke DJ. Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div 2006; 1:28. [PMID: 17144915 PMCID: PMC1697804 DOI: 10.1186/1747-1028-1-28] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/04/2006] [Indexed: 11/27/2022] Open
Abstract
Background Proteins containing ubiquitin-like (UBL) and ubiquitin associated (UBA) domains have been suggested to shuttle ubiquitinated substrates to the proteasome for degradation. There are three UBL-UBA containing proteins in budding yeast: Ddi1, Dsk2 and Rad23, which have been demonstrated to play regulatory roles in targeting ubiquitinated substrates to the proteasome for degradation. An involvement of these proteins in cell cycle related events has also been reported. We tested whether these three proteins act redundantly in the cell cycle. Results Here we show that the UBL-UBA proteins are partially redundant for cell cycle related roles. RAD23 is redundant with DDI1 and DSK2, but DDI1 and DSK2 are not redundant with each other and the triple deletion shows a synthetic effect, suggesting the existence of at least two roles for RAD23 in cell cycle control. The rad23Δddi1Δdsk2Δ triple deletion strain delays both in G2/M-phase and in mid-anaphase at high temperatures with duplicated spindle pole bodies. Cell cycle progression in the triple deletion strain can only be partially rescued by a rad23 allele lacking the c-terminal UBA domain, suggesting that RAD23 requires its c-terminal UBA domain for full function. In addition to their ability to bind ubiquitin and the proteasome, the UBL-UBA proteins also share the ability to homodimerize. Rad23 and Dsk2 dimerization requires their UBL and/or UBA domains whereas Ddi1 dimerization does not. Here we show that Ddi1 homodimerization is necessary for its cell cycle related functions. Conclusion The three yeast UBL-UBA proteins have partially redundant roles required for progression through mitosis.
Collapse
Affiliation(s)
- Laura A Díaz-Martínez
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, USA
| | - Yang Kang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, USA
| | - Kylie J Walters
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, USA
| | - Duncan J Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, USA
| |
Collapse
|
17
|
Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006; 31:109-33. [PMID: 17096663 DOI: 10.1111/j.1574-6976.2006.00046.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.
Collapse
Affiliation(s)
- Peter Lehoczký
- Department of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | |
Collapse
|
18
|
Kaur M, Pop M, Shi D, Brignone C, Grossman SR. hHR23B is required for genotoxic-specific activation of p53 and apoptosis. Oncogene 2006; 26:1231-7. [PMID: 16924240 PMCID: PMC1804095 DOI: 10.1038/sj.onc.1209865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rad23 proteins function in both DNA repair and protein stability regulation. As ubiquitinated forms of p53 are stabilized after DNA damage in concert with p53 functional activation, and human Rad23 proteins (hHR23A and B) regulate p53 stability in unstressed cells, the role of hHR23B in post-genotoxin regulation of p53 was investigated. Depletion of hHR23B by specific short interfering RNA before genotoxic exposure attenuated p53, p21 and bax induction, abrogated the accumulation of ubiquitinated p53 and suppressed apoptosis. Expression of ubiquitin derivatives with all lysines mutated except K48 or K63 demonstrated that K48-linked p53-ubiquitin conjugates were specifically induced after DNA damage. hHR23B, along with native and ubiquitinated p53, accumulated in chromatin after genotoxic exposure, and the accumulation of ubiquitinated p53 in chromatin was prevented by hHR23B depletion. Chromatin immunoprecipitation analysis demonstrated that hHR23B and p53 both localized to the p21 promoter shortly after DNA damage. hHR23B thus plays a critical role in the activation and function of p53 after specific genotoxic exposures.
