1
|
Ho CM, Lin KT, Shen R, Gu DL, Lee SS, Su WH, Jou YS. Prognostic comparative genes predict targets for sorafenib combination therapies in hepatocellular carcinoma. Comput Struct Biotechnol J 2022; 20:1752-1763. [PMID: 35495118 PMCID: PMC9024375 DOI: 10.1016/j.csbj.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Large-scale comparative transcriptomics analysis of hepatocellular carcinoma reveals 664 prognostic comparative HCC (pcHCC) genes. pcHCC genes included novel targets with potential utility in sorafenib combination therapies. Knockdown of the selective pcHCC genes NCAPG and CENPW downregulated the p38/STAT3 axis to enhance sorafenib combination treatments.
With the increasing incidence and mortality of human hepatocellular carcinoma (HCC) worldwide, revealing innovative targets to improve therapeutic strategies is crucial for prolonging the lives of patients. To identify innovative targets, we conducted a comprehensive comparative transcriptome analysis of 5,410 human HCCs and 974 mouse liver cancers to identify concordantly expressed genes associated with patient survival. Among the 664 identified prognostic comparative HCC (pcHCC) genes, upregulated pcHCC genes were associated with prognostic clinical features, including large tumor size, vascular invasion and late HCC stages. Interestingly, after validating HCC patient prognoses in multiple independent datasets, we matched the 664 aberrant pcHCC genes with the sorafenib-altered genes in TCGA_LIHC patients and found these 664 pcHCC genes were enriched in sorafenib-related functions, such as downregulated xenobiotic and lipid metabolism and upregulated cell proliferation. Therapeutic agents targeting aberrant pcHCC genes presented divergent molecular mechanisms, including suppression of sorafenib-unrelated oncogenic pathways, induction of sorafenib-unrelated ferroptosis, and modulation of sorafenib transportation and metabolism, to potentiate sorafenib therapeutic effects in HCC combination therapy. Moreover, the pcHCC genes NCAPG and CENPW, which have not been targeted in combination with sorafenib treatment, were knocked down and combined with sorafenib treatment, which reduced HCC cell viability based on disruption to the p38/STAT3 axis, thereby hypersensitizing HCC cells. Together, our results provide important resources and reveal that 664 pcHCC genes represent innovative targets suitable for developing therapeutic strategies in combination with sorafenib based on the divergent synergistic mechanisms for HCC tumor suppression.
Collapse
|
2
|
CISD2 Haploinsufficiency Disrupts Calcium Homeostasis, Causes Nonalcoholic Fatty Liver Disease, and Promotes Hepatocellular Carcinoma. Cell Rep 2017; 21:2198-2211. [DOI: 10.1016/j.celrep.2017.10.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/24/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
|
3
|
Mohana Devi S, Balachandar V, Arun M, Suresh Kumar S, Balamurali Krishnan B, Sasikala K. Analysis of genetic damage and gene polymorphism in hepatocellular carcinoma (HCC) patients in a South Indian population. Dig Dis Sci 2013; 58:759-67. [PMID: 23053887 DOI: 10.1007/s10620-012-2409-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/06/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in many regions of Asia and the etiology of human HCC is clearly multi-factorial. The development of effective markers for the detection of HCC could have an impact on cancer mortality and significant health implications worldwide. The subjects presented here were recruited based on the serum alpha-fetoprotein level, which is an effective marker for HCC. Further, the chromosomal alterations were elucidated using trypsin G-banding. HCCs with p53 mutations have high malignant potential and are used as an indicator for the biological behavior of recurrent HCCs. The functional polymorphism in the XRCC1 gene, which participates in the base-excision repair of oxidative DNA damage, was associated with increased risk of early onset HCC. Thus, in this investigation, the p53 and XRCC1 gene polymorphisms using the standard protocols were also assessed to find out whether these genes may be associated with HCC susceptibility. METHODS Blood samples from HCC patients (n = 93) were collected from oncology clinics in South India. Control subjects (n = 93) who had no history of tumors were selected and they were matched to cases on sex, age, and race. Peripheral blood was analyzed for chromosomal aberrations (CAs) and micronuclei (MN) formation. p53 and XRCC1 genotypes were detected using a PCR-RFLP technique. RESULTS Specific biomarkers on cytogenetic endpoints might help in diagnosis and treatment measures. The frequencies of genotypes between groups were calculated by χ(2) test. A statistically significant (p < 0.05) increase in CA was observed in HCC patients compared to their controls as confirmed by ANOVA and MN shows insignificant results. The study on p53 Arg72Pro and XRCC1 Arg399Gln polymorphism in HCC patients demonstrated differences in allele frequencies compared to their controls. CONCLUSIONS The present study indicates that chromosomal alterations and the genetic variations of p53 and XRCC1 may contribute to inter-individual susceptibility to HCC. A very limited role of genetic polymorphism was investigated in modulating the HCC risk, but the combined effect of these variants may interact to increase the risk of HCC in the South Indian population.
Collapse
Affiliation(s)
- Subramaniam Mohana Devi
- Human Genetics Laboratory, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
4
|
Chang CY, Lin SC, Su WH, Ho CM, Jou YS. Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma. Oncogene 2011; 31:2640-52. [DOI: 10.1038/onc.2011.440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Ding J, Gao Y, Liu R, Xu F, Liu H. Association ofPTENPolymorphisms with Susceptibility to Hepatocellular Carcinoma in a Han Chinese Population. DNA Cell Biol 2011; 30:229-34. [DOI: 10.1089/dna.2010.1126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jun Ding
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Yuzhen Gao
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Rengyu Liu
- Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, P.R. China
| | - Fei Xu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, P.R. China
| |
Collapse
|
6
|
Chien HT, Liao CT, Huang SF, Chen IH, Liu TY, Jou YS, Wang HM, Hsieh LL. Clinical significance of genome-wide minimally deleted regions in oral squamous cell carcinomas. Genes Chromosomes Cancer 2011; 50:358-69. [PMID: 21344537 DOI: 10.1002/gcc.20861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has the highest rate of increase among male cancers in Taiwan. An understanding of the molecular pathogenesis of this disease as well as the development of prognostic markers for the clinical management of this disease is very important. Thus, a systematic loss of heterozygosity (LOH) analysis was performed to define minimally deleted regions (MDRs) in 63 male OSCCs using 400 polymorphic microsatellite markers. For increasing reliability, genomic DNA was extracted from >90% tumor cells that had been purified by LCM, and only when a microsatellite marker provided LOH information in >30% of the OSCCs was there considered to be successful allelotyping. A correlation of the various MDRs with clinicopathological parameters and prognosis was carried out. In total, 32 MDRs were identified and ten were noted as novel. In addition, six MDRs were found to be associated with cigarette smoking. Among these markers, a loss of MDR c7r2 (7q32.2-q35) was significantly associated with poor disease-free survival (DFS) and ten MDRs were associated with allelic imbalance (AI) in tumors. Among the latter, a loss of MDR c14r1 (14q24.2-q32.12) and c11r1 (11q13.4-q25) had a synergistic effect on poor DFS and were able to reduce further the DFS rate in patients with MDR c7r2 loss. Taken together, the results generated in this study provide new insights that help with exploring the molecular mechanisms associated with OSCC tumorigenesis and cigarette smoking. They also should aid the development of potential prognostic markers for the clinical management of OSCC.
