1
|
Park J, Lee SY, Jeon Y, Kim KM, Lee JK, Ko J, Park EJ, Yoon JS, Kang BE, Ryu D, Lee H, Shin SJ, Go H, Lee CW. The Pellino1-PKCθ signaling axis is an essential target for improving anti-tumor CD8+ T-lymphocyte function. Cancer Immunol Res 2022; 10:327-342. [DOI: 10.1158/2326-6066.cir-21-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
|
2
|
Dermawan JK, Rubin BP. Molecular Pathogenesis of Gastrointestinal Stromal Tumor: A Paradigm for Personalized Medicine. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:323-344. [PMID: 34736340 DOI: 10.1146/annurev-pathol-042220-021510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three to four decades, the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) has been elucidated in great detail. In this review, we discuss the biological genesis of GISTs, identification of the various primary activating driver mutations (focusing on KIT and PDGFRA), oncogene addiction and targeted therapies with imatinib and other tyrosine kinase inhibitors, and the subsequent characterization of the various mechanisms of drug resistance. We illustrate how GIST has become a quintessential paradigm for personalized medicine. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| |
Collapse
|
3
|
Wang Y, Gao N, Feng Y, Cai M, Li Y, Xu X, Zhang H, Yao D. Protein kinase C theta (Prkcq) affects nerve degeneration and regeneration through the c-fos and c-jun pathways in injured rat sciatic nerves. Exp Neurol 2021; 346:113843. [PMID: 34418453 DOI: 10.1016/j.expneurol.2021.113843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous finding using DNA microarray and bioinformatics analysis, we have reported some key factors which regulated gene expression and signaling pathways in injured sciatic nerve during Wallerian Degeneration (WD). This research is focused on protein kinase C theta (Prkcq) participates in the regulation of the WD process. METHODS In this study, we explored the molecular mechanism by which Prkcq in Schwann cells (SCs) affects nerve degeneration and regeneration in vivo and in vitro after rat sciatic nerve injury. RESULTS Study of the cross-sectional model showed that Prkcq expression decreased significantly during sciatic nerve repair. Functional analysis showed that upregulation and downregulation of Prkcq could affect the proliferation, migration and apoptosis of Schwann cells and lead to the expression of related factors through the activation of the β-catenin, c-fos, and p-c-jun/c-jun pathways. CONCLUSION The study provides insights into the role of Prkcq in early WD during peripheral nerve degeneration and/or regeneration.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Nannan Gao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yumei Feng
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuting Li
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Xi Xu
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Huanhuan Zhang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
4
|
Anjali A, Tamgadge S, Pereira T, Vidhale RG, Sudhamani S. Polymorphous adenocarcinoma transforming to Adenoid cystic carcinoma - A case report. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2021. [DOI: 10.1016/j.adoms.2021.100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
5
|
Ye S, Sharipova D, Kozinova M, Klug L, D'Souza J, Belinsky MG, Johnson KJ, Einarson MB, Devarajan K, Zhou Y, Litwin S, Heinrich MC, DeMatteo R, von Mehren M, Duncan JS, Rink L. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight 2021; 6:143474. [PMID: 33320833 PMCID: PMC7934848 DOI: 10.1172/jci.insight.143474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Management of gastrointestinal stromal tumors (GISTs) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of RTK inhibitors in advanced disease. Stratification of GISTs into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GISTs, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GISTs requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases essential in GISTs. Using multiplexed inhibitor beads and mass spectrometry, we explored the majority of the kinome in GIST specimens from the 3 most common molecular subtypes (KIT mutant, PDGFRA mutant, and succinate dehydrogenase deficient) to identify kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2/M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT mutant and PDGFRA mutant GIST cell lines as well as notable efficacy of MK-1775 as a monotherapy in the engineered PDGFRA mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.
Collapse
Affiliation(s)
- Shuai Ye
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Dinara Sharipova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Marya Kozinova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Lilli Klug
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Jimson D'Souza
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Martin G Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Samuel Litwin
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Michael C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Ronald DeMatteo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Liu P, Tan F, Liu H, Li B, Lei T, Zhao X. The Use of Molecular Subtypes for Precision Therapy of Recurrent and Metastatic Gastrointestinal Stromal Tumor. Onco Targets Ther 2020; 13:2433-2447. [PMID: 32273716 PMCID: PMC7102917 DOI: 10.2147/ott.s241331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor in the digestive tract. Tyrosine kinase inhibitors (TKIs), represented by imatinib, sunitinib, and regorafenib, have become the main treatment for recurrent and metastatic GISTs. With the wide application of mutation analysis and the precision medicine, molecular characteristics have been determined that not only predict the prognosis of patients with recurrent and metastatic GISTs, but also are closely related to the efficacy of first-, second- and third-line TKIs for GISTs, as well as other TKIs. Despite the significant effects of TKIs, the emergence of primary and secondary resistance ultimately leads to treatment failure and tumor progression. Currently, due to the signal transmission of KIT/PDGFRA during onset and tumor progression, strategies to counteract drug resistance include the replacement of TKIs and the development of new drugs that are directed towards carcinogenic mutations. In addition, it is also the embodiment of precision medicine for GISTs to explore new carcinogenic mechanisms and develop new drugs relying on new biotechnology. Surgery can benefit specific patients but its major purpose is to diminish the resistant clones. However, the prognosis of recurrent and metastatic patients is still unsatisfactory. Therefore, it is worth paying attention to how to maximize the benefits for patients.
Collapse
Affiliation(s)
- Peng Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha410008, Hunan, People’s Republic of China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Xianhui Zhao
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| |
Collapse
|
7
|
Ou WB, Ni N, Zuo R, Zhuang W, Zhu M, Kyriazoglou A, Wu D, Eilers G, Demetri GD, Qiu H, Li B, Marino-Enriquez A, Fletcher JA. Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene 2019; 38:6615-6629. [PMID: 31371779 DOI: 10.1038/s41388-019-0894-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Oncogenic KIT or PDGFRA tyrosine kinase mutations are compelling therapeutic targets in most gastrointestinal stromal tumors (GISTs), and the KIT inhibitor, imatinib, is therefore standard of care for patients with metastatic GIST. However, some GISTs lose expression of KIT oncoproteins, and therefore become KIT-independent and are consequently resistant to KIT-inhibitor drugs. We identified distinctive biologic features in KIT-independent, imatinib-resistant GISTs as a step towards identifying drug targets in these poorly understood tumors. We developed isogenic GIST lines in which the parental forms were KIT oncoprotein-dependent, whereas sublines had loss of KIT oncoprotein expression, accompanied by markedly downregulated expression of the GIST biomarker, protein kinase C-theta (PRKCQ). Biologic mechanisms unique to KIT-independent GISTs were identified by transcriptome sequencing, qRT-PCR, immunoblotting, protein interaction studies, knockdown and expression assays, and dual-luciferase assays. Transcriptome sequencing showed that cyclin D1 expression was extremely low in two of three parental KIT-dependent GIST lines, whereas cyclin D1 expression was high in each of the KIT-independent GIST sublines. Cyclin D1 inhibition in KIT-independent GISTs had anti-proliferative and pro-apoptotic effects, associated with Rb activation and p27 upregulation. PRKCQ, but not KIT, was a negative regulator of cyclin D1 expression, whereas JUN and Hippo pathway effectors YAP and TAZ were positive regulators of cyclin D1 expression. PRKCQ, JUN, and the Hippo pathway coordinately regulate GIST cyclin D1 expression. These findings highlight the roles of PRKCQ, JUN, Hippo, and cyclin D1 as oncogenic mediators in GISTs that have converted, during TKI-therapy, to a KIT-independent state. Inhibitors of these pathways could be effective therapeutically for these now untreatable tumors.