Collapse
Affiliation(s)
- M Kaur
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - M Pop
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D Shi
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - C Brignone
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - SR Grossman
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA and
- Gastrointestinal Cancer Program, University of Massachusetts Medical School and UMass Memorial Cancer Center, Worcester, MA, USA
- Correspondence: Dr SR Grossman, Department of Cancer Biology, University of Massachusetts Medical School, LRB419, 364 Plantation Street, Worcester, MA 01605, USA. E-mail:
| |
Collapse
|
19
|
Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, Reed SH. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J 2006; 25:2529-38. [PMID: 16675952 PMCID: PMC1478203 DOI: 10.1038/sj.emboj.7601120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/06/2006] [Indexed: 01/15/2023] Open
Abstract
The Rad23/Rad4 nucleotide excision repair (NER) protein complex functions at an early stage of the NER reaction, possibly promoting the recognition of damaged DNA. Here we show that Rad4 protein is ubiquitinated and degraded in response to ultraviolet (UV) radiation, and identify a novel cullin-based E3 ubiquitin ligase required for this process. We also show that this novel ubiquitin ligase is required for optimal NER. Our results demonstrate that optimal NER correlates with the ubiquitination of Rad4 following UV radiation, but not its subsequent degradation. Furthermore, we show that the ubiquitin-proteasome pathway (UPP) regulates NER via two distinct mechanisms. The first occurs independently of de novo protein synthesis, and requires Rad23 and a nonproteolytic function of the 19S regulatory complex of the 26S proteasome. The second requires de novo protein synthesis, and relies on the activity of the newly identified E3 ubiquitin ligase. These studies reveal that, following UV radiation, NER is mediated by nonproteolytic activities of the UPP, via the ubiquitin-like domain of Rad23 and UV radiation-induced ubiquitination of Rad4.
Collapse
Affiliation(s)
- Thomas G Gillette
- The Center for Biomedical Inventions, Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shirong Yu
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Zheng Zhou
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Raymond Waters
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen Albert Johnston
- The Center for Biomedical Inventions, Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon H Reed
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
den Dulk B, Sun SM, de Ruijter M, Brandsma JA, Brouwer J. Rad33, a new factor involved in nucleotide excision repair in Saccharomyces cerevisiae. DNA Repair (Amst) 2006; 5:683-92. [PMID: 16595192 DOI: 10.1016/j.dnarep.2006.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/04/2006] [Accepted: 02/07/2006] [Indexed: 11/25/2022]
Abstract
In Saccharomyces cerevisiae the Rad4-Rad23 complex is involved in initial damage recognition and responsible for recruiting the other NER proteins to the site of the lesion. The Rad4-Rad23 complex is essential for both NER subpathways, Transcription Coupled Repair (TCR) and Global Genome Repair (GGR). Previously, we reported on the role of the Rad4 homologue YDR314C in NER. YDR314C is essential for preferential repair of the transcribed strand in RNA pol I transcribed rDNA. In large scale interaction studies it was shown that YDR314C physically interacts with a small protein encoded by the ORF YML011C. In the present study we show that YML011C is involved in NER and we propose to designate the YML011C ORF RAD33. Cells deleted for RAD33 display intermediate UV sensitivity that is epistatic with NER. Strand specific repair analysis shows that GGR in RNA pol II transcribed regions is completely defective in rad33 mutants whereas TCR is still active, albeit much less efficient. In RNA pol I transcribed rDNA both GGR and TCR are fully dependent on Rad33. We show that in both rad23 and rad33 cells Rad4 and YDR314C protein levels are significantly reduced. The homology of YDR314C to Rad4, together with the similar relation of both proteins to Rad33 prompted us to propose RAD34 as name for the YDR314C gene. Although the rad23rad33 double mutant is considerably more UV sensitive than a rad23 or rad33 single mutant, deletion of RAD33 in a rad23 background does not lead to a further reduction of Rad4 or Rad34 protein levels. This suggests that the role of Rad33 is not solely the stabilization of Rad4 and Rad34 but that Rad33 has an additional role in NER.
Collapse
Affiliation(s)
- Ben den Dulk
- MGC Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
G. Kapetanaki M, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A 2006; 103:2588-93. [PMID: 16473935 PMCID: PMC1413840 DOI: 10.1073/pnas.0511160103] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Xeroderma pigmentosum (XP) is a heritable human disorder characterized by defects in nucleotide excision repair (NER) and the development of skin cancer. Cells from XP group E (XP-E) patients have a defect in the UV-damaged DNA-binding protein complex (UV-DDB), involved in the damage recognition step of NER. UV-DDB comprises two subunits, products of the DDB1 and DDB2 genes, respectively. Mutations in the DDB2 gene account for the underlying defect in XP-E. The UV-DDB complex is a component of the newly identified cullin 4A-based ubiquitin E3 ligase, DDB1-CUL4A(DDB2). The E3 ubiquitin ligases recognize specific substrates and mediate their ubiquitination to regulate protein activity or target proteins for degradation by the proteasomal pathway. In this study, we have addressed the role of the UV-DDB-based E3 in NER and sought a physiological substrate. We demonstrate that monoubiquitinated histone H2A in native chromatin coimmunoprecipitates with the endogenous DDB1-CUL4A(DDB2) complex in response to UV irradiation. Further, mutations in DDB2 alter the formation and binding activity of the DDB1-CUL4A(DDB2) ligase, accompanied by impaired monoubiquitination of H2A after UV treatment of XP-E cells, compared with repair-proficient cells. This finding indicates that DDB2, as the substrate receptor of the DDB1-CUL4A-based ligase, specifically targets histone H2A for monoubiquitination in a photolesion-binding-dependent manner. Given that the loss of monoubiquitinated histone H2A at the sites of UV-damaged DNA is associated with decreased global genome repair in XP-E cells, this study suggests that histone modification, mediated by the XPE factor, facilitates the initiation of NER.