Collapse
Affiliation(s)
- Huei-Tzu Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Recent advances in the research of hepatitis B virus-related hepatocellular carcinoma: epidemiologic and molecular biological aspects. Adv Cancer Res 2011; 108:21-72. [PMID: 21034965 DOI: 10.1016/b978-0-12-380888-2.00002-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the commonest cancers worldwide, and more than half of HCC patients are attributable to persistent hepatitis B virus (HBV) infections. The best and cheapest way to prevent HBV-related HCC is the implementation of universal hepatitis B vaccination program, by which the incidence rates of childhood HCC have been reduced in several countries, including Taiwan. However, there are still hundreds of millions of HBV carriers in the world that remain a global health challenge. In the past decade, several hepatitis B viral factors such as serum HBV DNA level, genotype, and naturally occurring mutants have already been identified to influence liver disease progression and HCC development in HBV carriers. Several easy-to-use scoring systems based on clinical and viral characteristics are developed to predict HCC risk in HBV carriers and may facilitate the communication between practicing physicians and patients in clinical practice. In addition, the role of nonviral factors in HBV-related HCC has also been increasingly recognized. On the basis of these emerging data, it is recommended that HBV carriers should be screened and monitored to identify those who have a higher risk of liver disease progression and require antiviral treatments. Regarding the molecular carcinogenesis of HCC development, despite some progress in the research of cell biology of HCC in the past decade, aberrant pathways involved in maintaining HCC phenotypes have not been completely elucidated yet. In the future, through comprehensive and integrated approaches to analyze the genomes of human HCC, novel target genes or pathways critically involved in hepatocarcinogenesis may hopefully be identified.
Collapse
|
8
|
Zhou L, Zhou W, Wu L, Yu X, Xing C, Zheng S. The association of frequent allelic loss on 17p13.1 with early metastatic recurrence of hepatocellular carcinoma after liver transplantation. J Surg Oncol 2011; 102:802-8. [PMID: 20886556 DOI: 10.1002/jso.21743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Identification and characterization of loss of heterozygosity (LOH) can determine putative tumor suppressor genes (TSGs) and provide a variety of molecular markers for hepatocellular carcinoma (HCC). This study aimed to investigate LOH status on chromosomes 4q, 6q, 8p, 9p, and 17p, and to explore their clinical significances in HCC post-liver transplantation. METHODS A total of 37 patients with HCC who underwent liver transplantation were enrolled. LOH was examined using 34 microsatellite markers located on 4q13-3q5, 6q27, 8p22-p23, 9p21-p22, and 17p12-p13. RESULTS The frequency of LOH at each microsatellite locus ranged from 23% to 75%, with a mean value of 53.1%. Frequencies of LOH on 4q, 6q, 8p, 9p, and 17p were 62% (23 of 37), 30% (11 of 37), 49% (18 of 37), 46% (16 of 35), and 68% (25 of 37), respectively. LOHs on certain chromosomal regions were significantly associated with age, AFP level, tumor size, tumor multiplicity, histological grade, and metastatic recurrence. CONCLUSIONS LOH on 17p13.1 correlated to metastatic HCC recurrence, while LOH on 4q and 8p was found to be associated with progression of HCC. Thus, potential novel biomarkers or TSGs for prognosis and treatment of HCC may harbor on these regions.
Collapse
Affiliation(s)
- Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
mDia1 targets v-Src to the cell periphery and facilitates cell transformation, tumorigenesis, and invasion. Mol Cell Biol 2010; 30:4604-15. [PMID: 20679479 DOI: 10.1128/mcb.00197-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The small GTPase Rho regulates cell morphogenesis through remodeling of the actin cytoskeleton. While Rho is overexpressed in many clinical cancers, the role of Rho signaling in oncogenesis remains unknown. mDia1 is a Rho effector producing straight actin filaments. Here we transduced mouse embryonic fibroblasts from mDia1-deficient mice with temperature-sensitive v-Src and examined the involvement and mechanism of the Rho-mDia1 pathway in Src-induced oncogenesis. We showed that in v-Src-transduced mDia1-deficient cells, formation of actin filaments is suppressed, and v-Src in the perinuclear region does not move to focal adhesions upon a temperature shift. Consequently, membrane translocation of v-Src, v-Src-induced morphological transformation, and podosome formation are all suppressed in mDia1-deficient cells with impaired tyrosine phosphorylation. mDia1-deficient cells show reduced transformation in vitro as examined by focus formation and colony formation in soft agar and exhibit suppressed tumorigenesis and invasion when implanted in nude mice in vivo. Given overexpression of c-Src in various cancers, these findings suggest that Rho-mDia1 signaling facilitates malignant transformation and invasion by manipulating the actin cytoskeleton and targeting Src to the cell periphery.