Collapse
Affiliation(s)
- Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China. .,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Rui Zuo
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Weihao Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Meijun Zhu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anastasios Kyriazoglou
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Duolin Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Grant Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - George D Demetri
- Ludwig Center at Dana-Farber/Harvard Cancer Center and Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Haibo Qiu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Li
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Adrian Marino-Enriquez
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Wu CE, Tzen CY, Wang SY, Yeh CN. Clinical Diagnosis of Gastrointestinal Stromal Tumor (GIST): From the Molecular Genetic Point of View. Cancers (Basel) 2019; 11:cancers11050679. [PMID: 31100836 PMCID: PMC6563074 DOI: 10.3390/cancers11050679] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) originating from the interstitial cells of Cajal are mesenchymal tumors of the gastrointestinal tract and have been found to harbor c-KIT mutations and KIT (CD117) expression since 1998. Later, PDGFRA mutations, SDH alterations, and other drive mutations were identified in GISTs. In addition, more and more protein markers such as DOG1, PKCθ were found to be expressed in GISTs which might help clinicians diagnose CD117-negative GISTs. Therefore, we plan to comprehensively review the molecular markers and genetics of GISTs and provide clinicians useful information in diagnostic and therapeutic strategies of GISTs. Twenty years after the discovery of KIT in GISTs, the diagnosis of GISTs became much more accurate by using immunohistochemical (IHC) panel (CD117/DOG1) and molecular analysis (KIT/PDGFRA), both of which constitute the gold standard of diagnosis in GISTs. The accurately molecular diagnosis of GISTs guides clinicians to precision medicine and provides optimal treatment for the patients with GISTs. Successful treatment in GISTs prolongs the survival of GIST patients and causes GISTs to become a chronic disease. In the future, the development of effective treatment for GISTs resistant to imatinib/sunitinib/regorafenib and KIT/PDGFRA-WT GISTs will be the challenge for GISTs.
Collapse
Affiliation(s)
- Chiao-En Wu
- GIST Team, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chin-Yuan Tzen
- Forlab Clinic, F2, No 14, Sec 2, Zhongxiao East Rd, Taipei 100, Taiwan.
| | - Shang-Yu Wang
- GIST Team, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chun-Nan Yeh
- GIST Team, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
9
|
Karakas C, Christensen P, Baek D, Jung M, Ro JY. Dedifferentiated gastrointestinal stromal tumor: Recent advances. Ann Diagn Pathol 2019; 39:118-124. [DOI: 10.1016/j.anndiagpath.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
|
10
|
Gastrointestinal stromal tumor (GIST) in an adolescent. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2018. [DOI: 10.1016/j.epsc.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Niinuma T, Suzuki H, Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol 2018; 3:2. [PMID: 29441367 DOI: 10.21037/tgh.2018.01.02] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) harbor activating mutations in the receptor tyrosine kinase gene KIT or platelet-derived growth factor receptor alpha (PDGFRA), and the resultant activation of downstream signals plays a pivotal role in the development of GISTs. The sites of the tyrosine kinase gene mutations are associated with the biological behavior of GISTs, including risk category, clinical outcome and drug response. Mutations in RAS signaling pathway genes, including KRAS and BRAF, have also been reported in KIT/PDGFRA wild-type GISTs, though they are rare. Neurofibromin 1 (NF1) is a tumor suppressor gene mutated in neurofibromatosis type 1. Patients with NF1 mutations are at high risk of developing GISTs. Recent findings suggest that altered expression or mutation of members of succinate dehydrogenase (SDH) heterotetramer are causally associated with GIST development through induction of aberrant DNA methylation. At present, GISTs with no alterations in KIT, PDGFRA, RAS signaling genes or SDH family genes are referred to as true wild-type GISTs. KIT and PDGFRA mutations are thought as the earliest events in GIST development, and subsequent accumulation of chromosomal aberrations and other molecular alterations are required for malignant progression. In addition, recent studies have shown that epigenetic alterations and noncoding RNAs also play key roles in the pathogenesis of GISTs.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
12
|
Czikora A, Pany S, You Y, Saini AS, Lewin NE, Mitchell GA, Abramovitz A, Kedei N, Blumberg PM, Das J. Structural determinants of phorbol ester binding activity of the C1a and C1b domains of protein kinase C theta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1046-1056. [PMID: 29317197 DOI: 10.1016/j.bbamem.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Amandeep S Saini
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Adelle Abramovitz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
13
|
Mei L, Smith SC, Faber AC, Trent J, Grossman SR, Stratakis CA, Boikos SA. Gastrointestinal Stromal Tumors: The GIST of Precision Medicine. Trends Cancer 2017; 4:74-91. [PMID: 29413424 DOI: 10.1016/j.trecan.2017.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
The discovery of activated KIT mutations in gastrointestinal (GI) stromal tumors (GISTs) in 1998 triggered a sea change in our understanding of these tumors and has ushered in a new paradigm for the use of molecular genetic diagnostics to guide targeted therapies. KIT and PDGFRA mutations account for 85-90% of GISTs; subsequent genetic studies have led to the identification of mutation/epimutation of additional genes, including the succinate dehydrogenase (SDH) subunit A, B, C, and D genes. This review focuses on integrating findings from clinicopathologic, genetic, and epigenetic studies, which classify GISTs into two distinct clusters: an SDH-competent group and an SDH-deficient group. This development is important since it revolutionizes our current management of affected patients and their relatives, fundamentally, based on the GIST genotype.
Collapse
Affiliation(s)
- Lin Mei
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven C Smith
- Departments of Pathology and Surgery, VCU School of Medicine, Richmond, VA, USA
| | - Anthony C Faber
- VCU Phillips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Steven R Grossman
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA
| | - Sosipatros A Boikos
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Atay S, Wilkey DW, Milhem M, Merchant M, Godwin AK. Insights into the Proteome of Gastrointestinal Stromal Tumors-Derived Exosomes Reveals New Potential Diagnostic Biomarkers. Mol Cell Proteomics 2017; 17:495-515. [PMID: 29242380 DOI: 10.1074/mcp.ra117.000267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Indexed: 12/13/2022] Open
Abstract
Developing tumors continuously release nano-sized vesicles that represent circulating "fingerprints" of the tumor's identity. In gastrointestinal stromal tumor (GIST), we have previously reported that these tumors release "oncosomes" carrying the constitutively activated tyrosine kinase (TK) receptor KIT. Despite the clinical utility of TK inhibitors, such as imatinib mesylate (IM), recurrence and metastasis are clinical problems that urge the need to identify new tumor-derived molecules. To this aim, we performed the first high quality proteomic study of GIST-derived exosomes (GDEs) and identified 1,060 proteins composing the core GDE proteome (cGDEp). The cGDEp was enriched in diagnostic markers (e.g. KIT, CD34, ANO1, PROM1, PRKCQ, and ENG), as well as proteins encoded by genes previously reported expressed in GIST (e.g. DPP4, FHL1, CDH11, and KCTD12). Many of these proteins were validated using cell lines, patient-derived KIT+ exosomes, and GIST tissues. We further show that in vitro and in vivo-derived GDE, carry proteins associated with IM response, such as Sprouty homolog 4 (SPRY4), surfeit 4 (SURF4), ALIX, and the cGMP-dependent 3',5'-cyclic phosphodiesterase 2A (PDE2A). Additionally, we report that the total exosome levels and exosome-associated KIT and SPRY4 protein levels have therapeutic values. In fact, molecular characterization of in vivo-derived KIT+ exosomes indicate significant sorting of p-KITTyr719, total KIT, and SPRY4 after IM-treatment of metastatic patients as compared with the pre-IM levels. Our data suggest that analysis of circulating exosomes levels and molecular markers of IM response in GIST patients with primary and metastatic disease is suitable to develop liquid based biopsies for the diagnosis, prognosis, and monitoring of response to treatment of these tumors. In summary, these findings provide the first insight into the proteome of GIST-derived oncosomes and offers a unique opportunity to further understand their oncogenic elements which contribute to tumorigenesis and drug resistance. Data are available via ProteomeXchange with identifier PXD007997.
