1
|
Therapeutic vaccination based on side population cells transduced by the granulocyte-macrophage colony-stimulating factor gene elicits potent antitumor immunity. Cancer Gene Ther 2017; 24:165-174. [PMID: 28084317 DOI: 10.1038/cgt.2016.80] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Among cancer immunotherapies, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccine (GVAX) therapies appear promising and have been shown to be safe and effective in multiple clinical trials. However, the antitumor efficacies of GVAX therapy alone are in some cases limited. Here we showed that GVAX therapy targeting cancer stem cells (CSCs) substantially suppressed tumor development in syngeneic immunocompetent mice recapitulating normal immune systems. CSCs were isolated as side population (SP) cells from 4T1 murine breast carcinoma cell line and transduced with GM-CSF gene delivered by non-transmissible Sendai virus (4T1-SP/GM). Impaired tumorigenicity of subcutaneously injected 4T1-SP/GM depended on CD8+ T cells in concert with CD4+ T cells and natural killer cells. Mice therapeutically vaccinated with irradiated 4T1-SP/GM cells had markedly suppressed tumor development of subcutaneously transplanted 4T1-SP cells compared with those treated with irradiated cells of non-transduced 4T1-SP cells or non-SP (4T1-NSP/GM) cells. Tumor suppression was accompanied by the robust accumulation of mature dendritic cells at vaccination sites and T-helper type 1-skewed systemic cellular immunity. Our results suggested that CSC cell-based GVAX immunotherapy might be clinically useful for inducing potent tumor-specific antitumor immunity.
Collapse
|
2
|
Kaufman HL, Ruby CE, Hughes T, Slingluff CL. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2014; 2:11. [PMID: 24971166 PMCID: PMC4072479 DOI: 10.1186/2051-1426-2-11] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 02/04/2023] Open
Abstract
In 2012, it was estimated that 9180 people in the United States would die from melanoma and that more than 76,000 new cases would be diagnosed. Surgical resection is effective for early-stage melanoma, but outcomes are poor for patients with advanced disease. Expression of tumor-associated antigens by melanoma cells makes the disease a promising candidate for immunotherapy. The hematopoietic cytokine granulocyte–macrophage colony-stimulating factor (GM-CSF) has a variety of effects on the immune system including activation of T cells and maturation of dendritic cells, as well as an ability to promote humoral and cell-mediated responses. Given its immunobiology, there has been interest in strategies incorporating GM-CSF in the treatment of melanoma. Preclinical studies with GM-CSF have suggested that it has antitumor activity against melanoma and can enhance the activity of anti-melanoma vaccines. Numerous clinical studies have evaluated recombinant GM-CSF as a monotherapy, as adjuvant with or without cancer vaccines, or in combination with chemotherapy. Although there have been suggestions of clinical benefit in some studies, results have been inconsistent. More recently, novel approaches incorporating GM-CSF in the treatment of melanoma have been evaluated. These have included oncolytic immunotherapy with the GM-CSF–expressing engineered herpes simplex virus talimogene laherparepvec and administration of GM-CSF in combination with ipilimumab, both of which have improved patient outcomes in phase 3 studies. This review describes the diverse body of preclinical and clinical evidence regarding use of GM-CSF in the treatment of melanoma.
Collapse
Affiliation(s)
- Howard L Kaufman
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Carl E Ruby
- Rush University Medical Center, 600 S Paulina St Suite 527, Chicago, IL 60612, USA
| | - Tasha Hughes
- Rush University Medical Center, 600 S Paulina St Suite 527, Chicago, IL 60612, USA
| | - Craig L Slingluff
- University of Virginia, P.O. Box 800709, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Bracci L, La Sorsa V, Belardelli F, Proietti E. Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Rev Vaccines 2014; 7:373-81. [DOI: 10.1586/14760584.7.3.373] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012; 2012:124187. [PMID: 22778760 PMCID: PMC3386616 DOI: 10.1155/2012/124187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed the evolvement of cancer immunotherapy as an increasingly effective therapeutic modality, evidenced by the approval of two immune-based products by the FDA, that is, the cancer vaccine Provenge (sipuleucel-T) for prostate cancer and the antagonist antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) ipilimumab for advanced melanoma. In addition, the clinical evaluations of a variety of promising immunotherapy drugs are well under way. Benefiting from more efficacious immunotherapeutic agents and treatment strategies, a number of recent clinical studies have achieved unprecedented therapeutic outcomes in some patients with certain types of cancers. Despite these advances, however, the efficacy of most cancer immunotherapies currently under clinical development has been modest. A recurring scenario is that therapeutic maneuvers initially led to measurable antitumor immune responses in cancer patients but ultimately failed to improve patient outcomes. It is increasingly recognized that tumor cells can antagonize therapy-induced immune attacks through a variety of counterregulation mechanisms, which represent a fundamental barrier to the success of cancer immunotherapy. Herein we summarize the findings from some recent preclinical and clinical studies, focusing on how tumor cells advance their survival and expansion by hijacking therapy-induced immune effector mechanisms that would otherwise mediate their destruction.