Collapse
|
11
|
Hoshida Y, Toffanin S, Lachenmayer A, Villanueva A, Minguez B, Llovet JM. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 2010; 30:35-51. [PMID: 20175032 PMCID: PMC3668687 DOI: 10.1055/s-0030-1247131] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most lethal cancers worldwide. Strategic decisions for the advancement of molecular therapies in this neoplasm require a clear understanding of its molecular classification. Studies indicate aberrant activation of signaling pathways involved in cellular proliferation (e.g., epidermal growth factor and RAS/mitogen-activated protein kinase pathways), survival (e.g., Akt/mechanistic target of rapamycin pathway), differentiation (e.g., Wnt and Hedgehog pathways), and angiogenesis (e.g., vascular endothelial growth factor and platelet-derived growth factor), which is heterogeneously presented in each tumor. Integrative analysis of accumulated genomic datasets has revealed a global scheme of molecular classification of HCC tumors observed across diverse etiologic factors and geographic locations. Such a framework will allow systematic understanding of the frequently co-occurring molecular aberrations to design treatment strategy for each specific subclass of tumors. Accompanied by a growing number of clinical trials of molecular targeted drugs, diagnostic and prognostic biomarker development will be facilitated with special attention on study design and with new assay technologies specialized for archived fixed tissues. A new class of genomic information, microRNA dysregulation and epigenetic alterations, will provide insight for more precise understanding of disease mechanism and expand the opportunity of biomarker/therapeutic target discovery. These efforts will eventually enable personalized management of HCC.
Collapse
Affiliation(s)
- Yujin Hoshida
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chen S, He Y, Ding J, Jiang Y, Jia S, Xia W, Zhao J, Lu M, Gu Z, Gao Y. An insertion/deletion polymorphism in the 3′ untranslated region of β-transducin repeat-containing protein (βTrCP) is associated with susceptibility for hepatocellular carcinoma in Chinese. Biochem Biophys Res Commun 2010; 391:552-6. [DOI: 10.1016/j.bbrc.2009.11.096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 12/21/2022]
|
13
|
Dong X, Zhou G, Zhai Y, Zhang H, Yang H, Zhi L, Zhang X, Chu J, He F. Association of DLC1 gene polymorphism with susceptibility to hepatocellular carcinoma in Chinese hepatitis B virus carriers. Cancer Epidemiol 2009; 33:265-70. [PMID: 19766077 DOI: 10.1016/j.canep.2009.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Lost or downexpression of the gene deleted in liver cancer 1 (DLC1) has been implicated in the development of hepatocellular carcinoma (HCC). We examined the relationship between DLC1 polymorphisms and HCC risk among Chinese. METHODS Three DLC1 polymorphisms, Ex11+255T>G (rs3739298), Ex11-620G>A (rs532841) and IVS19+108C>T (rs621554), were genotyped in 434 patients with HCC and 480 controls by PCR-RFLP. The associations with the susceptibility to HCC were evaluated while controlling for confounding factors. RESULTS We observed significantly increased susceptibility to HCC for the C/C genotype compared with T/T of IVS19+108C>T in the HBV carriers (OR=2.95, 95% CI, 1.65-5.26, P<0.001). Compared with the haplotype G-A-T (in order of Ex11+255T>G, Ex11-620G>A and IVS19+108C>T), the haplotype T-G-C was also significantly associated with an increased susceptibility to HCC among HBV carriers (OR=2.16, 95% CI, 1.08-4.35, P=0.009). The stratified analysis indicated no modification of the confounding factors on the increased susceptibility to HCC related to the DLC1 polymorphism/haplotype. CONCLUSIONS Our findings suggest that DLC1 genetic polymorphism or haplotype play a role in mediating the susceptibility to HBV-related HCC.
Collapse
Affiliation(s)
- Xiaoqun Dong
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kishnani PS, Chuang TP, Bali D, Koeberl D, Austin S, Weinstein DA, Murphy E, Chen YT, Boyette K, Liu CH, Chen YT, Li LH. Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease. Hum Mol Genet 2009; 18:4781-90. [PMID: 19762333 DOI: 10.1093/hmg/ddp441] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular adenoma (HCA) is a frequent long-term complication of glycogen storage disease type I (GSD I) and malignant transformation to hepatocellular carcinoma (HCC) is known to occur in some cases. However, the molecular pathogenesis of tumor development in GSD I is unclear. This study was conducted to systematically investigate chromosomal and genetic alterations in HCA associated with GSD I. Genome-wide SNP analysis and mutation detection of target genes was performed in ten GSD Ia-associated HCA and seven general population HCA cases for comparison. Chromosomal aberrations were detected in 60% of the GSD Ia HCA and 57% of general population HCA. Intriguingly, simultaneous gain of chromosome 6p and loss of 6q were only seen in GSD Ia HCA (three cases) with one additional GSD I patient showing submicroscopic 6q14.1 deletion. The sizes of GSD Ia adenomas with chromosome 6 aberrations were larger than the sizes of adenomas without the changes (P = 0.012). Expression of IGF2R and LATS1 candidate tumor suppressor genes at 6q was reduced in more than 50% of GSD Ia HCA that were examined (n = 7). None of the GSD Ia HCA had biallelic mutations in the HNF1A gene. These findings give the first insight into the distinct genomic and genetic characteristics of HCA associated with GSD Ia. These results strongly suggest that chromosome 6 alterations could be an early event in the liver tumorigenesis in GSD I, and may be in general population. These results also suggest an interesting relationship between GSD Ia HCA and steps to HCC transformation.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin YW, Yan MD, Shih YL, Hsieh CB. The basal body gene, RPGRIP1L, is a candidate tumour suppressor gene in human hepatocellular carcinoma. Eur J Cancer 2009; 45:2041-9. [DOI: 10.1016/j.ejca.2009.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/31/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
|
16
|
Read R, Hansen G, Kramer J, Finch R, Li L, Vogel P. Ectonucleoside triphosphate diphosphohydrolase type 5 (Entpd5)-deficient mice develop progressive hepatopathy, hepatocellular tumors, and spermatogenic arrest. Vet Pathol 2009; 46:491-504. [PMID: 19176496 DOI: 10.1354/vp.08-vp-0201-r-am] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase type 5 (ENTPD5, also CD39L4) is a soluble enzyme that hydrolyzes purine nucleoside diphosphates. Genetic inactivation of ENTPD5 in mice (Entpd5(-/-)) resulted in 2 major histopathologic lesions: hepatopathy and aspermia. The hepatopathy was progressive and characterized by centrilobular hepatocyte hypertrophy, oval cell proliferation, bile staining of Kupffer cells, and hepatocyte degeneration with increasing incidence and severity of degenerative lesions, development of multiple foci of cellular alteration, and hepatocellular neoplasia with age. Greatly increased proliferation of hepatocytes in young adult as well as aged Entpd5(-/-) mice was demonstrated by Ki67 immunohistochemistry and 5'-bromo-3'-deoxyuridine incorporation. Of 15 Entpd5(-/-) mice between 44 and 69 weeks of age, all showed foci of cellular alteration in the liver, and at least 6 of 15 developed hepatocellular carcinoma (HCC), hepatocellular adenoma, or both. Significantly, none of these lesions were observed in 13 wild-type Entpd5(+/+) littermates. These findings, combined with the historically low incidence (about 5%) of HCC in mice up to 2 years of age with the same genetic background, strongly suggest that loss of Entpd5 promotes hepatocellular neoplasia in mice. In humans, ENTPD5 has been found to be identical to the PCPH proto-oncogene, and dysregulation of this gene has been demonstrated in some human cancers. This mouse model could contribute to the understanding of the influence of ENTPD5/PCPH on cellular proliferation and neoplasia.