Collapse
Affiliation(s)
- Safinur Atay
- From the ‡Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., 4005 WHE, MS3040, Kansas City, Kansas 66160;
| | - Daniel W Wilkey
- §University of Louisville Room 209, Donald Baxter Research Building, 570 S. Preston Street, Louisville, Kentucky 40202
| | - Mohammed Milhem
- ¶Division of Hematology, Oncology, Blood and Marrow Transplantation 200 Hawkins Drive, C32 GH Iowa City, Iowa 52242
| | - Michael Merchant
- §University of Louisville Room 209, Donald Baxter Research Building, 570 S. Preston Street, Louisville, Kentucky 40202
| | - Andrew K Godwin
- From the ‡Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., 4005 WHE, MS3040, Kansas City, Kansas 66160.,‖University of Kansas Cancer Center, 3901 Rainbow Blvd., 4005 WHE, MS3040, Kansas City, Kansas 66160
| |
Collapse
|
15
|
Kövecsi A, Jung I, Szentirmay Z, Bara T, Bara T, Popa D, Gurzu S. PKCθ utility in diagnosing c-KIT/DOG-1 double negative gastrointestinal stromal tumors. Oncotarget 2017; 8:55950-55957. [PMID: 28915565 PMCID: PMC5593536 DOI: 10.18632/oncotarget.19116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/04/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the diagnosis value of an immunohistochemical (IHC) panel of three antibodies for the diagnosis of gastrointestinal stromal tumors (GISTs). MATERIAL AND METHODS In 80 consecutive GISTs without lymph node metastases, the IHC examinations were performed using the antibodies CD117 (c-KIT), DOG-1 and c-theta (PKCθ) protein. The diagnostic value of PKCθ in c-KIT/DOG-1 negative GISTs has been explored in fewer than 10 Medline-indexed papers. RESULTS The c-KIT, PKCθ and DOG-1 positivity was noted in 92.50% (n = 74), 90% (n = 72) and 76.25% (n = 61) of the cases, respectively. All of the C-KIT negative cases (n = 6) were also DOG-1 negative but displayed PKCθ positivity. All of the DOG-1 positive cases (n = 61) also expressed c-KIT. No correlation between the examined markers and clinicopathological parameters was noted. CONCLUSIONS The PKCθ sensitivity is similar to c-KIT and superior to DOG-1 sensitivity. All of the c-KIT/DOG-1 negative GISTs seem to express PKCθ. For a proper diagnosis of GIST, the c-KIT/DOG-1/PKCθ panel should be used, with possible therapeutic but not prognostic value.
Collapse
Affiliation(s)
- Attila Kövecsi
- 1 Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures, Romania
- 2 Department of Pathology, Clinical County Emergency Hospital, Tirgu Mures, Romania
| | - Ioan Jung
- 1 Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures, Romania
| | - Zoltan Szentirmay
- 3 Department of Molecular Pathology, National Institute of Onology, Budapest, Hungary
| | - Tivadar Bara
- 4 Department of Surgery, University of Medicine and Pharmacy, Tirgu Mures, Romania
| | - Tivadar Bara
- 4 Department of Surgery, University of Medicine and Pharmacy, Tirgu Mures, Romania
| | - Daniel Popa
- 4 Department of Surgery, University of Medicine and Pharmacy, Tirgu Mures, Romania
| | - Simona Gurzu
- 1 Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures, Romania
- 2 Department of Pathology, Clinical County Emergency Hospital, Tirgu Mures, Romania
- 5 Department of Pathology, CCAMF-Research Center, Tirgu Mures, Romania
| |
Collapse
|
16
|
Wu Z, Zhao S, Fash DM, Li Z, Chain WJ, Beutler JA. Englerins: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2017; 80:771-781. [PMID: 28170253 PMCID: PMC6198806 DOI: 10.1021/acs.jnatprod.6b01167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the decade since the discovery of englerin A (1) and its potent activity in cancer models, this natural product and its analogues have been the subject of numerous chemical, biological, and preclinical studies by many research groups. This review summarizes published findings and proposes further research directions required for entry of an englerin analogue into clinical trials for kidney cancer and other conditions.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Senzhi Zhao
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - David M. Fash
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Zhenwu Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William J. Chain
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
17
|
Brezar V, Tu WJ, Seddiki N. PKC-Theta in Regulatory and Effector T-cell Functions. Front Immunol 2015; 6:530. [PMID: 26528291 PMCID: PMC4602307 DOI: 10.3389/fimmu.2015.00530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.
Collapse
Affiliation(s)
- Vedran Brezar
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| | - Wen Juan Tu
- Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Nabila Seddiki
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| |
Collapse
|
18
|
Berglund E, Daré E, Branca RM, Akcakaya P, Fröbom R, Berggren PO, Lui WO, Larsson C, Zedenius J, Orre L, Lehtiö J, Kim J, Bränström R. Secretome protein signature of human gastrointestinal stromal tumor cells. Exp Cell Res 2015; 336:158-70. [DOI: 10.1016/j.yexcr.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/03/2023]
|
19
|
Abstract
Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.
Collapse
|
20
|
Abstract
The protein kinases C (PKCs) are a family of serine/threonine kinases involved in regulating multiple essential cellular processes such as survival, proliferation, and differentiation. Of particular interest is the novel, calcium-independent PKCθ which plays a central role in immune responses. PKCθ shares structural similarities with other PKC family members, mainly consisting of an N-terminal regulatory domain and a C-terminal catalytic domain tethered by a hinge region. This isozyme, however, is unique in that it translocates to the immunological synapse between a T cell and an antigen-presenting cell (APC) upon T cell receptor-peptide MHC recognition. Thereafter, PKCθ interacts physically and functionally with downstream effectors to mediate T cell activation and differentiation, subsequently leading to inflammation. PKCθ-specific perturbations have been identified in several diseases, most notably autoimmune disorders, and hence the modulation of its activity presents an attractive therapeutic intervention. To that end, many inhibitors of PKCs and PKCθ have been developed and tested in preclinical and clinical studies. And although selectivity remains a challenge, results are promising for the future development of effective PKCθ inhibitors that would greatly advance the treatment of several T-cell mediated diseases.
Collapse
|
21
|
Zhu JQ, Ou WB. Therapeutic targets in gastrointestinal stromal tumors. World J Transl Med 2015; 4:25-37. [DOI: 10.5528/wjtm.v4.i1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor of the gastrointestinal tract. The tumorigenesis of GISTs is driven by gain-of-function mutations in KIT or platelet-derived growth factor receptor α (PDGFRA), resulting in constitutive activation of the tyrosine kinase and its downstream signaling pathways. Oncogenic KIT or PDGFRA mutations are compelling therapeutic targets for the treatment of GISTs, and the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GISTs. However, most GIST patients develop clinical resistance to imatinib and other tyrosine kinase inhibitors. Five mechanisms of resistance have been characterized: (1) acquisition of a secondary point mutation in KIT or PDGFRA; (2) genomic amplification of KIT; (3) activation of an alternative receptor tyrosine kinase; (4) loss of KIT oncoprotein expression; and (5) wild-type GIST. Currently, sunitinib is used as a second-line treatment for patients after imatinib failure, and regorafenib has been approved for patients whose disease is progressing on both imatinib and sunitinib. Phase II/III trials are currently in progress to evaluate novel inhibitors and immunotherapies targeting KIT, its downstream effectors such as phosphatidylinositol 3-kinase, protein kinase B and mammalian target of rapamycin, heat shock protein 90, and histone deacetylase inhibitor. Other candidate targets have been identified, including ETV1, AXL, insulin-like growth factor 1 receptor, KRAS, FAS receptor, protein kinase c theta, ANO1 (DOG1), CDC37, and aurora kinase A. These candidates warrant clinical evaluation as novel therapeutic targets in GIST.