Collapse
Affiliation(s)
- Maria G. Kapetanaki
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Jennifer Guerrero-Santoro
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Dawn C. Bisi
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Ching L. Hsieh
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Vesna Rapić-Otrin
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
- To whom correspondence should be addressed. E-mail:
| | - Arthur S. Levine
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| |
Collapse
|
22
|
Brégégère F, Milner Y, Friguet B. The ubiquitin-proteasome system at the crossroads of stress-response and ageing pathways: a handle for skin care? Ageing Res Rev 2006; 5:60-90. [PMID: 16330259 DOI: 10.1016/j.arr.2005.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/22/2005] [Accepted: 09/26/2005] [Indexed: 02/07/2023]
Abstract
The regulation of gene expression at the transcriptional level has been considered for long as the main mechanism of cellular adaptive responses. Since the turn of the century, however, it is becoming clear that higher organisms developed a complex, sensitive and maybe equally important network of regulatory pathways, relying largely on protein interactions, post-translational modifications and proteolysis. Here we review the involvement of the ubiquitin-proteasome pathway of protein degradation at different levels of cellular life in relation with ageing, and with a special focus on skin. It comes out that the ubiquitin system plays a major role in signal transduction associated with stress and ageing, in skin in particular through the control of retinoid and NF-kappaB pathways. The understanding of specific proteolytic targeting by E3 ubiquitin-ligases paves the way for a new generation of active molecules that may control particular steps of normal and pathological ageing.
Collapse
Affiliation(s)
- François Brégégère
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot-Paris 7, C.C.7128, 2 Place Jussieu, 75251 Paris Cédex 05, France.
| | | | | |
Collapse
|
23
|
Abstract
Eukaryotic transcription is one of the most complex cellular processes and constitutes the first step in protein synthesis. Ubiquitination and subsequent degradation by the 26 S proteasome, on the other hand, represents the final chapter in the life of a protein. Intriguingly, ubiquitin and the ubiquitin– proteasome system play vital roles in the regulation of transcription. Ubiquitin has dual modus operandi: firstly, ubiquitin functions via the 26 S proteasome — it is tagged to components of the transcription machinery, marking them for degradation via the proteasome, which results in the proper exchange of complexes during transcription and the prompt removal of activators after each round of transcription; and secondly, ubiquitin can function independently of the proteasome — histone ubiquitination results in heterochromatin relaxation and assembly of transcription complexes on the promoter, and ubiquitination of transcription factors enhances their transcriptional-activation function. Although ubiquitin and the ubiquitin–proteasome system were initially perceived as a graveyard for proteins, recent advances in molecular biological techniques have redefined their role as a regulatory system that influences the fate of many cellular processes, such as apoptosis, transcription and cell cycle progression.
Collapse
|
24
|
Abstract
DNA in living cells is constantly subjected to different chemical and physical factors of the environment and to cell metabolites. Some changes altering DNA structure occur spontaneously. This raises the potential danger of harmful mutations that could be transmitted to offspring. To avoid the danger of mutations and changing genetic information, a cell is capable to switch on multiple mechanisms of DNA repair that remove damage and restore native structure. In many cases, removal of the same damage may involve several alternative pathways; this is very important for DNA repair under the most unfavorable conditions. This review summarizes data about all known mechanisms of eukaryotic DNA repair including excision repair (base excision repair and nucleotide excision repair), mismatch repair, repair of double-strand breaks, and cross-link repair. Special attention is given to the regulation of excision repair by different proteins--proliferating cell nuclear antigen (PCNA), p53, and proteasome. The review also highlights problem of bypassing irremovable lesions in DNA.