Collapse
Affiliation(s)
- R Read
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kim TM, Yim SH, Shin SH, Xu HD, Jung YC, Park CK, Choi JY, Park WS, Kwon MS, Fiegler H, Carter NP, Rhyu MG, Chung YJ. Clinical implication of recurrent copy number alterations in hepatocellular carcinoma and putative oncogenes in recurrent gains on 1q. Int J Cancer 2008; 123:2808-15. [PMID: 18803288 PMCID: PMC2698448 DOI: 10.1002/ijc.23901] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To elucidate the pathogenesis of hepatocellular carcinoma (HCC) and develop useful prognosis predictors, it is necessary to identify biologically relevant genomic alterations in HCC. In our study, we defined recurrently altered regions (RARs) common to many cases of HCCs, which may contain tumor-related genes, using whole-genome array-CGH and explored their associations with the clinicopathologic features. Gene set enrichment analysis was performed to investigate functional implication of RARs. On an average, 23.1% of the total probes were altered per case. Mean numbers of altered probes are significantly higher in high-grade, bigger and microvascular invasion (MVI) positive tumors. In total, 32 RARs (14 gains and 18 losses) were defined and 4 most frequent RARs are gains in 1q21.1-q32.1 (64.5%), 1q32.1-q44 (59.2%), 8q11.21-q24.3 (48.7%) and a loss in 17p13.3-p12 (51.3%). Through focusing on RARs, we identified genes and functional pathways likely to be involved in hepatocarcinogenesis. Among genes in the recurrently gained regions on 1q, expression of KIF14 and TPM3 was significantly increased, suggesting their oncogenic potential in HCC. Some RARs showed the significant associations with the clinical features. Especially, the recurrent loss in 9p24.2-p21.1 and gain in 8q11.21-q24.3 are associated with the high tumor grade and MVI, respectively. Functional analysis showed that cytokine receptor binding and defense response to virus pathways are significantly enriched in high grade-related RARs. Taken together, our results and the strategy of analysis will help to elucidate pathogenesis of HCC and to develop biomarkers for predicting behaviors of HCC.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Blotting, Western
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Chromosome Deletion
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 8
- Humans
- Kinesins/analysis
- Liver Neoplasms/chemistry
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mutagenesis, Insertional
- Neoplasm Recurrence, Local/genetics
- Oncogene Proteins/analysis
- Polymerase Chain Reaction
- Tropomyosin/analysis
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Seon-Hee Yim
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hun Shin
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, Korea
| | - Hai-Dong Xu
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, Korea
| | - Yu-Chae Jung
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Cheol-Keun Park
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea
| | - Jong-Young Choi
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Sang Park
- Department of Pathology, The Catholic University of Korea, Seoul, Korea
| | - Mi-Seon Kwon
- Department of Pathology, College of Medicine, Dankook University Hospital, Cheonan, Korea
| | - Heike Fiegler
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nigel P. Carter
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mun-Gan Rhyu
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Yeun-Jun Chung
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Xue W, Krasnitz A, Lucito R, Sordella R, Vanaelst L, Cordon-Cardo C, Singer S, Kuehnel F, Wigler M, Powers S, Zender L, Lowe SW. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev 2008; 22:1439-44. [PMID: 18519636 DOI: 10.1101/gad.1672608] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Deletions on chromosome 8p are common in human tumors, suggesting that one or more tumor suppressor genes reside in this region. Deleted in Liver Cancer 1 (DLC1) encodes a Rho-GTPase activating protein and is a candidate 8p tumor suppressor. We show that DLC1 knockdown cooperates with Myc to promote hepatocellular carcinoma in mice, and that reintroduction of wild-type DLC1 into hepatoma cells with low DLC1 levels suppresses tumor growth in situ. Cells with reduced DLC1 protein contain increased GTP-bound RhoA, and enforced expression a constitutively activated RhoA allele mimics DLC1 loss in promoting hepatocellular carcinogenesis. Conversely, down-regulation of RhoA selectively inhibits tumor growth of hepatoma cells with disabled DLC1. Our data validate DLC1 as a potent tumor suppressor gene and suggest that its loss creates a dependence on the RhoA pathway that may be targeted therapeutically.
Collapse
Affiliation(s)
- Wen Xue
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Hepatocarcinogenesis is a multistep process evolving from normal through chronic hepatitis/cirrhosis and dysplastic nodules to HCC. With advances in molecular methods, there is a growing understanding of the molecular mechanisms in hepatocarcinogenesis. Hepatocarcinogenesis is strongly linked to increases in allelic losses, chromosomal changes, gene mutations, epigenetic alterations and alterations in molecular cellular pathways. Some of these alterations are accompanied by a stepwise increase in the different pathological disease stages in hepatocarcinogenesis. Overall, a detailed understanding of the underlying molecular mechanisms involved in the progression of HCC is of fundamental importance to the development of effective prevention and treatment regimes for HCC.