Collapse
|
22
|
Martin-Liberal J, Cameron AJ, Claus J, Judson IR, Parker PJ, Linch M. Targeting protein kinase C in sarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:547-59. [PMID: 25453364 DOI: 10.1016/j.bbcan.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine tyrosine kinases that regulate many cellular processes including division, proliferation, survival, anoikis and polarity. PKC is abundant in many human cancers and aberrant PKC signalling has been demonstrated in cancer models. On this basis, PKC has become an attractive target for small molecule inhibition within oncology drug development programmes. Sarcoma is a heterogeneous group of mesenchymal malignancies. Due to their relative insensitivity to conventional chemotherapies and the increasing recognition of the driving molecular events of sarcomagenesis, sarcoma provides an excellent platform to test novel therapeutics. In this review we provide a structure-function overview of the PKC family, the rationale for targeting these kinases in sarcoma and the state of play with regard to PKC inhibition in the clinic.
Collapse
Affiliation(s)
- J Martin-Liberal
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - A J Cameron
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Claus
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - I R Judson
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - P J Parker
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - M Linch
- Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
23
|
Tornillo L. Gastrointestinal stromal tumor - an evolving concept. Front Med (Lausanne) 2014; 1:43. [PMID: 25593916 PMCID: PMC4291900 DOI: 10.3389/fmed.2014.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal tumors of the gastrointestinal tract. The discovery that these tumors, formerly thought of smooth muscle origin, are indeed better characterized by specific activating mutation in genes coding for the receptor tyrosine kinases (RTKs) CKIT and PDGFRA and that these mutations are strongly predictive for the response to targeted therapy with RTK inhibitors has made GISTs the typical example of the integration of basic molecular knowledge in the daily clinical activity. The information on the mutational status of these tumors is essential to predict (and subsequently to plan) the therapy. As resistant cases are frequently wild type, other possible oncogenic events, defining other "entities," have been discovered (e.g., succinil dehydrogenase mutation/dysregulation, insuline growth factor expression, and mutations in the RAS-RAF-MAPK pathway). The classification of disease must nowadays rely on the integration of the clinico-morphological characteristics with the molecular data.
Collapse
Affiliation(s)
- Luigi Tornillo
- Institute of Pathology, University of Basel , Basel , Switzerland
| |
Collapse
|
24
|
Liang W, Wang S, Festa F, Wiktor P, Wang W, Magee M, LaBaer J, Tao N. Measurement of small molecule binding kinetics on a protein microarray by plasmonic-based electrochemical impedance imaging. Anal Chem 2014; 86:9860-5. [PMID: 25153794 PMCID: PMC4188269 DOI: 10.1021/ac5024556] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report on a quantitative study of small molecule binding kinetics on protein microarrays with plasmonic-based electrochemical impedance microscopy (P-EIM). P-EIM measures electrical impedance optically with high spatial resolution by converting a surface charge change to a surface plasmon resonance (SPR) image intensity change, and the signal is not scaled to the mass of the analyte. Using P-EIM, we measured binding kinetics and affinity between small molecule drugs (imatinib and SB202190) and their target proteins (kinases Abl1 and p38-α). The measured affinity values are consistent with reported values measured by an indirect competitive binding assay. We also found that SB202190 has weak bindings to ABL1 with KD > 10 μM, which is not reported in the literature. Furthermore, we found that P-EIM is less prone to nonspecific binding, a long-standing issue in SPR. Our results show that P-EIM is a novel method for high-throughput measurement of small molecule binding kinetics and affinity, which is critical to the understanding of small molecules in biological systems and discovery of small molecule drugs.
Collapse
Affiliation(s)
- Wenbin Liang
- Center for Bioelectronics and Biosensors and §Center for Personalized Medicine, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Corless CL. Gastrointestinal stromal tumors: what do we know now? Mod Pathol 2014; 27 Suppl 1:S1-16. [PMID: 24384849 DOI: 10.1038/modpathol.2013.173] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the GI tract, arising from the interstitial cells of Cajal, primarily in the stomach and small intestine. They manifest a wide range of morphologies, from spindle cell to epithelioid, but are immunopositive for KIT (CD117) and/or DOG1 in essentially all cases. Although most tumors are localized at presentation, up to half will recur in the abdomen or spread to the liver. The growth of most GISTs is driven by oncogenic mutations in either of two receptor tyrosine kinases: KIT (75% of cases) or PDGFRA (10%). Treatment with tyrosine kinase inhibitors (TKIs) such as imatinib, sunitinib, and regorafenib is effective in controlling unresectable disease; however, drug resistance caused by secondary KIT or PDGFRA mutations eventually develops in 90% of cases. Adjuvant therapy with imatinib is commonly used to reduce the likelihood of disease recurrence after primary surgery, and for this reason assessing the prognosis of newly resected tumors is one of the most important roles for pathologists. Approximately 15% of GISTs are negative for mutations in KIT and PDGFRA. Recent studies of these so-called wild-type GISTs have uncovered a number of other oncogenic drivers, including mutations in neurofibromatosis type I, RAS genes, BRAF, and subunits of the succinate dehydrogenase complex. Routine genotyping is strongly recommended for optimal management of GISTs, as the type and dose of TKI used for treatment is dependent on the mutation identified.
Collapse
Affiliation(s)
- Christopher L Corless
- Department of Pathology (L471) and Knight Diagnostic Laboratories, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
26
|
Small gastrointestinal stromal tumor in the stomach: identification of precursor for clinical gastrointestinal stromal tumor using c-kit and α-smooth muscle actin expression. Hum Pathol 2013; 44:2628-35. [PMID: 24119563 DOI: 10.1016/j.humpath.2013.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the digestive tract. To find precursors for clinical GISTs of the stomach, small gastric stromal tumors of less than 3 cm were collected and examined immunohistochemically with analysis of the KIT mutation. Sixty-eight of 74 lesions were classified into 4 representative groups according to the expression of c-kit and α-smooth muscle actin (αSMA): group A, c-kit diffusely positive and αSMA negative (18 cases); group B, c-kit diffusely positive and αSMA focally positive (13); group C, c-kit focally positive and αSMA diffusely positive (27); and group D, c-kit negative and αSMA diffusely positive (10). Of the 4 groups, groups A and B of c-kit diffuse expression showed higher cellularity and labeling indices of p27(Kip1) and Ki-67 than did groups C and D of diffuse αSMA expression. Incidence of KIT exon 11 mutation in groups A and B was 86% (25/29), whereas that in groups C and D was 0% (0/20). Small gastric stromal tumors with c-kit diffuse expression were considered precursors for clinical GIST because they were significantly different from c-kit focally positive or negative tumors. The mutation of KIT is considered as an early event in tumorigenesis of GIST.