Collapse
Affiliation(s)
- N P Sharova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
25
|
Kisby GE, Standley M, Lu X, O'Malley J, Lin B, Muniz J, Luo NL, Pattee P, Back SA, Nagalla SR. Molecular networks perturbed in a developmental animal model of brain injury. Neurobiol Dis 2005; 19:108-18. [PMID: 15837566 DOI: 10.1016/j.nbd.2004.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022] Open
Abstract
Methylazoxymethanol (MAM) is widely used as a developmental neurotoxin and exposure to its glucoside (i.e., cycasin) is associated with the prototypical neurological disorder western Pacific ALS/PDC. However, the specific molecular targets that play a key role in MAM-induced brain injury remain unclear. To reveal potential molecular networks targeted by MAM in the developing nervous system, we examined characteristic phenotypic changes (DNA damage, cytoarchitecture) induced by MAM and their correlation with gene expression differences using microarray assays (27,648 genes). Three day-old postnatal C57BL/6 mice (PND3) received a single injection of MAM and the cerebellum and cerebral cortex of PND4, 8, 15, and 22 mice were analyzed. DNA damage was detected in both the cerebellum (N7-mGua, TUNEL labeling) and cerebral cortex (N7-mGua) of PND4 mice, but progressive disruption of the cytoarchitecture was restricted to the cerebellum. A majority (>75%) of the genes affected (cerebellum 636 genes, cortex 1080 genes) by MAM were developmentally regulated, with a predominant response early (PND4) in the cerebellum and delayed (PND8 and 15) in the cerebral cortex. The genes and pathways (e.g., proteasome) affected by MAM in the cerebellum are distinct from cortex. The genes perturbed in the cerebellum reflect critical cellular processes such as development (17%), cell cycle (7%), protein metabolism (12%), and transcriptional regulation (9%) that could contribute to the observed cytoarchitectural disruption of the cerebellum. This study demonstrates for the first time that specific genes and molecular networks are affected by MAM during CNS development. Further investigation of these targets will help to understand how disruption of these developmental programs could contribute to chronic brain injury or neurodegenerative disease.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Okuda Y, Nishi R, Ng JMY, Vermeulen W, van der Horst GTJ, Mori T, Hoeijmakers JHJ, Hanaoka F, Sugasawa K. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst) 2005; 3:1285-95. [PMID: 15336624 DOI: 10.1016/j.dnarep.2004.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 03/18/2004] [Indexed: 11/17/2022]
Abstract
Mammalian cells express two Rad23 homologs, HR23A and HR23B, which have been implicated in regulation of proteolysis via the ubiquitin/proteasome pathway. Recently, the proteins have been shown to stabilize xeroderma pigmentosum group C (XPC) protein that is involved in DNA damage recognition for nucleotide excision repair (NER). Because the vast majority of XPC forms a complex with HR23B rather than HR23A, we investigated possible differences between the two Rad23 homologs in terms of their effects on the XPC protein. In wild-type mouse embryonic fibroblasts (MEFs), endogenous XPC was found to be relatively stable, while its steady-state level and stability appeared significantly reduced by targeted disruption of the mHR23B gene, but not by that of mHR23A. Loss of both mHR23 genes caused a strong further reduction of the XPC protein level. Quantification of the two mHR23 proteins revealed that in normal cells mHR23B is actually approximately 10 times more abundant than mHR23A. In addition, overexpression of mHR23A in the mHR23A/B double knock out cells restored not only the steady-state level and stability of the XPC protein, but also cellular NER activity to near wild-type levels. These results indicate that the two Rad23 homologs are largely functionally equivalent in NER, and that the difference in expression levels explains for a major part the difference in complex formation with as well as stabilization effects on XPC.