Collapse
Affiliation(s)
- Chun-Ming Wong
- SH Ho Foundation Research Laboratory, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
20
|
Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Jacob-Hirsch J, Amariglio N, Rechavi G, Domany E, Galun E, Goldenberg D. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 2007; 5:1159-70. [PMID: 18025261 DOI: 10.1158/1541-7786.mcr-07-0172] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mouse models of hepatocellular carcinoma (HCC) simulate specific subgroups of human HCC. We investigated hepatocarcinogenesis in Mdr2-knockout (Mdr2-KO) mice, a model of inflammation-associated HCC, using gene expression profiling and immunohistochemical analyses. Gene expression profiling showed that although Mdr2-KO mice differ from other published murine HCC models, they share several important deregulated pathways and many coordinately differentially expressed genes with human HCC data sets. Analysis of genome positions of differentially expressed genes in liver tumors revealed a prolonged region of down-regulated genes on murine chromosome 8 in three of the six analyzed tumor samples. This region is syntenic to human chromosomal regions that are frequently deleted in human HCC and harbor multiple tumor suppressor genes. Real-time reverse transcription-PCR analysis of 16 tumor samples confirmed down-regulation of several tumor suppressors in most tumors. We show that in the aged Mdr2-KO mice, cyclin D1 nuclear level is increased in dysplastic hepatocytes that do not form nodules; however, it is decreased in most dysplastic nodules and in liver tumors. We found that this decrease is mostly at the protein, rather than the mRNA, level. These findings raise the question on the role of cyclin D1 at early stages of hepatocarcinogenesis in the Mdr2-KO HCC model. Furthermore, we show that most liver tumors in Mdr2-KO mice were characterized by the absence of beta-catenin activation. In conclusion, the Mdr2-KO mouse may serve as a model for beta-catenin-negative subgroup of human HCCs characterized by low nuclear cyclin D1 levels in tumor cells and by down-regulation of multiple tumor suppressor genes.
Collapse
Affiliation(s)
- Mark Katzenellenbogen
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Kiryat Hadassah, P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Schutter H, Spaepen M, Mc Bride WH, Nuyts S. The clinical relevance of microsatellite alterations in head and neck squamous cell carcinoma: a critical review. Eur J Hum Genet 2007; 15:734-41. [PMID: 17473833 DOI: 10.1038/sj.ejhg.5201845] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triggered by the existing confusion in the field, the current paper aimed to review the current knowledge of both microsatellite instability (MSI) and loss of heterozygosity (LOH) detected by microsatellite markers in head and neck squamous cell carcinoma (HNSCC), and to provide the reader with an assessment of their prognostic and predictive value in this tumor type. For both MSI and LOH, various detection methods were included such as mono- and polynucleotidemarkers and gel- as well as automated analyses. Only studies based on PCR techniques with microsatellite markers were considered. Taking the methodological problems occurring in investigations with microsatellite markers into account, LOH seems to be more common than MSI in HNSCC. Although both types of microsatellite alterations have been correlated with clinicopathological features of this tumor type, only LOH seems to have a clear prognostic value. The predictive value of both MSI and LOH is debatable. More research has to be performed to clearly establish LOH detection as a translational application in the HNSCC field, aiming to predict response to treatments or outcome, and eventually to use as a therapeutic target.
Collapse
Affiliation(s)
- Harlinde De Schutter
- Department of Radiation Oncology, Lab of Experimental Radiotherapy, UH Gasthuisberg, Leuven, Belgium.
| | | | | | | |
Collapse
|
22
|
Huijsmans R, Damen J, van der Linden H, Hermans M. Single nucleotide polymorphism profiling assay to confirm the identity of human tissues. J Mol Diagn 2007; 9:205-13. [PMID: 17384212 PMCID: PMC1867440 DOI: 10.2353/jmoldx.2007.060059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify issues of sample mix-ups, various molecular techniques are currently used. These techniques, however, are time consuming and require experience and/or DNA sequencing equipment or have a relatively high risk of errors because of contamination. Therefore, a quick and straightforward single nucleotide polymorphism (SNP) profiling assay was developed to link human tissues to a source. SNPs are common sequence variations in the human genome, and each individual has a unique combination of these nucleotide variations. Using potentially mislabeled paraffin-embedded tissues, DNA was extracted and SNP profiles were determined by real-time polymerase chain reaction analysis of the purified DNA using a selection of 10 commercially available SNP amplification assays. These profiles were compared with profiles of the supposed owners. All issues (34 in total) of potential sample mix-ups during the last 3 years were adequately solved, with six cases described here. The SNP profiling assay provides a quick (within 24 hours), easy, and reliable way to link human samples to a source, without polymerase chain reaction postprocessing. The chance for two randomly chosen individuals to have an identical profile is 1 in 18,000. Solving potential sample mix-ups will secure downstream evaluations and critical decisions concerning the patients involved.
Collapse
Affiliation(s)
- Ronald Huijsmans
- Multidisciplinary Laboratory of Molecular Diagnostics, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | | | | |
Collapse
|
23
|
Chou HC, Chen CH, Lee HS, Lee CZ, Huang GT, Yang PM, Lee PH, Sheu JC. Alterations of tumour suppressor gene PPP2R1B in hepatocellular carcinoma. Cancer Lett 2007; 253:138-43. [PMID: 17324501 DOI: 10.1016/j.canlet.2007.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 12/20/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
To evaluate whether the tumour suppressor gene, PPP2R1B, is involved in pathogenesis of hepatocellular carcinoma (HCC), reverse transcription-polymerase chain reaction (RT-PCR) and cDNA sequencing were performed. Eleven of 38 (29%) tumours and 1 of 34 (3%) corresponding non-tumour tissues showed coexpression of wild-type and aberrant mRNA. Various deletions were found in aberrant transcripts. Southern blot analysis did not show gene deletion in tumours, suggesting abnormal RNA splicing may be involved. These data suggest the possibility that aberrant transcripts of PPP2R1B might be associated with the development of HCC.
Collapse
Affiliation(s)
- Huei-Chi Chou
- Department of Internal Medicine, National, Taiwan University Hospital and National Taiwan University College of Medicine, 7 Chung-Shan South Road, Taipei 10016, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Su WH, Chao CC, Yeh SH, Chen DS, Chen PJ, Jou YS. OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucleic Acids Res 2006; 35:D727-31. [PMID: 17098932 PMCID: PMC1669730 DOI: 10.1093/nar/gkl845] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The OncoDB.HCC (http://oncodb.hcc.ibms.sinica.edu.tw) is based on physical maps of rodent and human genomes containing quantitative trait loci of rodent HCC models and various human HCC somatic aberrations including chromosomal data from loss of heterozygosity and comparative genome hybridization analyses, altered expression of genes from microarray and proteomic studies, and finally experimental data of published HCC genes. Comprehensive integration of HCC genomic aberration data avoids potential pitfalls of data inconsistency from single genomic approach and provides lines of evidence to reveal somatic aberrations from levels of DNA, RNA to protein. Twenty-nine of 30 (96.7%) novel HCC genes with significant altered expressions in compared between tumor and adjacent normal tissues were validated by RT-PCR in 45 pairs of HCC tissues and by matching expression profiles in 57 HCC patients of re-analyzed Stanford HCC microarray data. Comparative mapping of HCC loci in between human aberrant chromosomal regions and QTLs of rodent HCC models revealed 12 syntenic HCC regions with 2 loci effectively narrowed down to 2 Mb. Together, OncoDB.HCC graphically presents comprehensive HCC data integration, reveals important HCC genes and loci for positional cloning and functional studies, and discloses potential molecular targets for improving HCC diagnosis and therapy.