Collapse
|
5
|
Abstract
Food and Drug Administration-approved treatment for metastatic melanoma, including interferon alpha and interleukin-2, offer a modest benefit. Immunotherapy, although has not enjoyed high overall response rates, is capable of providing durable responses in a subset of patients. In recent years, new molecular-targeted therapies have become available and offer promise of clinical benefit, although low durability of response. It is not yet clear how best to integrate these 2 novel modalities that target the immune response to melanoma (immune therapy) or that target molecular signaling pathways in the melanoma cells (targeted therapy). Many signal transduction pathways are important in both tumor cell and T-cell proliferation and survival, which generate risk in combining targeted therapy and immunotherapy. This review focuses on the role of targeted therapy and immunotherapy in melanoma, and discusses how to combine the 2 modalities rationally for increased duration and response.
Collapse
|
6
|
Abstract
GVAX cancer immunotherapies are composed of whole tumor cells genetically modified to secrete the immune stimulatory cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), and then irradiated to prevent further cell division. Both autologous (patient specific) and allogeneic (non-patient specific) GVAX platforms have been evaluated either as single agents or in combination with other immunomodulatory strategies. Many early-phase clinical trials have now been completed. Results have consistently demonstrated a favorable safety profile manifested primarily by injection site reactions and flu-like symptoms. Consistent evidence of immune activation and clinical activity, including radiologic tumor regressions, has been seen across multiple cancer indications in both early- and late-stage disease. Phase 3 trials evaluating an allogeneic GVAX immunotherapy product in prostate cancer are under way.
Collapse
Affiliation(s)
- Kristen M Hege
- Cell Genesys, Inc., San Francisco, California 94080, USA.
| | | | | |
Collapse
|
7
|
Pan D, Wei X, Liu M, Feng S, Tian X, Feng X, Zhang X. Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol Res 2009; 32:502-9. [PMID: 19589203 DOI: 10.1179/174313209x455736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Malignant gliomas are good targets for gene therapy because they have been proven incurable with conventional treatments. However, malignant gliomas are genetically and physiologically highly heterogeneous, and current gene therapy interventions have been designed to target only a few variations of this kind of disease. Hence, we developed a combined gene therapy approach using a recombinant adenovirus carrying human wild-type p53 (WT-p53), granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7-1 genes (designated BB-102) to combat the disease. METHODS Human malignant glioma cells U251 and U87 were transduced with BB-102. Expression of WT-p53, GM-CSF and B7-1 genes were determined by Western blot, enzyme linked immunosorbent assay and flow cytometric analysis, respectively. Growth rates were determined by serial cell counts. Apoptosis was detected by flow cytometric analysis. Proliferation of autologous peripheral blood lymphocytes (PBLs) and cytotoxicity against primary glioma cells were assessed by cell proliferation and cytotoxicity assay kits, respectively. RESULTS By the transduction of BB-102, high expression levels of the three exogenesis genes were detected in glioma cells. Cell growth was inhibited and apoptosis was induced. Significant proliferation of autologous PBLs and specific cytotoxicity against primary glioma cells were also induced by the infection of BB-102 in vitro, with the effect being more evident than that of Ad-p53. CONCLUSION These results suggest that glioma cell vaccination co-transferred with p53, GM-CSF and B7-1 genes may be a feasible and effective immunotherapeutic approach in glioma treatments.