Collapse
Affiliation(s)
- Yuki Okuda
- Cellular Physiology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hernandez-Pigeon H, Quillet-Mary A, Louat T, Schambourg A, Humbert O, Selves J, Salles B, Laurent G, Lautier D. hMutSα is Protected from Ubiquitin-proteasome-dependent Degradation by Atypical Protein Kinase Cζ Phosphorylation. J Mol Biol 2005; 348:63-74. [PMID: 15808853 DOI: 10.1016/j.jmb.2005.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 01/17/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The hMutS alpha (hMSH2-hMSH6) protein heterodimer plays a critical role in the detection of DNA mispairs in the mismatch repair (MMR) process. We recently reported that hMutS alpha proteins were degraded by the ubiquitin-proteasome pathway in a cell-type-dependent manner, indicating that one or several regulator(s) may interfere with hMutS alpha protein ubiquitination and degradation. On the other hand, we and others have shown that protein kinase C (PKC) is involved as a positive regulator of MMR activity. Here, we provide evidence that the atypical PKC zeta regulates ubiquitination, degradation, and levels of hMutS alpha proteins. Using both PKC zeta-transfected U937 and PKC zeta siRNA-transfected MRC-5 cell lines, we found that PKC zeta protein expression was correlated with that of hMutS alpha as well as with MMR activity, but was inversely correlated with hMutS alpha protein ubiquitination and degradation. Interestingly, PKC zeta interacts with hMSH2 and hMSH6 proteins and phosphorylates both. Moreover, in an in vitro assay PKCzeta mediates phosphorylation events decreasing hMutS alpha protein degradation via the ubiquitin-proteasome pathway. Altogether, our results indicate that PKC zeta modulates hMutS alpha stability and protein levels, and suggest a role for PKC zeta in genome stability by regulating MMR activity.
Collapse
Affiliation(s)
- Hélène Hernandez-Pigeon
- INSERM U563, CPTP, Bat B, Pavillon Lefebvre, Place du Dr Baylac, CHU PURPAN, BP 3028, 31024 Toulouse cedex 3, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
29
|
Wang QE, Wani MA, Chen J, Zhu Q, Wani G, El-Mahdy MA, Wani AA. Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol Carcinog 2005; 42:53-64. [PMID: 15547920 DOI: 10.1002/mc.20065] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ubiquitin-proteasome pathway is fundamental to synchronized continuation of many cellular processes, for example, cell-cycle progression, stress response, and cell differentiation. Recent studies have shown that the ubiquitin-proteasome pathway functions in the regulation of nucleotide excision repair (NER) in yeast. In order to investigate the role of the ubiquitin-proteasome pathway in the NER of mammalian cells, global genomic repair (GGR), and transcription-coupled repair (TCR) were examined in a mouse ts20 cell line that harbors a temperature-sensitive ubiquitin-activating enzyme (E1). We found that E1 inactivation-induced ubiquitination deficiency decreased both GGR and TCR, indicating that the ubiquitination system is involved in the optimization of entire NER machinery in mammalian cells. We specifically inhibited the function of 19S proteasome subunit by overexpressing 19S regulatory complex hSug1 or its mutant protein hSug1mk in repair competent human fibroblast, OSU-2, cells and compared their capacity for NER. The results showed that 19S regulatory complex positively modulates NER in cells. In addition, we treated OSU-2 cells with the inhibitors of 20S subunit function, MG132 and lactacystin, and demonstrated that the catalytic activity of 20S subunit is also required for efficient NER. Moreover, the UV-induced recruitment of repair factor xeroderma pigmentosum protein C (XPC) to damage sites was negatively affected by treatment of repair competent cells with MG132. Taken together, we conclude that the ubiquitin-proteasome pathway has a positive regulatory role for optimal NER capacity in mammalian cells and appears to act through facilitating the recruitment of repair factors to DNA damage sites.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ortolan TG, Chen L, Tongaonkar P, Madura K. Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res 2004; 32:6490-500. [PMID: 15601997 PMCID: PMC545455 DOI: 10.1093/nar/gkh987] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rad23 protein interacts with the nucleotide excision-repair (NER) factor Rad4, and the dimer can bind damaged DNA. Rad23 also binds ubiquitinated proteins and promotes their degradation by the proteasome. Rad23/proteasome interaction is required for efficient NER, although the specific role of the Ub/proteasome system in DNA repair is unclear. We report that the availability of Rad4 contributes significantly to the cellular tolerance to UV light. Mutations in the proteasome, and in genes encoding the ubiquitin-conjugating enzymes Ubc4 and Ubc5, stabilized Rad4 and increased tolerance to UV light. A short amino acid sequence, previously identified in human Rad23, mediates the interaction between Rad23 and Rad4. We determined that this motif was required for stabilizing Rad4, and could function independently of the intact protein. A ubiquitin-like (UbL) domain in Rad23 binds the proteasome, and is required for conferring full resistance to DNA damage. However, Rad23/proteasome interaction appears unrelated to Rad23-mediated stabilization of Rad4. Specifically, simultaneous expression of a Rad23 mutant that could not bind the proteasome, with a mutant that could not interact with Rad4, fully suppressed the UV sensitivity of rad23Delta, demonstrating that Rad23 performs two independent, but concurrent roles in NER.