Collapse
Affiliation(s)
- Wen-Hui Su
- Graduate Institute of Life Sciences, National Defense Medical CenterNational Defense University, Taipei 114, Taiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | | | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University HospitalTaipei, Taiwan
| | - Ding-Shinn Chen
- Hepatitis Research Center, Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center, Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yuh-Shan Jou
- Graduate Institute of Life Sciences, National Defense Medical CenterNational Defense University, Taipei 114, Taiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
- To whom correspondence should be addressed. Tel: +886 2 26523521; Fax: +886 2 27827654;
| |
Collapse
|
25
|
Staub E, Gröne J, Mennerich D, Röpcke S, Klamann I, Hinzmann B, Castanos-Velez E, Mann B, Pilarsky C, Brümmendorf T, Weber B, Buhr HJ, Rosenthal A. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol Cancer 2006; 5:37. [PMID: 16982006 PMCID: PMC1601966 DOI: 10.1186/1476-4598-5-37] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/18/2006] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. RESULTS We investigated genome-wide gene expression in colorectal carcinoma (CRC) and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes) are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. CONCLUSION An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin) also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.
Collapse
Affiliation(s)
- Eike Staub
- Max Planck Institute for Molecular Genetics, Dept. of Computational Molecular Biology., Berlin, Germany
- Present address: ALTANA Pharma AG, Preclinical Research Bioinformatics, Konstanz, Germany
| | - Jörn Gröne
- Dept. of General, Vascular and Thoracic Surgery, Charité – Campus Benjamin Franklin, Berlin, Germany
| | - Detlev Mennerich
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- metaGen Pharmaceuticals i.L., Berlin, Germany
| | - Stefan Röpcke
- Max Planck Institute for Molecular Genetics, Dept. of Computational Molecular Biology., Berlin, Germany
- Present address: ALTANA Pharma AG, Preclinical Research Bioinformatics, Konstanz, Germany
| | - Irina Klamann
- HELIOS Hospital Emil von Behring, Institute of Pathology, Berlin, Germany
| | | | | | - Benno Mann
- Department of Surgery, Augusta-Kranken-Anstalt GmbH, Bochum, Germany
| | - Christian Pilarsky
- Dept. of Visceral, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Germany
| | - Thomas Brümmendorf
- metaGen Pharmaceuticals i.L., Berlin, Germany
- Present address: Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Birgit Weber
- metaGen Pharmaceuticals i.L., Berlin, Germany
- Present address: immatics biotechnologies GmbH, Tübingen, Germany
| | - Heinz-Johannes Buhr
- Dept. of General, Vascular and Thoracic Surgery, Charité – Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
26
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1755-1761. [DOI: 10.11569/wcjd.v14.i18.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Midorikawa Y, Yamamoto S, Ishikawa S, Kamimura N, Igarashi H, Sugimura H, Makuuchi M, Aburatani H. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 2006; 25:5581-90. [PMID: 16785998 DOI: 10.1038/sj.onc.1209537] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Genomic amplification of oncogenes and inactivation of suppressor genes are critical in the pathogenesis of human cancer. To identify chromosomal alterations associated with hepatocarcinogenesis, we performed allelic gene dosage analysis on 36 hepatocellular carcinomas (HCCs). Data from high-density single-nucleotide polymorphism arrays were analysed using the Genome Imbalance Map (GIM) algorithm, which simultaneously detects DNA copy number alterations and loss of heterozygosity (LOH) events. Genome Imbalance Map analysis identified allelic imbalance regions, including uniparental disomy, and predicted the coexistence of a heterozygous population of cancer cells. We observed that gains of 1q, 5p, 5q, 6p, 7q, 8q, 17q and 20q, and LOH of 1p, 4q, 6q, 8p, 10q, 13q, 16p, 16q and 17p were significantly associated with HCC. On 6q24-25, which contains imprinting gene clusters, we observed reduced levels of PLAGL1 expression owing to loss of the unmethylated allele. Finally, we integrated the copy number data with gene expression intensity, and found that genome dosage is correlated with alteration in gene expression. These observations indicated that high-resolution GIM analysis can accurately determine the localizations of genomic regions with allelic imbalance, and when integrated with epigenetic information, a mechanistic basis for inactivation of a tumor suppressor gene in HCC was elucidated.