Collapse
|
27
|
Linch M, Claus J, Benson C. Update on imatinib for gastrointestinal stromal tumors: duration of treatment. Onco Targets Ther 2013; 6:1011-23. [PMID: 23935374 PMCID: PMC3735340 DOI: 10.2147/ott.s31260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common sarcoma of the gastrointestinal tract, with transformation typically driven by activating mutations of c-KIT and less commonly platelet-derived growth factor receptor alpha (PDGFRA). Successful targeting of c-KIT and PDGFRA with imatinib, a tyrosine kinase inhibitor (TKI), has had a major impact in advanced GIST and as an adjuvant and neoadjuvant treatment. If treatment with imatinib fails, further lines of TKI therapy have a role, but disease response is usually only measured in months, so strategies to maximize the benefit from imatinib are paramount. Here, we provide an overview of the structure and signaling of c-KIT coupled with a review of the clinical trials of imatinib in GIST. In doing so, we make recommendations about the duration of imatinib therapy and suggest how best to utilize imatinib in order to improve patient outcomes in the future.
Collapse
Affiliation(s)
- Mark Linch
- Sarcoma Unit, Royal Marsden Hospital, United Kingdom ; Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | | | | |
Collapse
|
28
|
KIT gene mutation analysis in solid tumours: biology, clincial applications and trends in diagnostic reporting. Pathology 2013; 45:127-37. [PMID: 23277171 DOI: 10.1097/pat.0b013e32835c7645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gain-of-function mutations involving c-kit protein, a cell-surface transmembrane receptor for stem cell factor, have been identified as a key oncogenic driver in a variety of solid tumours. Coupled with the development of tyrosine kinase inhibitors such as imatinib, c-kit has emerged as a viable drug target in what seems to be a validated therapeutic concept. This review will focus on gastrointestinal stromal tumours and melanomas, two types of solid tumours most closely associated with KIT gene mutations. The biology of KIT mutations in both conditions, as well as the value of KIT mutation testing in predicting disease and treatment outcomes are discussed. Since initial response to imatinib is largely influenced by mutation status, genotyping these tumours serves to facilitate personalised oncology. We also summarise our experience with diagnostic reporting of KIT mutation analysis over a period of 3 years, and briefly survey future developments in treatment, which indeed look very promising.
Collapse
|
29
|
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor of the gastrointestinal tract. Soon after GIST was recognized as a tumor driven by a KIT or platelet-derived growth factor receptor mutation, it became the first solid tumor target for tyrosine kinase inhibitor therapies. More recently, alternative molecular mechanisms for GIST pathogenesis have been discovered. These are related to deficiencies in the succinate dehydrogenase complex, NF1-gene alterations in connection with neurofibromatosis type 1 tumor syndrome, and mutational activation of the BRAF oncogene in very rare cases.
Collapse
Affiliation(s)
- Markku Miettinen
- Laboratory of Pathology, NCI/NIH, 9000 Rockville Pike, Building 10, Rm. 2B50, Bethesda, Maryland 20892,
| | - Jerzy Lasota
- Laboratory of Pathology, NCI/NIH, 9000 Rockville Pike, Building 10, Rm. 2B50, Bethesda, Maryland 20892,
| |
Collapse
|
30
|
Kong SH, Yang HK. Surgical treatment of gastric gastrointestinal stromal tumor. J Gastric Cancer 2013; 13:3-18. [PMID: 23610714 PMCID: PMC3627804 DOI: 10.5230/jgc.2013.13.1.3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/09/2013] [Accepted: 03/10/2013] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal stromal tumor is the most common mesenchymal tumor in the gastrointestinal tract and is most frequently developed in the stomach in the form of submucosal tumor. The incidence of gastric gastrointestinal stromal tumor is estimated to be as high as 25% of the population when all small and asymptomatic tumors are included. Because gastric gastrointestinal stromal tumor is not completely distinguished from other submucosal tumors, a surgical excisional biopsy is recommended for tumors >2 cm. The surgical principles of gastrointestinal stromal tumor are composed of an R0 resection with a normal mucosa margin, no systemic lymph node dissection, and avoidance of perforation, which results in peritoneal seeding even in cases with otherwise low risk profiles. Laparoscopic surgery has been indicated for gastrointestinal stromal tumors <5 cm, and the indication for laparoscopic surgery is expanded to larger tumors if the above mentioned surgical principles can be maintained. A simple exogastric resection and various transgastric resection techniques are used for gastrointestinal stromal tumors in favorable locations (the fundus, body, greater curvature side). For a lesion at the gastroesophageal junction in the posterior wall of the stomach, enucleation techniques have been tried preserve the organ's function. Those methods have a theoretical risk of seeding a ruptured tumor, but this risk has not been evaluated by well-designed clinical trials. While some clinical trials are still on-going, neoadjuvant imatinib is suggested when marginally unresectable or multiorgan resection is anticipated to reduce the extent of surgery and the chance of incomplete resection, rupture or bleeding.
Collapse
Affiliation(s)
- Seong-Ho Kong
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
31
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
32
|
Yantiss RK, Samowitz WS. Molecular Pathology of Gastrointestinal Cancer. Surg Pathol Clin 2012; 5:821-42. [PMID: 26838505 DOI: 10.1016/j.path.2012.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this review is to discuss important molecular changes that aid decision making in patient management and play a role in emerging treatment strategies for gastrointestinal malignancies. Although screening and surveillance practices have had an impact on the natural history of some tumor types, gastric carcinoma is a major cause of morbidity and mortality in high prevalence regions and colorectal carcinoma is still the fourth leading cause of cancer related death in the United States.
Collapse
Affiliation(s)
- Rhonda K Yantiss
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 525 East 68th Street, New York, NY 10065, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, 15 N. Medical Drive East-2100, Salt Lake City, UT 84112.
| |
Collapse
|
33
|
Involvement of signaling molecules in the prediction of response to imatinib treatment in metastatic GIST patients. J Surg Res 2012; 178:288-93. [PMID: 22516345 DOI: 10.1016/j.jss.2012.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/13/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
Imatinib therapy has undoubtedly contributed to the treatment of metastatic gastrointestinal stromal (GIST) tumors that were previously untreatable. However, disease progression during treatment with tyrosine kinase inhibitors remains an issue in clinical practice not fully explained by KIT and PDGFRA mutation status. We investigated the role of three important signaling molecules (insulin-like growth factor 1 receptor [IGF1R], protein kinase C-θ [PKCθ], and Raf kinase inhibitor protein [RKIP]) that have been implicated in GIST pathogenesis as potential biomarkers for prediction of response to imatinib treatment. We retrospectively reviewed 76 patients with metastatic GIST submitted to imatinib treatment between 2002 and 2007, and analyzed 63 of them. Insulin-like growth factor 1, total PKCθ, phosphorylated PKCθ, and RKIP immunohistochemical expression were correlated with objective response to imatinib treatment and progression-free and overall survival. Median follow-up was 31.2 mo (95% confidence interval, 26.3-36.1 mo). There was a statistically significant association between IGF1R expression and type of response to imatinib treatment (P = 0.05)-that is, higher IGF1R expression was related to lower objective response. However, IGF1R higher expression did not affect progression-free and overall survival. Insulin-like growth factor 1, but not PKCθ and RKIP, emerges as a potential biomarker for prediction of response to imatinib treatment in metastatic GISTs. Validation studies are warranted.
Collapse
|
34
|
Barnett CM, Heinrich MC. Management of tyrosine kinase inhibitor-resistant gastrointestinal stromal tumors. Am Soc Clin Oncol Educ Book 2012:663-8. [PMID: 24451815 DOI: 10.14694/edbook_am.2012.32.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The treatment of gastrointestinal stromal tumors (GISTs) has been a model for targeted cancer therapy. The discovery of driver somatic mutations in the KIT and PDGFRA receptor tyrosine kinases led to a shift of therapy from conventional cytotoxic chemotherapy to inhibitors of these receptors. Targeted molecular therapy of GIST has markedly increased the overall survival of patients with advanced disease. However, the ability of kinase therapy to control metastatic disease is ultimately limited by the ability of these agents to overcome intrinsic or acquired resistance mechanisms. Ongoing basic and clinical research is focusing on identifying new agents to inhibit KIT/PDGFRA kinase activity and/or other novel molecular targets in GIST.