Collapse
Affiliation(s)
- Tatiana G Ortolan
- Department of Biochemistry, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
31
|
Albrecht M, Golatta M, Wüllner U, Lengauer T. Structural and functional analysis of ataxin-2 and ataxin-3. ACTA ACUST UNITED AC 2004; 271:3155-70. [PMID: 15265035 DOI: 10.1111/j.1432-1033.2004.04245.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3) are autosomal-dominantly inherited, neurodegenerative diseases caused by CAG repeat expansions in the coding regions of the genes encoding ataxin-2 and ataxin-3, respectively. To provide a rationale for further functional experiments, we explored the protein architectures of ataxin-2 and ataxin-3. Using structure-based multiple sequence alignments of homologous proteins, we investigated domains, sequence motifs, and interaction partners. Our analyses focused on presumably functional amino acids and the construction of tertiary structure models of the RNA-binding Lsm domain of ataxin-2 and the deubiquitinating Josephin domain of ataxin-3. We also speculate about distant evolutionary relationships of ubiquitin-binding UIM, GAT, UBA and CUE domains and helical ANTH and UBX domain extensions.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Saarbrücken, Germany.
| | | | | | | |
Collapse
|
32
|
Hartmann-Petersen R, Gordon C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 2004; 15:247-59. [PMID: 15209385 DOI: 10.1016/j.semcdb.2003.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to accommodate various cellular substrates.
Collapse
|
33
|
Golab J, Bauer TM, Daniel V, Naujokat C. Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases. Clin Chim Acta 2004; 340:27-40. [PMID: 14734194 DOI: 10.1016/j.cccn.2003.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome pathway constitutes the major system for nuclear and extralysosomal cytosolic protein degradation in eukaryotic cells. A plethora of cell proteins implicated in the maintenance and regulation of essential cellular processes undergoes processing and functional modification by proteolytic degradation via the ubiquitin-proteasome pathway. Deregulations of the pathway have been shown to contribute to the pathogenesis of several human diseases, such as cancer, neurodegenerative, autoimmune, genetic and metabolic disorders, most of them exhibiting abnormal accumulation and altered composition of components of the pathway that is suitable for diagnostic proceedings. While the ubiquitin-proteasome pathway is currently exploited to develop novel therapeutic strategies, it is less regarded as a diagnostic area. Future research should lead to an improved understanding of the pathophysiology of the ubiquitin-proteasome pathway with the aim of allowing the development of subtle diagnostic strategies.
Collapse
Affiliation(s)
- Jakub Golab
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
34
|
Ramsey KL, Smith JJ, Dasgupta A, Maqani N, Grant P, Auble DT. The NEF4 complex regulates Rad4 levels and utilizes Snf2/Swi2-related ATPase activity for nucleotide excision repair. Mol Cell Biol 2004; 24:6362-78. [PMID: 15226437 PMCID: PMC434245 DOI: 10.1128/mcb.24.14.6362-6378.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair factor 4 (NEF4) is required for repair of nontranscribed DNA in Saccharomyces cerevisiae. Rad7 and the Snf2/Swi2-related ATPase Rad16 are NEF4 subunits. We report previously unrecognized similarity between Rad7 and F-box proteins. Rad16 contains a RING domain embedded within its ATPase domain, and the presence of these motifs in NEF4 suggested that NEF4 functions as both an ATPase and an E3 ubiquitin ligase. Mutational analysis provides strong support for this model. The Rad16 ATPase is important for NEF4 function in vivo, and genetic analysis uncovered new interactions between NEF4 and Rad23, a repair factor that links repair to proteasome function. Elc1 is the yeast homologue of a mammalian E3 subunit, and it is a novel component of NEF4. Moreover, the E2s Ubc9 and Ubc13 were linked to the NEF4 repair pathway by genetic criteria. Mutations in NEF4 or Ubc13 result in elevated levels of the DNA damage recognition protein Rad4 and an increase in ubiquitylated species of Rad23. As Rad23 also controls Rad4 levels, these results suggest a complex system for globally regulating repair activity in vivo by controlling turnover of Rad4.