Collapse
Affiliation(s)
- Y Midorikawa
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fong CW, Chua MS, McKie AB, Ling SHM, Mason V, Li R, Yusoff P, Lo TL, Leung HY, So SKS, Guy GR. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 2006; 66:2048-58. [PMID: 16489004 DOI: 10.1158/0008-5472.can-05-1072] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Sprouty proteins are increasingly being recognized to be deregulated in various types of cancers. This deregulation is often associated with aberrant signaling of receptor tyrosine kinases and its downstream effectors, leading to the mitogen-activated protein kinase (MAPK) signaling pathway. In human hepatocellular carcinoma, where the MAPK activity is enhanced via multiple hepatocarcinogenic factors, we observed a consistent reduced expression of the sprouty 2 (Spry2) transcript and protein in malignant hepatocytes compared with normal or cirrhotic hepatocytes. The expression pattern of Spry2 in hepatocellular carcinoma resembles that of several potential tumor markers of hepatocellular carcinoma and also that of several angiogenic factors and growth factor receptors. In contrast to previous studies of Spry2 down-regulation in other cancers, we have ruled out loss of heterozygosity or the methylation of promoter sites, two common mechanisms responsible for the silencing of genes with tumor suppressor properties. Functionally, we show that Spry2 inhibits both extracellular signal-regulated kinase signaling as well as proliferation in hepatocellular carcinoma cell lines, whereas knocking down Spry2 levels in NIH3T3 cells causes mild transformation. Our study clearly indicates a role for Spry2 in hepatocellular carcinoma, and an understanding of the regulatory controls of its expression could provide new means of regulating the angiogenic switch in this hypervascular tumor, thereby potentially controlling tumor growth.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Methylation
- Down-Regulation
- Fibroblast Growth Factors/pharmacology
- Gene Expression Profiling
- Genes, Tumor Suppressor
- Hepatocyte Growth Factor/pharmacology
- Humans
- Intracellular Signaling Peptides and Proteins
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Loss of Heterozygosity
- MAP Kinase Signaling System/physiology
- Membrane Proteins
- Mice
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- NIH 3T3 Cells
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- Proteins/genetics
- Proteins/metabolism
- Proteins/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Chee Wai Fong
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Barone M, Spano D, D’Apolito M, Centra M, Lasalandra C, Capasso M, Di Leo A, Volinia S, Arcelli D, Rosso N, Francavilla A, Tiribelli C, Iolascon A. Gene expression analysis in HBV transgenic mouse liver: a model to study early events related to hepatocarcinogenesis. Mol Med 2006; 12:115-123. [PMID: 16953557 PMCID: PMC1578771 DOI: 10.2119/2006-00015.barone] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 05/06/2006] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the major etiological factors responsible for the development of hepatocellular carcinoma (HCC). We used a transgenic mouse, containing HBV sequences, as a model system to unravel the molecular mechanisms of hepatocarcinogenesis induced by HBV. We chose this animal model because it consistently develops liver cancer after intermediate steps that mimic the natural history of HBV infection in humans. In this study, we focus our attention on the early events leading to liver cancer. We compared the gene expression profile of 3-month-old transgenic mice with that of 3-month-old wild-type (wt) animals. In the transgenic mouse, microarray data analysis showed a total of 45 significantly differentially expressed genes, 25 highly expressed (fold change > or =2; P = 0.0025), and 20 downregulated (fold change < or =0.5; P = 0.0025). These genes belong to several different functional categories such as the regulation of immunological response, transcription, intracellular calcium ion mobilization, regulation of cell cycle and proliferation, NF-kappab signal transduction cascades, and apoptosis. In particular, the upregulation of the antiapoptotic gene NuprI and the downregulation of the proapoptotic gene Bnip3 were found. This observation was supported by an in vitro apoptosis assay that showed downregulation of apoptosis in hepatocytes of HBV transgenic mouse compared with wt mice treated with staurosporine. In conclusion, our experimental approach allowed identification of new genes modulated by HBV and showed that the apoptotic process was deregulated in transgenic mouse hepatocytes. These data shed light on one possible mechanism by which HBV induces hepatocarcinogenesis.
Collapse
Affiliation(s)
- Michele Barone
- Sezione di Gastroenterologia, Dipartimento di Emergenza e di Trapianto d’Organo (D.E.T.O.), Università di Bari, Bari, Italia
| | - Daniela Spano
- CEINGE Biotecnologie Avanzate s.c.ra.l., Napoli, Italia
| | - Maria D’Apolito
- Laboratorio di Medicina Molecolare, Dipartimento di Scienze Mediche e del Lavoro, Università di Foggia, Foggia, Italia
| | - Marta Centra
- Laboratorio di Medicina Molecolare, Dipartimento di Scienze Mediche e del Lavoro, Università di Foggia, Foggia, Italia
| | - Carla Lasalandra
- Laboratorio di Medicina Molecolare, Dipartimento di Scienze Mediche e del Lavoro, Università di Foggia, Foggia, Italia
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate s.c.ra.l., Napoli, Italia
| | - Alfredo Di Leo
- Sezione di Gastroenterologia, Dipartimento di Emergenza e di Trapianto d’Organo (D.E.T.O.), Università di Bari, Bari, Italia
| | - Stefano Volinia
- Dipartimento di Morfologia ed Embriologia, Università di Ferrara, Ferrara, Italia
| | - Diego Arcelli
- Dipartimento di Morfologia ed Embriologia, Università di Ferrara, Ferrara, Italia
| | - Natalia Rosso
- Centro Studi Fegato, AREA Science Park, Campus Basovizza Bldg Q, Università di Trieste, Trieste, Italia
| | - Antonio Francavilla
- Sezione di Gastroenterologia, Dipartimento di Emergenza e di Trapianto d’Organo (D.E.T.O.), Università di Bari, Bari, Italia
| | - Claudio Tiribelli
- Centro Studi Fegato, AREA Science Park, Campus Basovizza Bldg Q, Università di Trieste, Trieste, Italia
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate s.c.ra.l., Napoli, Italia
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli, Napoli, Italia
| |
Collapse
|
30
|
Chen CF, Yeh SH, Chen DS, Chen PJ, Jou YS. Molecular genetic evidence supporting a novel human hepatocellular carcinoma tumor suppressor locus at 13q12.11. Genes Chromosomes Cancer 2005; 44:320-8. [PMID: 16075462 DOI: 10.1002/gcc.20247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A novel 1-cM (1.8 Mb) homozygous deletion (HD) on 13q12.11 was identified in a human hepatocellular carcinoma (HCC) cell line, SK-Hep-1, after high-density genetic marker scan and Southern blotting analysis. A loss of heterozygosity (LOH) analysis indicated that LOH frequency of the HD region in 48 pairs of HCC tissues was 52%. Interestingly, the occurrence of LOH in the 13q12.11 HD region is significantly associated with early-onset HCC, inferred from Fisher's exact test (P = 0.0047) and Mann-Whitney test (P = 0.023). Since the novel 1-cM (1.8 Mb) HD region is gene-rich with more than 37 predicted transcripts, we used a candidate gene approach by examining down-regulation of known tumor suppressor genes (TSGs), including LATS2, TG737, CRYL1, and GJB2, in HCC tissues. We detected only 14% down-regulation of the LAST2 gene that flanks the outside of the HD, in HCC tissues, by quantitative RT-PCR assays. However, we observed significant down-regulation of the TG737, CRYL1, and GJB2 genes located within the HD in 59, 64, and 71% of HCC tissues, respectively. Together, our results indicated that the identified 13q12.11 HD region contained at least three significant down-regulated TSGs, and preferential LOH in early-onset HCC patients is a putative tumor suppressor locus in HCC.
