1
|
Sagliocchi S, Acampora L, Barone B, Crocetto F, Dentice M. The impact of the tumor microenvironment in the dual burden of obesity-cancer link. Semin Cancer Biol 2025; 112:36-42. [PMID: 40127706 DOI: 10.1016/j.semcancer.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Obesity induces systemic perturbations of tissue homeostasis, leading to dyslipidemia, insulin resistance and chronic state of inflammation. Evidence from clinical and preclinical studies links excess of adiposity with increased cancer incidence and suggests that chronic inflammation may contribute to increased cancer risk in obese patients. Over the last decades of obesity research, multifaced and complicated effects of abnormal or excessive expansion of Adipose Tissue have been uncovered. In particular, it is widely described how obesity can exacerbate the tumorigenesis for instance by fueling soluble signals and adipokines and by enhancing tissue inflammation and altering the hormonal balance. Less is known about the paracrine effects of the cancer-associated adipocytes on the tumor cells and still poorly explored is the reciprocal communication between cancer cells and the adipose component of the tumor microenvironment (TME). In this review, we will address the mechanisms by which the peritumoral Adipose Tissue can influence the dynamics of tumoral cells. We will discuss how obesity-induced changes in the tumor microenvironment may enhance tumor growth and aggressive characteristics leading to increased invasiveness and metastatic progression of cancer that leads to a worsen cancer survival in obese subjects. We conclude that targeting the peritumoral adipose component of the TME would be a therapeutic option to prevent cancer development.
Collapse
Affiliation(s)
- Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lucia Acampora
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples 80131, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples 80131, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy; CEINGE - Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
2
|
Ge YY, Xia XC, Wu AQ, Ma CY, Yu LH, Zhou JY. Identifying adipocyte-derived exosomal miRNAs as potential novel prognostic markers for radiotherapy of esophageal squamous cell carcinoma. World J Gastrointest Oncol 2025; 17:98808. [PMID: 39958561 PMCID: PMC11756016 DOI: 10.4251/wjgo.v17.i2.98808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Radiation resistance limits radiotherapy efficacy in esophageal squamous cell carcinoma (ESCC). The tumor microenvironment, particularly adipocytes, plays a role in promoting cancer progression. Extracellular vesicles and microRNAs (miRNAs) regulate gene expression and hold prognostic potential for esophageal carcinoma. Elucidating radioresistance mechanisms and identifying radiosensitization targets can help enhance radiotherapy efficacy for esophageal cancer. AIM To investigate the potential role of miRNAs derived from adipocyte exosomes as prognostic markers for radiotherapy efficacy in ESCC. METHODS Free adipocytes were isolated from human thoracic adipose tissue. A co-culture model of adipocytes and ESCC cells was established to observe colony formation and cell survival post-irradiation. ESCC cell apoptosis was assessed by flow cytometry. Western Blot and immunofluorescence assays were performed to evaluate DNA damage in ESCC cells post-irradiation. Adipocyte-derived exosomes were isolated by ultracentrifugation and identified by electron microscopy. A similar set of experiments was performed on ESCC cells to analyze cell survival, apoptosis, and DNA damage post-radiation exposure. Exosomes from adipose tissue and serum exosomes from ESCC patients pre- and post-radiotherapy were subjected to high-throughput miRNA-sequencing and validated using real-time quantitative polymerase chain reaction. The correlation between potential target miRNAs and the short-term prognosis of radiotherapy in ESCC was evaluated by receiver operating characteristic curve analysis. RESULTS Co-culturing adipocytes with ESCC cells enhanced radioresistance, as evidenced by increased colony formation. Adipocyte co-culture reduced ESCC cell apoptosis and DNA damage post-radiation. Adipocyte-derived exosomes similarly conferred radioresistance in ESCC cells, decreasing apoptosis and DNA damage post-irradiation. High-throughput miRNA-sequencing identified miR-660-5p in serum and adipose tissue exosomes. Patients with high expression of serum exosome miR-660-5p showed poor prognosis after radiotherapy. CONCLUSION Adipocyte-derived exosomal miR-660-5p is a potential biomarker for evaluating radiotherapy efficacy in ESCC.