Collapse
Affiliation(s)
- Kerrington L Ramsey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hernandez-Pigeon H, Laurent G, Humbert O, Salles B, Lautier D. Degadration of mismatch repair hMutSalpha heterodimer by the ubiquitin-proteasome pathway. FEBS Lett 2004; 562:40-4. [PMID: 15043999 DOI: 10.1016/s0014-5793(04)00181-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Revised: 01/30/2004] [Accepted: 02/16/2004] [Indexed: 11/24/2022]
Abstract
Mismatch repair plays a critical role in genome stability. This process requires several proteins including hMSH2/hMSH6 (hMutSalpha) heterodimer involved in the first stage of the process, the mispair recognition. We previously reported that in U937 and HL-60 cell lines, hMSH2 and hMSH6 protein expression was much lower than that in HeLa and KG1a cells. Here, we showed that the decreased expression of hMutSalpha results from differences in the degradation rate of both proteins by the ubiquitin-proteasome pathway. Our data suggest that in human cell lines, ubiquitin-proteasome could play an important role in the regulation of hMutSalpha protein expression, thereby regulating mismatch repair activity.
Collapse
Affiliation(s)
- Hélène Hernandez-Pigeon
- INSERM U563, Centre de Physiopathologie Toulouse Purpan, Institut Claudius Regaud, 20 rue du Pont Saint-Pierre, 31052 Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Ryu KS, Lee KJ, Bae SH, Kim BK, Kim KA, Choi BS. Binding surface mapping of intra- and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a. J Biol Chem 2003; 278:36621-7. [PMID: 12832454 DOI: 10.1074/jbc.m304628200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
hHR23B is the human homologue of the yeast protein RAD23 and is known to participate in DNA repair by stabilizing xeroderma pigmentosum group C protein. However, hHR23B and RAD23 also have many important functions related to general proteolysis. hHR23B consists of N-terminal ubiquitin-like (UbL), ubiquitin association 1 (UBA1), xeroderma pigmentosum group C binding, and UBA2 domains. The UBA domains interact with ubiquitin (Ub) and inhibit the assembly of polyubiquitin. On the other hand, the UbL domain interacts with the poly-Ub binding site 2 (PUbS2) domain of the S5a protein, which can carry polyubiquitinated substrates into the proteasome. We calculated the NMR structure of the UbL domain of hHR23B and determined binding surfaces of UbL and Ub to UBA1, UBA2, of hHR23B and PUbS2 of S5a by using chemical shift perturbation. Interestingly, the surfaces of UbL and Ub that bind to UBA1, UBA2, and PUbS2 are similar, consisting of five beta-strands and their connecting loops. This is the first report that an intramolecular interaction between UbL and UBA domains is possible, and this interaction could be important for the control of proteolysis by hHR23B. The binding specificities of UbL and Ub for PUbS1, PUbS2, and general ubiquitin-interacting motifs, which share the LALA motif, were evaluated. The UBA domains bind to the surface of Ub including Lys-48, which is required for multiubiquitin assembly, possibly explaining the observed inhibition of multiubiquitination by hHR23B. The UBA domains bind to UbL through electrostatic interactions supported by hydrophobic interactions and to Ub mainly through hydrophobic interactions supported by electrostatic interactions.
Collapse
Affiliation(s)
- Kyoung-Seok Ryu
- Yusong-Gu, Gusong-Dong 373-1, Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In response to a variety of types of DNA damage, the p53 tumor suppressor gene product is activated and regulates a number of downstream cellular processes such as cell cycle arrest, apoptosis and DNA repair. Recent discoveries concerning the regulation of DNA repair processes by p53, such as nucleotide excision repair (NER) and base excision repair (BER) have paved the way for studies to understand the mechanisms governing p53-dependent DNA repair. Although several theories have been proposed, accumulating evidence points to a transcriptional regulatory role for p53 in NER, mediating expression of the global genomic repair (GGR)-specific damage recognition genes, DDB2 and XPC. In BER, a more direct role for p53 has been proposed, potentially acting through protein-protein interactions with BER specific factors. These advances have greatly enhanced our understanding of the role of p53 in DNA repair and this review comprehensively summarizes current opinions on the mechanisms of p53-dependent DNA repair.
Collapse
Affiliation(s)
- Shanthi Adimoolam
- Department of Medicine (Oncology), Stanford University School of Medicine, 1115 CCSR Building, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|