Collapse
Affiliation(s)
- Dongsheng Pan
- Institute of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Dou J, Hong X, Zhao F, Wang J, Chen J, Chen G. Investigation of GM-CSF Immune Accessory Effects in Tumor-Bearing Mice by Direct Gene Immunization. Immunol Invest 2009; 35:227-37. [PMID: 16698679 DOI: 10.1080/08820130600634550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To assess GM-CSF immune accessory effects in tumor-bearing mice, an animal tumor model was established by inoculating SP2/0 myeloma cells s.c. into the flank of Balb/c mice and 14 days later, injecting either 400 mug recombinant pcDNA3.1/mGM-CSF or a blank plasmid s.c. or i.m. into the tumor four times. The tumor weight, the activities of CTL and NK, the serum levels of IFN-gamma, IL-2 and lymphocytes infiltrating in tumor tissue were analysed 8 weeks later with MTT, ELISA and pathological section methods. The results showed that the tumor lump was reduced in mice injected s.c. (0.880 +/- 0.405 g) or i.m. (0.378 +/- 0.411 g) with pcDNA3.1/mGM-CSF compared with control mice injected s.c. (1.548 +/- 0.221g, P < 0.01)or i.m. (1.554 +/- 0.249g, P < 0.001) with a blank vector. Lymphocyte infiltration in tumor tissues was very apparent in mice injected i.m. with pcDNA3.1/mGM-CSF. In contrast, there was no lymphocyte infiltration in tumor tissues of control mice. In addition, the serum concentrations of IFN-gamma, IL-2 and the activities of CTL and NK cells were significantly increased in mice injected with pcDNA3.1/mGM-CSF compared with a control mice (P < 0.01). In conclusion, direct gene immunization of recombinant pcDNA3.1/mGM-CSF is a feasible strategy for tumor therapy.
Collapse
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology, Southeast University School of Basic Medical Science, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
9
|
Sikora AG, Jaffarzad N, Hailemichael Y, Gelbard A, Stonier SW, Schluns KS, Frasca L, Lou Y, Liu C, Andersson HA, Hwu P, Overwijk WW. IFN-alpha enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity. THE JOURNAL OF IMMUNOLOGY 2009; 182:7398-407. [PMID: 19494262 DOI: 10.4049/jimmunol.0802982] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs, including IFN-alpha, enhance Ag presentation and promote the expansion, survival, and effector function of CD8(+) CTL during viral infection. Because these are ideal characteristics for a vaccine adjuvant, we examined the efficacy and mechanism of exogenous IFN-alpha as an adjuvant for antimelanoma peptide vaccination. We studied the expansion of pmel-1 transgenic CD8(+) T cells specific for the gp100 melanocyte differentiation Ag after vaccination of mice with gp100(25-33) peptide in IFA. IFN-alpha synergized with peptide vaccination in a dose-dependent manner by boosting relative and absolute numbers of gp100-specific T cells that suppressed B16 melanoma growth. IFN-alpha dramatically increased the accumulation of gp100-specific, IFN-gamma-secreting, CD8(+) T cells in the tumor through reduced apoptosis and enhanced proliferation of Ag-specific CD8(+) T cells. IFN-alpha treatment also greatly increased the long-term maintenance of pmel-1 CD8(+) T cells with an effector memory phenotype, a process that required expression of IFN-alpha receptor on the T cells and IL-15 in the host. These results demonstrate the efficacy of IFN-alpha as an adjuvant for peptide vaccination, give insight into its mechanism of action, and provide a rationale for clinical trials in which vaccination is combined with standard-of-care IFN-alpha therapy for melanoma.