Collapse
Affiliation(s)
- Yang-Yang Ge
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Radiotherapy, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu Province, China
| | - Xiao-Chun Xia
- Department of Radiotherapy, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu Province, China
| | - An-Qing Wu
- School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Chen-Ying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ling-Hui Yu
- Department of Brachytherapy, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu Province, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
3
|
Sun Y, Deng M, Gevaert O, Aberle M, Olde Damink SW, van Dijk D, Rensen SS. Tumor metabolic activity is associated with subcutaneous adipose tissue radiodensity and survival in non-small cell lung cancer. Clin Nutr 2024; 43:1809-1815. [PMID: 38870661 DOI: 10.1016/j.clnu.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Cachexia-associated body composition alterations and tumor metabolic activity are both associated with survival of cancer patients. Recently, subcutaneous adipose tissue properties have emerged as particularly prognostic body composition features. We hypothesized that tumors with higher metabolic activity instigate cachexia related peripheral metabolic alterations, and investigated whether tumor metabolic activity is associated with body composition and survival in patients with non-small-cell lung cancer (NSCLC), focusing on subcutaneous adipose tissue. METHODS A retrospective analysis was performed on a cohort of 173 patients with NSCLC. 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scans obtained before treatment were used to analyze tumor metabolic activity (standardized uptake value (SUV) and SUV normalized by lean body mass (SUL)) as well as body composition variables (subcutaneous and visceral adipose tissue radiodensity (SAT/VAT radiodensity) and area; skeletal muscle radiodensity (SM radiodensity) and area). Subjects were divided into groups with high or low SAT radiodensity based on Youden Index of Receiver Operator Characteristics (ROC). Associations between tumor metabolic activity, body composition variables, and survival were analyzed by Mann-Whitney tests, Cox regression, and Kaplan-Meier analysis. RESULTS The overall prevalence of high SAT radiodensity was 50.9% (88/173). Patients with high SAT radiodensity had shorter survival compared with patients with low SAT radiodensity (mean: 45.3 vs. 50.5 months, p = 0.026). High SAT radiodensity was independently associated with shorter overall survival (multivariate Cox regression HR = 1.061, 95% CI: 1.022-1.101, p = 0.002). SAT radiodensity also correlated with tumor metabolic activity (SULpeak rs = 0.421, p = 0.029; SUVpeak rs = 0.370, p = 0.048). In contrast, the cross-sectional areas of SM, SAT, and VAT were not associated with tumor metabolic activity or survival. CONCLUSION Higher SAT radiodensity is associated with higher tumor metabolic activity and shorter survival in patients with NSCLC. This may suggest that tumors with higher metabolic activity induce subcutaneous adipose tissue alterations such as decreased lipid density, increased fibrosis, or browning.
Collapse
Affiliation(s)
- Yan Sun
- Department of Surgery and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Min Deng
- Department of Surgery and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, USA; Stanford Center for Biomedical Informatics Research, Department of Biomedical Data Science, Stanford University, USA
| | - Merel Aberle
- Department of Surgery and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Steven W Olde Damink
- Department of Surgery and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of General, Visceral- and Transplantation Surgery, University Hospital Essen, Duisberg-Essen University, Germany
| | - David van Dijk
- Department of Surgery and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Sander S Rensen
- Department of Surgery and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Han L, Xu S, Zhou D, Chen R, Ding Y, Zhang M, Bao M, He B, Li S. Unveiling the causal link between metabolic factors and ovarian cancer risk using Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1401648. [PMID: 38899007 PMCID: PMC11185996 DOI: 10.3389/fendo.2024.1401648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Background Metabolic abnormalities are closely tied to the development of ovarian cancer (OC), yet the relationship between anthropometric indicators as risk indicators for metabolic abnormalities and OC lacks consistency. Method The Mendelian randomization (MR) approach is a widely used methodology for determining causal relationships. Our study employed summary statistics from the genome-wide association studies (GWAS), and we used inverse variance weighting (IVW) together with MR-Egger and weighted median (WM) supplementary analyses to assess causal relationships between exposure and outcome. Furthermore, additional sensitivity studies, such as leave-one-out analyses and MR-PRESSO were used to assess the stability of the associations. Result The IVW findings demonstrated a causal associations between 10 metabolic factors and an increased risk of OC. Including "Basal metabolic rate" (OR= 1.24, P= 6.86×10-4); "Body fat percentage" (OR= 1.22, P= 8.20×10-3); "Hip circumference" (OR= 1.20, P= 5.92×10-4); "Trunk fat mass" (OR= 1.15, P= 1.03×10-2); "Trunk fat percentage" (OR= 1.25, P= 8.55×10-4); "Waist circumference" (OR= 1.23, P= 3.28×10-3); "Weight" (OR= 1.21, P= 9.82×10-4); "Whole body fat mass" (OR= 1.21, P= 4.90×10-4); "Whole body fat-free mass" (OR= 1.19, P= 4.11×10-3) and "Whole body water mass" (OR= 1.21, P= 1.85×10-3). Conclusion Several metabolic markers linked to altered fat accumulation and distribution are significantly associated with an increased risk of OC.