Collapse
Affiliation(s)
- Christine M Barnett
- From the Division of Hematology and Medical Oncology, Portland VA Medical Center and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Michael C Heinrich
- From the Division of Hematology and Medical Oncology, Portland VA Medical Center and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
35
|
Gastrointestinal stromal tumors (GISTs): CD117, DOG-1 and PKCθ expression. Is there any advantage in using several markers? Pathol Res Pract 2011; 208:74-81. [PMID: 22197035 DOI: 10.1016/j.prp.2011.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/31/2011] [Accepted: 11/24/2011] [Indexed: 01/01/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the digestive tract. Expression of CD117, DOG1 and PKCθ was investigated immunohistochemically in a series of 99 paraffin-embedded GISTs in order to determine the sensitivity and diagnostic value of these markers. KIT exons 9, 11, 13 and 17 and PDGFRA exons 12 and 18 were amplified by PCR and sequenced. A total of 94/99 (94%) GISTs stained positive for CD117, 81/99 (82%) for PKCθ and 90/99 (91%) for DOG-1. A significant correlation was noted between CD117 and DOG-1 expression (p=0.0001). All three markers were expressed in 74% (73/99) of GISTs. Of the five CD117-negative cases, two were PKCθ-negative/DOG1-negative and had mutations in KIT exon 11. Two were PKCθ-positive/DOG1-positive and had mutations in PDGFRA (one each in exons 12 and 18), and one was DOG1-negative/PKCθ-positive, with a PDGFRA exon 18 mutation. The most sensitive marker was CD117, followed by DOG-1 and PKCθ. Although PKCθ was less sensitive, and its staining is more challenging and difficult to interpret, the use of this marker is highly recommended, particularly in CD117-negative/DOG-1-negative GISTs.
Collapse
|
36
|
Abstract
Gastrointestinal stromal tumor (GIST), generally driven by oncogenic KIT or PDGFRA mutations, is the most common mesenchymal tumor of the gastrointestinal (GI) tract. GIST is most common in the stomach (60%) and small intestine (30%), but can occur anywhere in the GI-tract and the intra-abdominal soft tissues. GIST can show spindle cell or epithelioid morphology, and mitotic count and tumor size are most important prognostic parameters. GISTs in NF1 patients and children are distinctive clinicopathologic groups. Immunohistochemical testing for KIT and sometimes for DOG1/Ano 1 is essential in confirming the diagnosis.
Collapse
Affiliation(s)
- Markku Miettinen
- National Cancer Institute, Laboratory of Pathology, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
37
|
Patil DT, Rubin BP. Gastrointestinal stromal tumor: advances in diagnosis and management. Arch Pathol Lab Med 2011; 135:1298-310. [PMID: 21970485 DOI: 10.5858/arpa.2011-0022-ra] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and should be differentiated from other mesenchymal tumors. They harbor specific activating mutations in the KIT or platelet-derived growth factor receptor α ( PDGFRA ) receptor tyrosine kinases, which makes them responsive to pharmacologic inhibitors, such as imatinib mesylate and sunitinib malate. OBJECTIVES To provide a comprehensive review of the pathogenesis of GIST and the underlying principles of targeted therapy, to review the salient histologic and immunohistochemical features that facilitate the distinction of GIST from other mesenchymal neoplasms of the gastrointestinal tract, and to present the prognostic parameters for risk stratification that guide clinical management. DATA SOURCES Review of the English literature through PubMed as well as personal experience. Photographs were taken from cases encountered at the Cleveland Clinic. CONCLUSIONS The discovery of the KIT -GIST connection has not only improved the diagnostic accuracy of GISTs but also provided us with a better understanding of the histogenesis and molecular pathogenesis of these neoplasms.
Collapse
Affiliation(s)
- Deepa T Patil
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
38
|
Abstract
Gastrointestinal stromal tumours (GISTs) are a paradigm for the development of personalized treatment for cancer patients. The nearly simultaneous discovery of a biomarker that is reflective of their origin and the presence of gain-of-function kinase mutations in these tumours set the stage for more accurate diagnosis and the development of kinase inhibitor therapy. Subsequent studies of genotype and phenotype have led to a molecular classification of GIST and to treatment optimization on the basis of molecular subtype. The study of drug-resistant tumours has advanced our understanding of kinase biology, enabling the development of novel kinase inhibitors. Further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.
Collapse
Affiliation(s)
- Christopher L Corless
- Knight Cancer Institute, Division of Haematology & Oncology, and Department of Pathology, Portland VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
39
|
High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in oral squamous cell carcinoma. Hum Pathol 2011; 43:276-81. [PMID: 21840039 DOI: 10.1016/j.humpath.2011.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022]
Abstract
Protein kinase Cs play important roles in many biological processes and tumorigenesis. This study examined the expression of protein kinase Cθ and assessed its significance in patients with oral squamous cell carcinoma. Immunohistochemical staining was carried out to investigate the expression of protein kinase Cθ in 59 cases of oral squamous cell carcinoma. The results were correlated with clinical characteristics and outcome of patients. Diffuse cytoplasmic protein kinase Cθ was identified in 53 (89.8%) of the 59 oral squamous cell carcinoma cases, and the expression was not statistically associated with any clinicopathologic parameter. Twenty (40.7%) of the 59 oral squamous cell carcinoma cases exhibited nuclear expression of protein kinase Cθ with different grade of intensity. χ(2) analysis indicated that high nuclear protein kinase Cθ expression correlated significantly with shorter 24-month survival (P = .043) and disease recurrence (P = .019). The Kaplan-Meier method also showed that high nuclear expression of protein kinase Cθ was significantly associated with poor overall survival (P = .034) and shorter time to recurrence (P = .003). Univariate analysis revealed that high nuclear protein kinase Cθ expression (P = .046; hazard ratio, 2.2), tumor size less than 2 cm (P = .049; hazard ratio, 4.7), lymph node metastasis (P = .003; hazard ratio, 3.0), and higher stage (P = .002; hazard ratio, 8.7) were each associated with shorter overall survival. We identified the aberrant nuclear expression of protein kinase Cθ in oral squamous cell carcinoma. High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in patients with oral squamous cell carcinoma.
Collapse
|
40
|
Gonzalez RS, Carlson G, Page AJ, Cohen C. Gastrointestinal stromal tumor markers in cutaneous melanomas: relationship to prognostic factors and outcome. Am J Clin Pathol 2011; 136:74-80. [PMID: 21685034 DOI: 10.1309/ajcp9khd7dchwlmo] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Melanoma expresses c-kit, a gastrointestinal stromal tumor marker, but has not been extensively evaluated for protein kinase C θ (PKCθ) or DOG1, and these stains have not been correlated with prognostic factors. We immunostained 62 primary cutaneous and 15 metastatic melanomas for polyclonal c-kit (pc-kit), monoclonal c-kit (mc-kit), PKCθ, and DOG1 and correlated results with prognostic parameters and survival. Of the cutaneous melanomas, 34 (55%) stained for pc-kit, 30 (48%) for mc-kit, 11 (18%) for PKCθ, and 2 (3%) for DOG1. The Breslow depth was 1.00 mm or less in 21 (68%) of 31 pc-kit+ cutaneous melanomas compared with 7 (27%) of 26 pc-kit- melanomas (P = .002). The pc-kit+ melanomas had less nodal disease (1/31 [3%] vs 9/25 [36%]; P = .001) and local recurrence (1/33 [3%] vs 6/27 [22%]; P = .021) but no statistically significant difference in the rate of distant metastases (13/32 [41%] vs 14/27 [52%]; P = .388) or survival (10/34 [29%] vs 16/39 [41%]; P = .301). We found that pc-kit correlates better with prognostic parameters than does mc-kit.