Collapse
Affiliation(s)
- Andrew G Sikora
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hance KW, Rogers CJ, Zaharoff DA, Canter D, Schlom J, Greiner JW. The antitumor and immunoadjuvant effects of IFN-alpha in combination with recombinant poxvirus vaccines. Clin Cancer Res 2009; 15:2387-96. [PMID: 19276249 PMCID: PMC2844936 DOI: 10.1158/1078-0432.ccr-08-1752] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE IFN-alpha is a pleiotropic cytokine possessing immunomodulatory properties that may improve the efficacy of therapeutic cancer vaccines. The aim of this study was to evaluate the effectiveness and compatibility of combining recombinant IFN-alpha with poxvirus vaccines targeting the human carcinoembryonic antigen (CEA) in murine models of colorectal and pancreatic adenocarcinomas, where CEA is a self-antigen. EXPERIMENTAL DESIGN The phenotypic and functional effects of IFN-alpha were evaluated in the draining inguinal lymph nodes of tumor-free mice. We studied the effect of the site of IFN-alpha administration (local versus distal) on antigen-specific immune responses to poxvirus vaccination. Mechanistic studies were conducted to assess the efficacy of IFN-alpha and CEA-directed poxvirus vaccines in tumor-bearing CEA transgenic mice. RESULTS We identified a dose and schedule of IFN-alpha that induced a locoregional expansion of the draining inguinal lymph nodes and improved cellular cytotoxicity (natural killer and CD8(+)) and antigen presentation. Suppression of the vaccinia virus was avoided by administering IFN-alpha distal to the site of vaccination. The combination of IFN-alpha and vaccine inhibited tumor growth, improved survival, and elicited CEA-specific CTL responses in mice with CEA(+) adenocarcinomas. In mice with pancreatic tumors, IFN-alpha slowed tumor growth, induced CTL activity, and increased CD8(+) tumor-infiltrating lymphocytes. CONCLUSIONS These data suggest that IFN-alpha can be used as a biological response modifier with antigen-directed poxvirus vaccines to yield significant therapeutic antitumor immune responses. This study provides the rationale and mechanistic insights to support a clinical trial of this immunotherapeutic strategy in patients with CEA-expressing carcinomas.
Collapse
Affiliation(s)
- Kenneth W Hance
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
11
|
Smith KE, Fritzell S, Badn W, Eberstål S, Janelidze S, Visse E, Darabi A, Siesjö P. Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 2008; 124:630-7. [PMID: 18972433 DOI: 10.1002/ijc.23986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We were the first to demonstrate that combined immunotherapy with GM-CSF producing GL261 cells and recombinant IFNgamma of preestablished GL261 gliomas could cure 90% of immunized mice. To extend these findings and to uncover the underlying mechanisms, the ensuing experiments were undertaken. We hypothesized that immunizations combining both GM-CSF and IFNgamma systemically would increase the number of immature myeloid cells, which then would mature and differentiate into dendritic cells (DCs) and macrophages, thereby augmenting tumor antigen presentation and T-cell activation. Indeed, the combined therapy induced a systemic increase of both immature and mature myeloid cells but also an increase in T regulatory cells (T-regs). Cytotoxic anti-tumor responses, mirrored by an increase in Granzyme B-positive cells as well as IFNgamma-producing T-cells, were augmented after immunizations with GM-CSF and IFNgamma. We also show that the combined therapy induced a long-term memory with rejection of intracerebral (i.c.) rechallenges. Depletion of T-cells showed that both CD4+ and CD8+ T-cells were essential for the combined GM-CSF and IFNgamma effect. Finally, when immunizations were delayed until day 5 after tumor inoculation, only mice receiving immunotherapy with both GM-CSF and IFNgamma survived. We conclude that the addition of recombinant IFNgamma to immunizations with GM-CSF producing tumor cells increased the number of activated tumoricidal T-cells, which could eradicate established intracerebral tumors. These results clearly demonstrate that the combination of cytokines in immunotherapy of brain tumors have synergistic effects that have implications for clinical immunotherapy of human malignant brain tumors.
Collapse
Affiliation(s)
- Karin Enell Smith
- Department of Clinical Sciences, Glioma Immunotherapy Group, The Rausing Laboratory, Division of Neurosurgery, BMC D14, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hoang-Le D, Smeenk L, Anraku I, Pijlman GP, Wang XJ, de Vrij J, Liu WJ, Le TT, Schroder WA, Khromykh AA, Suhrbier A. A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy. Gene Ther 2008; 16:190-9. [PMID: 19092857 DOI: 10.1038/gt.2008.169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently developed a non-cytopathic RNA replicon-based viral vector system based on the flavivirus Kunjin. Here, we illustrate the utility of the Kunjin replicon system for gene therapy. Intra-tumoral injections of Kunjin replicon virus-like particles encoding granulocyte colony-stimulating factor were able to cure >50% of established subcutaneous CT26 colon carcinoma and B16-OVA melanomas. Regression of CT26 tumours correlated with the induction of anti-cancer CD8 T cells, and treatment of subcutaneous CT26 tumours also resulted in the regression of CT26 lung metastases. Only a few immune-based strategies are able to cure these aggressive tumours once they are of a reasonable size, illustrating the potential of this vector system for intra-tumoral gene therapy applications.