Collapse
Affiliation(s)
- Li Han
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqi Zhou
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Molière S, Lodi M, Leblanc S, Gressel A, Mathelin C, Alpy F, Chenard MP, Tomasetto C. MMP-11 expression in early luminal breast cancer: associations with clinical, MRI, pathological characteristics, and disease-free survival. BMC Cancer 2024; 24:295. [PMID: 38438841 PMCID: PMC10913243 DOI: 10.1186/s12885-024-11998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Early hormone-positive breast cancers typically have favorable outcomes, yet long-term surveillance is crucial due to the risk of late recurrences. While many studies associate MMP-11 expression with poor prognosis in breast cancer, few focus on early-stage cases. This study explores MMP-11 as an early prognostic marker in hormone-positive breast cancers. METHODS In this retrospective study, 228 women with early hormone-positive invasive ductal carcinoma, treated surgically between 2011 and 2016, were included. MMP-11 expression was measured by immunohistochemistry, and its association with clinical and MRI data was analyzed. RESULTS Among the patients (aged 31-89, median 60, with average tumor size of 15.7 mm), MMP-11 staining was observed in half of the cases. This positivity correlated with higher uPA levels and tumor grade but not with nodal status or size. Furthermore, MMP-11 positivity showed specific associations with MRI features. Over a follow-up period of 6.5 years, only 12 oncological events occurred. Disease-free survival was linked to Ki67 and MMP-11. CONCLUSION MMP-11, primarily present in tumor-surrounding stromal cells, correlates with tumor grade and uPA levels. MMP-11 immunohistochemical score demonstrates a suggestive trend in association with disease-free survival, independent of Ki67 and other traditional prognostic factors. This highlights the potential of MMP-11 as a valuable marker in managing early hormone-positive breast cancer.
Collapse
Affiliation(s)
- Sébastien Molière
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
- University of Strasbourg, Illkirch, France.
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Strasbourg, France.
- Breast and Thyroid Imaging Unit, ICANS, Strasbourg, France.
| | - Massimo Lodi
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | | | - Anne Gressel
- Department of Pathology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, Strasbourg, France
| | - Carole Mathelin
- University of Strasbourg, Illkirch, France
- Department of Senology, ICANS, Strasbourg, France
- Department of Gynecology and Obstetrics, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, Strasbourg, France
| | - Fabien Alpy
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Marie-Pierre Chenard
- University of Strasbourg, Illkirch, France
- Department of Pathology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, Strasbourg, France
| | - Catherine Tomasetto
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| |
Collapse
|
7
|
Xu K, Fu A, Li Z, Miao L, Lou Z, Jiang K, Lau C, Su T, Tong T, Bao J, Lyu A, Kwan HY. Elevated extracellular matrix protein 1 in circulating extracellular vesicles supports breast cancer progression under obesity conditions. Nat Commun 2024; 15:1685. [PMID: 38402239 PMCID: PMC10894219 DOI: 10.1038/s41467-024-45995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The cargo content in small extracellular vesicles (sEVs) changes under pathological conditions. Our data shows that in obesity, extracellular matrix protein 1 (ECM1) protein levels are significantly increased in circulating sEVs, which is dependent on integrin-β2. Knockdown of integrin-β2 does not affect cellular ECM1 protein levels but significantly reduces ECM1 protein levels in the sEVs released by these cells. In breast cancer (BC), overexpressing ECM1 increases matrix metalloproteinase 3 (MMP3) and S100A/B protein levels. Interestingly, sEVs purified from high-fat diet-induced obesity mice (D-sEVs) deliver more ECM1 protein to BC cells compared to sEVs from control diet-fed mice. Consequently, BC cells secrete more ECM1 protein, which promotes cancer cell invasion and migration. D-sEVs treatment also significantly enhances ECM1-mediated BC metastasis and growth in mouse models, as evidenced by the elevated tumor levels of MMP3 and S100A/B. Our study reveals a mechanism and suggests sEV-based strategies for treating obesity-associated BC.
Collapse
Affiliation(s)
- Keyang Xu
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ai Fu
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyi Li
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangbin Miao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhonghan Lou
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keying Jiang
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiejun Tong
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Jianfeng Bao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Aiping Lyu
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.