Collapse
|
41
|
Kang GH, Srivastava A, Kim YE, Park HJ, Park CK, Sohn TS, Kim S, Kang DY, Kim KM. DOG1 and PKC-θ are useful in the diagnosis of KIT-negative gastrointestinal stromal tumors. Mod Pathol 2011; 24:866-75. [PMID: 21358619 DOI: 10.1038/modpathol.2011.11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pathological diagnosis of gastrointestinal stromal tumors (GISTs) is based on histological findings and immunohistochemical demonstration of the KIT protein. KIT-negative GISTs account for ∼5% of cases and cause diagnostic difficulties. In the era of imatinib therapy, a correct diagnosis of GISTs is important for therapeutic reasons regardless of KIT expression. Recently, DOG1 has been introduced as an important diagnostic marker with high sensitivity and specificity. In this study, immunohistochemical staining for DOG1 and protein kinase C-θ (PKC-θ) in whole tissue sections, and mutation analyses for KIT and PDGFRA were performed in 26 KIT-negative GISTs. Tissue microarrays of 112 KIT-positive GISTs were used as controls. Overall, 25 KIT-negative GISTs were located in the stomach, and 1 in the rectum. The histological subtype was spindle in 12, epithelioid in 11, and mixed in 3 cases. The expression of DOG1 and PKC-θ was positive in 24 (92%) and in 25 cases (96%), respectively. All 26 KIT-negative GISTs expressed either DOG1 or PKC-θ, and 23 cases (89%) were positive for both makers. PKC-θ was positive in two cases (8%), which lacked both KIT and DOG1 expressions. Mutation analysis showed PDGFRA exon 18 mutation in 15 cases (58%) and KIT exon 11 mutation in 1 case (4%), whereas the remaining 10 cases (39%) were wild type for both KIT and PDGFRA. The expression of DOG1 and PKC-θ showed no significant difference in KIT-negative and KIT-positive GISTs (P=1.000 and P=0.167, respectively). Our findings suggest that both DOG1 and PKC-θ can be used in the diagnosis of KIT-negative GISTs and they show positive staining even in KIT-negative tumors, which are wild type for KIT and PDGFRA on mutation analysis.
Collapse
Affiliation(s)
- Gu-Hyun Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Maria Y Ho
- Division of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
43
|
Yang Y, Liu X, Ye YF, Wang MC. Diagnostic value of protein kinase C theta for gastrointestinal stromal tumors: a meta-analysis. Shijie Huaren Xiaohua Zazhi 2011; 19:950-955. [DOI: 10.11569/wcjd.v19.i9.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To perform a meta-analysis to assess the value of protein kinase C theta in the diagnosis of gastrointestinal stromal tumors.
METHODS: English or Chinese papers published from 1998 to 2010, which evaluated the diagnostic value of protein kinase C theta for gastrointestinal stromal tumors using pathologic diagnosis as the gold standard, were identified by searching Pubmed, Embase, Wanfang data, VIP, CBM and CNKI. The quality of included studies was assessed using the QUADAS tool. Meta-disc 1.4 software was used to extract data and to calculate the overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio. The summary receiver operating characteristic (SROC) curve was plotted.
RESULTS: Nine studies involving 1 141 patients were included in the meta-analysis. The results for the nine studies were inconsistent (P = 0.0042, I2 = 64.3%). The overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 93% (95%CI: 91%-95%), 93% (95%CI: 91%-95%), 12.47 (95%CI: 6.30-24.70), 0.10 (95%CI: 0.05-0.17) and 138.19 (95%CI: 52.75-362.04), respectively. The weighted area under the ROC curve (AUC) was 0.9713 (SE = 0.0116).
CONCLUSION: Protein kinase C theta has a high value in the diagnosis of gastrointestinal stromal tumors.
Collapse
|
44
|
Gromova P, Rubin BP, Thys A, Erneux C, Vanderwinden JM. Neurotensin receptor 1 is expressed in gastrointestinal stromal tumors but not in interstitial cells of Cajal. PLoS One 2011; 6:e14710. [PMID: 21364741 PMCID: PMC3041753 DOI: 10.1371/journal.pone.0014710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 01/29/2011] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) are thought to derive from the interstitial cells of Cajal (ICC) or an ICC precursor. Oncogenic mutations of the KIT or PDGFRA receptor tyrosine kinases are present in the majority of GIST, leading to ligand-independent activation of the intracellular signal transduction pathways. We previously investigated the gene expression profile in the murine KitK641E GIST model and identified Ntsr1 mRNA, encoding the Neurotensin receptor 1, amongst the upregulated genes. Here we characterized Ntsr1 mRNA and protein expression in the murine KitK641E GIST model and in tissue microarrays of human GIST. Ntsr1 mRNA upregulation in KitK641E animals was confirmed by quantitative PCR. Ntsr1 immunoreactivity was not detected in the Kit positive ICC of WT mice, but was present in the Kit positive hyperplasia of KitK641E mice. In the normal human gut, NTSR1 immunoreactivity was detected in myenteric neurons but not in KIT positive ICC. Two independent tissue microarrays, including a total of 97 GIST, revealed NTSR1 immunoreactivity in all specimens, including the KIT negative GIST with PDGFRA mutation. NTSR1 immunoreactivity exhibited nuclear, cytoplasmic or mixed patterns, which might relate to variable levels of NTSR1 activation. As studies using radio-labeled NTSR1 ligand analogues for whole body tumor imaging and for targeted therapeutic interventions have already been reported, this study opens new perspectives for similar approaches in GIST.
Collapse
Affiliation(s)
- Petra Gromova
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Brian P. Rubin
- Anatomic Pathology and Molecular Genetics, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, Ohio, United States of America
| | - An Thys
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-Marie Vanderwinden
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| |
Collapse
|
45
|
Wong NACS, Shelley-Fraser G. Specificity of DOG1 (K9 clone) and protein kinase C theta (clone 27) as immunohistochemical markers of gastrointestinal stromal tumour. Histopathology 2010; 57:250-8. [PMID: 20716167 DOI: 10.1111/j.1365-2559.2010.03622.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS DOG1 and protein kinase C (PKC) theta are both sensitive immunohistochemical markers of gastrointestinal stromal tumour (GIST). However, there are conflicting data regarding the specificity of the most commonly used PKC theta antibody (clone 27), and there are no existing data regarding the specificity of the only known commercially available DOG1 antibody (K9 clone) at the time of writing. This study's aim was to characterize the immunoreactivity patterns of both monoclonal antibodies amongst a wide range of neoplasm types including, in particular, histological mimics of GIST. METHODS AND RESULTS Immunohistochemistry for DOG1 and PKC theta was performed on whole tissue sections from 23 different neoplasm types (total of 125 cases). Ten of these neoplasm types showed CD117 immunopositivity. Only three (Ewing's sarcoma, glomus tumour and synovial sarcoma) of the 23 neoplasm types showed DOG1 immunopositivity, and such positivity was often focal and weak in intensity. In contrast, all but four (ganglioneuromas, leiomyomas, desmoplastic small round cell tumours and PEComa/angiomyolipomas) of the 23 neoplasm types showed PKC theta immunopositivity. CONCLUSIONS Compared with CD117, DOG1 (using the K9 antibody) is a more specific marker, whereas PKC theta (using the clone 27 antibody) is a considerably less specific immunohistochemical marker for GIST.