Collapse
Affiliation(s)
- Chian-Feng Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, National Defense University Taipei, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P, Kanai Y, Kosuge T, Fukayama M, Kondo T, Sakamoto M, Hosoda F, Ohki M, Imoto I, Inazawa J, Hirohashi S. Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 2005; 43:863-74. [PMID: 16139920 DOI: 10.1016/j.jhep.2005.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIMS We conducted an analysis of chromosomal numerical aberrations and their clinical significance in hepatocellular carcinoma. METHODS We analyzed 87 hepatocellular carcinomas by array-based comparative genomic hybridization with an array containing 800 bacterial artificial chromosome clones. RESULTS Frequent (>30%) chromosomal losses on 1p36.1, 4q21-25, 4q34-35.1, 8p23.3b-11.1, 13q14.1-14.3, 16p13.3, 16q22.1-24.3b, 17p13.3-13.1 and 17p13.3-11, and gains on 1q21-44f, 2q21.2, 2q34, 3q11.2, 5p14.2, 5q13.2-14, 7p22, 7p14.2, 7q21.1, 7q22.3, 7q34, 8q12-24.3 and 17q23, were observed. Recurrent (>5%) amplifications were detected on 1q25, 8q11 and 11q11, and we discovered a novel homozygous deletion at 14q32.11. The extent of chromosomal aberrations correlated significantly with various clinicopathological characteristics of the tumors, and increased in a stepwise manner with the progression of hepatocellular carcinoma. We also identified novel chromosomal alterations that were significantly associated with a range of malignant phenotypes. Multivariate analysis revealed that both chromosomal loss on 17p13.3 and gain on 8q11 are independent prognostic indicators. CONCLUSIONS Our results contribute to a complete description of genomic structural aberrations in relation to hepatocarcinogenesis and provide a valuable basis from which we can begin to understand the characteristics of tumors, predict patient outcomes and discover novel therapeutic targets for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hiroto Katoh
- Pathology Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Specific chromosome aberrations are frequently detected during the development of hepatocellular carcinoma. Molecular cytogenetic approaches such as comparative genomic hybridization and loss of heterozygosity analyses have provided fruitful information on changes in HCC cases at the genomic level. Mapping of chromosome gains and losses have frequently resulted in the identification of oncogenes and tumor suppressors, respectively. In this review, we summarize some frequently detected chromosomal aberrations reported for hepatocellular carcinoma cases using comparative genomic hybridization and loss of heterozygosity studies. Focus will be on gains of 1q, 8q, and 20q, and losses of 4q, 8p, 13q, 16q, and 17p. We then examine the candidate oncogenes and tumor suppressors located within these regions, and explore their possible functions in hepatocarcinogenesis. Finally, the impact of microarray-based screening platforms will be discussed.
Collapse
Affiliation(s)
- Sze-hang Lau
- Department of Clinical Oncology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
33
|
Chang YH, Su WH, Lee TC, Sun HFS, Chen CH, Pan WH, Tsai SF, Jou YS. TPMD: a database and resources of microsatellite marker genotyped in Taiwanese populations. Nucleic Acids Res 2005; 33:D174-7. [PMID: 15608171 PMCID: PMC540056 DOI: 10.1093/nar/gki102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Taiwan Polymorphic Marker Database (TPMD) (http://tpmd.nhri.org.tw/) is a marker database designed to provide experimental details and useful marker information allelotyped in Taiwanese populations accompanied by resources and technical supports. The current version deposited more than 372 000 allelotyping data from 1425 frequently used and fluorescent-labeled microsatellite markers with variation types of dinucleotide, trinucleotide and tetranucleotide. TPMD contains text and map displays with searchable and retrievable options for marker names, chromosomal location in various human genome maps and marker heterozygosity in populations of Taiwanese, Japanese and Caucasian. The integration of marker information in map display is useful for the selection of high heterozygosity and commonly used microsatellite markers to refine mapping of diseases locus followed by identification of disease gene by positional candidate cloning. In addition, our results indicated that the number of markers with heterozygosity over 0.7 in Asian populations is lower than that in Caucasian. To increase accuracy and facilitate genetic studies using microsatellite markers, we also list markers with genotyping difficulty due to ambiguity of allele calling and recommend an optimal set of microsatellite markers for genotyping in Taiwanese, and possible extension of genotyping in other Mongoloid populations.
Collapse
Affiliation(s)
- Ya-Hui Chang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tseng RC, Chang JW, Hsien FJ, Chang YH, Hsiao CF, Chen JT, Chen CY, Jou YS, Wang YC. Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer 2005; 117:241-7. [PMID: 15900585 DOI: 10.1002/ijc.21178] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We extensively allelotyped a panel of 71 microdissected primary surgically resected non small cell lung cancer (NSCLC) tumors to identify chromosomal regions that are likely to contain tumor suppressor genes (TSGs) or associated with clinicopathologic and prognostic effects. Loss of heterozygosity (LOH) was detected by genotyping of 177 microsatellite markers and correlation of LOH with clinicopathologic parameters and prognosis was analyzed. Twenty markers showed an LOH frequency greater than 48%, and 8 of them (2p23.3, 2p24.3, 2q35, 6p22.2, 7p14.3, 7p22.2, 17q24.3 and 21q22.3) were novel in NSCLC. The high LOH regions were confirmed by further aligning continuous LOH regions from another set of 24 NSCLC tissues and defining 7 minimal deletion regions ranging from 1.29 to 12.26 cM. The aberrations of 8 markers showed a significant correlation with alteration of p16 and Rb proteins, suggesting the gene(s) located in the chromosomal loss that may interact with p16/Rb pathway. In addition, markers specifically associated with smoking, histology types and tumor stages were identified and the linked candidate TSGs were suggested. For example, marker D1S1612 closely linked with Mig-6 gene was associated with smoking patients, squamous cell carcinoma patients and late-stage patients. Furthermore, 3 markers, D2S2968, D6S2439 and D7S1818, were significantly associated with poor prognosis of NSCLC patients using both univariate and multivariate Cox's regression analyses (p = 0.035, 0.022 and 0.006, respectively). These markers can potentially be used for early lung cancer detection, outcome measurement and the positional cloning of new TSGs whose loss of function contributes to NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Ruo-Chia Tseng
- Department of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|