Collapse
Affiliation(s)
- D Hoang-Le
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sundstedt A, Celander M, Hedlund G. Combining tumor-targeted superantigens with interferon-alpha results in synergistic anti-tumor effects. Int Immunopharmacol 2008; 8:442-52. [DOI: 10.1016/j.intimp.2007.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/07/2007] [Accepted: 11/07/2007] [Indexed: 11/16/2022]
|
14
|
Janke M, Peeters B, de Leeuw O, Moorman R, Arnold A, Fournier P, Schirrmacher V. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Ther 2007; 14:1639-49. [PMID: 17914407 DOI: 10.1038/sj.gt.3303026] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the first report describing recombinant (rec) Newcastle disease virus (NDV) as vector for gene therapy of cancer. The gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF) was inserted as an additional transcription unit at two different positions into the NDV genome. The rec virus with the strongest production of the gene product (rec(GM-CSF)) was selected for our study. The insertion of the new foreign gene did neither affect the main features of NDV replication nor its tumor selectivity. The gene product was biologically active and stable. Tumor vaccine cells infected by rec(GM-CSF) stimulated human peripheral blood mononuclear cells (PBMC) to exert antitumor bystander effects in vitro in a tumor neutralization assay. These effects were significantly increased when compared to vaccine infected by rec(-) virus. Furthermore, rec(GM-CSF) led to a much higher interferon-alpha (IFN-alpha) production than rec(-) when added as virus or as virus-modified vaccine to PBMC. Two distinct cell types, monocytes and plasmacytoid dendritic cells were shown to contribute to the augmented IFN-alpha response of PBMC. In conclusion, the already inherent anti-neoplastic and immunostimulatory properties of NDV could be further augmented by the introduction of a therapeutic gene whose product initiates a broad cascade of immunological effects in the microenvironment of the vaccine.
Collapse
Affiliation(s)
- M Janke
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Simmons AD, Li B, Gonzalez-Edick M, Lin C, Moskalenko M, Du T, Creson J, VanRoey MJ, Jooss K. GM-CSF-secreting cancer immunotherapies: preclinical analysis of the mechanism of action. Cancer Immunol Immunother 2007; 56:1653-65. [PMID: 17410360 PMCID: PMC11029840 DOI: 10.1007/s00262-007-0315-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 03/08/2007] [Indexed: 01/22/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapies have demonstrated long-lasting, and specific anti-tumor immune responses in animal models. The studies reported here specifically evaluate two aspects of the immune response generated by such immunotherapies: the persistence of irradiated tumor cells at the immunization site, and the breadth of the immune response elicited to tumor associated antigens (TAA) derived from the immunotherapy. To further define the mechanism of GM-CSF-secreting cancer immunotherapies, immunohistochemistry studies were performed using the B16F10 melanoma tumor model. In contrast to previous reports, our data revealed that the irradiated tumor cells persisted and secreted high levels of GM-CSF at the injection site for more than 21 days. Furthermore, dense infiltrates of dendritic cells were observed only in mice treated with GM-CSF-secreting B16F10 cells, and not in mice treated with unmodified B16F10 cells with or without concurrent injection of rGM-CSF. In addition, histological studies also revealed enhanced neutrophil and CD4+ T cell infiltration, as well as the presence of apoptotic cells, at the injection site of mice treated with GM-CSF-secreting tumor cells. To evaluate the scope of the immune response generated by GM-CSF-secreting cancer immunotherapies, several related B16 melanoma tumor cell subclones that exist as a result of genetic drift in the original cell line were used to challenge mice previously immunized with GM-CSF-secreting B16F10 cells. These studies revealed that GM-CSF-secreting cancer immunotherapies elicit T cell responses that effectively control growth of related but antigenically distinct tumors. Taken together, these studies provide important new insights into the mechanism of action of this promising novel cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew D Simmons
- Cell Genesys Inc., 500 Forbes Blvd., South San Francisco, CA, 94080, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kushida S, Ohmae H, Kamma H, Totsuka R, Matsumura M, Takeuchi A, Saiki I, Yanagawa T, Onizawa K, Ishii T, Ohn T. Artificial cytokine storm combined with hyperthermia induces significant anti-tumor effect in mice inoculated with lewis lung carcinoma and B16 melanoma cells. Int J Hyperthermia 2007; 22:699-712. [PMID: 17390999 DOI: 10.1080/02656730601088508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In cancer immunotherapies combined with hyperthermia, one or two cytokines have been tested to augment the anti-tumor effect. However, the therapies have not shown sufficient improvement. The aim of this study is to find a new potent tumor immunotherapy in order to augment antitumor effect of hyperthermia by the cytokine cocktails in vivo. We used a combination therapy of local hyperthermia (LH) and various cytokine cocktails composed of IFNs (IFN-alpha, -beta, and -gamma), Thl cytokines (IL-2, -12, -15, and -18), a Th2 cytokine (IL-4), inflammatory cytokines (IL-lalpha and TNF-alpha), and dendritic cell-inducible cytokines (IL-3 and GM-CSF). These cytokines in a proper combination augmented the anti-tumor effect of LH and prolonged survival time in Lewis lung carcinoma or B16 melanoma significantly. Moreover, the 12-cytokine cocktail suppressed B 16 metastasis to the lung and lymph nodes, and complete regression of the tumors without regrowth occurred in 3 of 5 mice. In the cured three B16 mice, there was hyperplasia of lymphatic organs with many CD3-positive T lymphocytes. The most effective cytokine combination should be able to augment the anti-tumor effect of other therapies besides hyperthermia that induce the necrosis of tumor cells.