Collapse
Affiliation(s)
- Newton A C S Wong
- Department of Histopathology, Bristol Royal Infirmary, Marlborough Street, Bristol, UK.
| | | |
Collapse
|
46
|
Machairas A, Karamitopoulou E, Tsapralis D, Karatzas T, Machairas N, Misiakos EP. Gastrointestinal stromal tumors (GISTs): an updated experience. Dig Dis Sci 2010; 55:3315-27. [PMID: 20725786 DOI: 10.1007/s10620-010-1360-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 07/15/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are relatively common mesenchymal tumors of the digestive tract characterized by c-KIT mutations. This is a comprehensive review of the current data of the literature on the various aspects of the diagnosis and treatment of these tumors. METHODS The stomach is the most commonly involved site for these tumors in the digestive tract. Computed tomography and endoscopy can usually establish the diagnosis. The study of certain specific immunohistochemical markers may contribute to better characterization of these tumors. RESULTS Surgical resection of GISTs has been the most effective therapy. In addition, targeted therapy with tyrosine kinase inhibitors may reduce the development of recurrence or decrease the disease progression in patients with metastatic disease. CONCLUSIONS The introduction of tyrosine kinase inhibitors has resulted in significant improvement in the overall prognosis of these patients. Furthermore, preoperative imatinib can decrease tumor volume and is associated with complete surgical resection in locally advanced primary GISTs.
Collapse
Affiliation(s)
- Anastasios Machairas
- 3rd Department of Surgery, University of Athens School of Medicine, Attikon University Hospital, 1 Rimini Street, Chaidari-Athens 12462, Greece
| | | | | | | | | | | |
Collapse
|
47
|
Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, Pisters PWT, Raut CP, Riedel RF, Schuetze S, Sundar HM, Trent JC, Wayne JD. NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Canc Netw 2010; 101:442. [PMID: 20457867 DOI: 10.1002/jso.21485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The standard of care for managing patients with gastrointestinal stromal tumors (GISTs) rapidly changed after the introduction of effective molecularly targeted therapies involving tyrosine kinase inhibitors (TKIs), such as imatinib mesylate and sunitinib malate. A better understanding of the molecular characteristics of GISTs have improved the diagnostic accuracy and led to the discovery of novel immunomarkers and new mechanisms of resistance to TKI therapy, which in turn have resulted in the development of novel treatment strategies. To address these issues, the NCCN organized a task force consisting of a multidisciplinary panel of experts in the fields of medical oncology, surgical oncology, molecular diagnostics, and pathology to discuss the recent advances, identify areas of future research, and recommend an optimal approach to care for patients with GIST at all stages of disease. The task force met for the first time in October 2003 and again in December 2006 and October 2009. This supplement describes the recent developments in the field of GIST as discussed at the October 2009 meeting.
Collapse
|
48
|
Parkkila S, Lasota J, Fletcher JA, Ou WB, Kivelä AJ, Nuorva K, Parkkila AK, Ollikainen J, Sly WS, Waheed A, Pastorekova S, Pastorek J, Isola J, Miettinen M. Carbonic anhydrase II. A novel biomarker for gastrointestinal stromal tumors. Mod Pathol 2010; 23:743-50. [PMID: 20081808 PMCID: PMC2900582 DOI: 10.1038/modpathol.2009.189] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are clinically distinct mesenchymal tumors, which generally result from expression of mutant KIT or PDGFRA receptor tyrosine kinase oncogenes. Most GISTs feature strong expression of KIT that serves as a crucial diagnostic adjunct. However, a subset of tumors lacks KIT expression and otherwise may also be difficult to distinguish from other sarcomas, including leiomyosarcoma. Because various carbonic anhydrase (CA) isozymes have been identified as potential treatment targets against different cancers, we evaluated CA II expression in 175 GISTs. Western blotting experiments indicated that CA II is highly expressed in GIST cell lines. Immunohistochemically, 95% of GISTs showed positive signal. The CA II expression in GISTs did not correlate with particular KIT or PDGFRA mutation types. CA II immunoreactivity was absent or low in other mesenchymal tumor categories analyzed. High CA II expression was associated with a better disease-specific survival rate than low or no expression (Mantel-Cox test, P<0.0001). The present results indicate that CA II is overexpressed in most GISTs, is quite selective to this tumor type among mesenchymal tumors, and therefore might be a useful biomarker in diagnostics.
Collapse
Affiliation(s)
- Seppo Parkkila
- Department of Anatomy, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | - Jerzy Lasota
- Department of Soft Tissue Pathology, Armed Forces Institute of Pathology, Washington, DC, USA
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen-bin Ou
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antti J. Kivelä
- Department of Surgery, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Kyösti Nuorva
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Anna-Kaisa Parkkila
- Department of Neurology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jyrki Ollikainen
- Department of Mathematics and Statistics, University of Tampere, Tampere, Finland
| | - William S. Sly
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Silvia Pastorekova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jorma Isola
- School of Medicine, and Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Markku Miettinen
- Department of Soft Tissue Pathology, Armed Forces Institute of Pathology, Washington, DC, USA
| |
Collapse
|
49
|
Duensing S, Duensing A. Targeted therapies of gastrointestinal stromal tumors (GIST)--the next frontiers. Biochem Pharmacol 2010; 80:575-83. [PMID: 20385106 DOI: 10.1016/j.bcp.2010.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 12/17/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal (GI) tract and are caused by activating KIT or PDGFRA mutations. GISTs can be successfully treated with the small molecule kinase inhibitor imatinib mesylate (Gleevec, Novartis) with response rates of up to 85%. However, complete responses are rare, and most patients will develop imatinib resistance over time. Recent results have shown that although imatinib effectively stimulates apoptotic cell death in sensitive GIST cells, a considerable proportion of cells does not undergo apoptosis, but instead enters a state of quiescence. Quiescence is characterized by a reversible withdrawal from the cell division cycle, during which the cells remain alive and metabolically active. It is conceivable that quiescence not only plays a pivotal role in the emergence of residual disease but also in creating a pool of tumor cells that survive continuous small molecule therapy and may hence represent the "seeds" for the outgrowth of resistant clones. This review will summarize the current knowledge about GIST biology and treatment response to imatinib including the induction of cellular quiescence in GIST. In addition, we will highlight future strategies to design more effective treatment options to overcome these problems with an aim towards cure of this hitherto untreatable tumor entity.
Collapse
Affiliation(s)
- Stefan Duensing
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
50
|
Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, Pisters PWT, Raut CP, Riedel RF, Schuetze S, Sundar HM, Trent JC, Wayne JD. NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Canc Netw 2010; 8 Suppl 2:S1-41; quiz S42-4. [PMID: 20457867 PMCID: PMC4103754 DOI: 10.6004/jnccn.2010.0116] [Citation(s) in RCA: 803] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The standard of care for managing patients with gastrointestinal stromal tumors (GISTs) rapidly changed after the introduction of effective molecularly targeted therapies involving tyrosine kinase inhibitors (TKIs), such as imatinib mesylate and sunitinib malate. A better understanding of the molecular characteristics of GISTs have improved the diagnostic accuracy and led to the discovery of novel immunomarkers and new mechanisms of resistance to TKI therapy, which in turn have resulted in the development of novel treatment strategies. To address these issues, the NCCN organized a task force consisting of a multidisciplinary panel of experts in the fields of medical oncology, surgical oncology, molecular diagnostics, and pathology to discuss the recent advances, identify areas of future research, and recommend an optimal approach to care for patients with GIST at all stages of disease. The task force met for the first time in October 2003 and again in December 2006 and October 2009. This supplement describes the recent developments in the field of GIST as discussed at the October 2009 meeting.
Collapse
|