Collapse
Affiliation(s)
- Shigeki Kushida
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li B, VanRoey MJ, Jooss K. Recombinant IL-7 enhances the potency of GM-CSF-secreting tumor cell immunotherapy. Clin Immunol 2007; 123:155-65. [PMID: 17320482 DOI: 10.1016/j.clim.2007.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/16/2006] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
IL-7 is known for its role in lymphopoiesis and T-cell homeostasis. In addition, its capacity to augment the immune response to weak or low affinity antigens makes it an ideal candidate to evaluate in combination with a GM-CSF-secreting tumor cell immunotherapy, which has been shown to elicit broad humoral and cellular immune responses. The studies reported here show that IL-7, when combined with a GM-CSF-secreting tumor cell immunotherapy, significantly prolonged the survival of tumor-bearing mice. The enhanced anti-tumor protection correlated with an increased number of activated dendritic cells (DC) and T cells in lymphoid tissues, such as the draining lymph nodes (DLN) and spleen. Moreover, an increased number of activated effector T cells were found in the tumor microenvironment, correlating with a more potent systemic tumor-specific T-cell response than each monotherapy alone. Taken together, these studies demonstrate that IL-7 augments the anti-tumor response of a GM-CSF-secreting tumor cell immunotherapy in preclinical models.
Collapse
Affiliation(s)
- Betty Li
- Cell Genesys Inc., 500 Forbes Boulevard, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
18
|
Smith KE, Janelidze S, Visse E, Badn W, Salford L, Siesjö P, Darabi A. Synergism between GM-CSF and IFNgamma: enhanced immunotherapy in mice with glioma. Int J Cancer 2007; 120:75-80. [PMID: 17044023 DOI: 10.1002/ijc.22286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme is the most common malignant primary brain tumor and also one of the most therapy-resistant tumors. Because of the dismal prognosis, various therapies modulating the immune system have been developed in experimental models. Previously, we have shown a 37-70% cure in a rat glioma model where rats were peripherally immunized with tumor cells producing IFNgamma. On the basis of these results, we wanted to investigate whether a combination of GM-CSF and IFNgamma could improve the therapeutic effect in a mouse glioma model, GL261 (GL-wt). Three biweekly intraperitoneal (i.p.) immunizations with irradiated GM-CSF-transduced GL261 cells (GL-GM) induced a 44% survival in mice with intracranial glioma. While treatment of GL-wt and GL-GM with IFNgamma in vitro induced upregulation of MHC I and MHC II on the tumor cells, it could not enhance survival after immunization. However, immunizations with GL-GM combined with recombinant IFNgamma at the immunization site synergistically enhanced survival with a cure rate of 88%. Tumors from mice receiving only 1 immunization on Day 10 after tumor inoculation were sectioned on Day 20 for analysis of leukocyte infiltration. Tumor volume was reduced and the infiltration of macrophages was denser in mice immunized with GL-GM combined with IFNgamma compared with that of both wildtype and nonimmunized mice. To our knowledge, this is the first study to demonstrate a synergy between GM-CSF and IFNgamma in experimental immunotherapy of tumors, by substantially increasing survival as well as inducing a potent anti-tumor response after only 1 postponed immunization.
Collapse
Affiliation(s)
- Karin E Smith
- Glioma Immunotherapy Group, Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, University of Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|