- Institute of Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
8
|
Li L, Geng J, Yu W, Zhou F, Zheng Z, Fu K, Kong J, Feng X. Inhibition of PPARγ by BZ26, a GW9662 derivate, attenuated obesity-related breast cancer progression by inhibiting the reprogramming of mature adipocytes into to cancer associate adipocyte-like cells. Front Pharmacol 2023; 14:1205030. [PMID: 37649895 PMCID: PMC10462981 DOI: 10.3389/fphar.2023.1205030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity has been associated with the development of 13 different types of cancers, including breast cancer. Evidence has indicated that cancer-associated adipocytes promote the proliferation, invasion, and metastasis of cancer. However, the mechanisms that link CAAs to the progression of obesity-related cancer are still unknown. Here, we found the mature adipocytes in the visceral fat of HFD-fed mice have a CAAs phenotype but the stromal vascular fraction of the visceral fat has not. Importantly, we found the derivate of the potent PPARγ antagonist GW9662, BZ26 inhibited the reprogramming of mature adipocytes in the visceral fat of HFD-fed mice into CAA-like cells and inhibited the proliferation and invasion of obesity-related breast cancer. Further study found that it mediated the browning of visceral, subcutaneous and perirenal fat and attenuated inflammation of adipose tissue and metabolic disorders. For the mechanism, we found that BZ26 bound and inhibited PPARγ by acting as a new modulator. Therefore, BZ26 serves as a novel modulator of PPARγ activity, that is, capable of inhibiting obesity-related breast cancer progression by inhibiting of CAA-like cell formation, suggesting that inhibiting the reprogramming of mature adipocytes into CAAs or CAA-like cells may be a potential therapeutic strategy for obesity-related cancer treatment.
Collapse
Affiliation(s)
- Liangge Li
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiafeng Geng
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Feifei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhihuan Zheng
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kaiyue Fu
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junjie Kong
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujing Feng
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Simiczyjew A, Wądzyńska J, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cell Mol Biol Lett 2023; 28:58. [PMID: 37481560 PMCID: PMC10363323 DOI: 10.1186/s11658-023-00476-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND One of the factors that affect the progression of melanoma is the tumor microenvironment, which consists of cellular elements, extracellular matrix, acidification, and a hypoxic state. Adipocytes are one of the types of cell present in the niche and are localized in the deepest layer of the skin. However, the relationship between fat cells and melanoma remains unclear. METHODS We assessed the influence of melanoma cells on adipocytes using an indirect coculture system. We estimated the level of cancer-associated adipocyte (CAA) markers through quantitative PCR analysis. The fibroblastic phenotype of CAAs was confirmed by cell staining and western blotting analysis. The lipid content was estimated by lipid detection in CAAs using LipidSpot and by quantitative analysis using Oil Red O. The expression of proteins involved in lipid synthesis, delipidation, and metabolic processes were assessed through quantitative PCR or western blotting analysis. Lactate secretion was established using a Lactate-Glo™ assay. Proteins secreted by CAAs were identified in cytokine and angiogenesis arrays. The proliferation of melanoma cells cocultured with CAAs was assessed using an XTT proliferation assay. Statistical analysis was performed using a one-way ANOVA followed by Tukey's test in GraphPad Prism 7 software. RESULTS Obtained CAAs were identified by decreased levels of leptin, adiponectin, resistin, and FABP4. Adipocytes cocultured with melanoma presented fibroblastic features, such as a similar proteolytic pattern to that of 3T3L1 fibroblasts and increased levels of vimentin and TGFβRIII. Melanoma cells led to a reduction of lipid content in CAAs, possibly by downregulation of lipid synthesis pathways (lower FADS, SC4MOL, FASN) or enhancement of lipolysis (higher level of phosphorylation of ERK and STAT3). Adipocytes cocultured with melanoma cells secreted higher IL6 and SerpinE1 levels and produced less CCL2, CXCL1, and angiogenic molecules. CAAs also showed metabolic changes comprising the increased secretion of lactate and enhanced production of glucose, lactate, and ion transporters. In addition, changes in adipocytes observed following melanoma coculture resulted in a higher proliferation rate of cancer cells. CONCLUSIONS Melanoma cells led to decreased lipid content in adipocytes, which might be related to enhanced delipidation or reduction of lipid synthesis. Fibroblast-like CAAs showed metabolic changes that may be the reason for accelerated proliferation of melanoma cells.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| |
Collapse
|
10
|
Conway JRW, Dinç DD, Follain G, Paavolainen O, Kaivola J, Boström P, Hartiala P, Peuhu E, Ivaska J. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. SCIENCE ADVANCES 2023; 9:eadg1840. [PMID: 37436978 DOI: 10.1126/sciadv.adg1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor-binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II-neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.
Collapse
Affiliation(s)
- James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Defne D Dinç
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Oona Paavolainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pauliina Hartiala
- Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland
- Medicity Research Laboratory, InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
11
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
12
|
Gibson SV, Roozitalab RM, Allen MD, Jones JL, Carter EP, Grose RP. Everybody needs good neighbours: the progressive DCIS microenvironment. Trends Cancer 2023; 9:326-338. [PMID: 36739265 DOI: 10.1016/j.trecan.2023.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive form of breast cancer where neoplastic luminal cells are confined to the ductal tree. While as many as 70% of DCIS cases will remain indolent, most women are treated with surgery, often combined with endocrine and radiotherapies. Overtreatment is therefore a major issue, demanding new methods to stratify patients. Somewhat paradoxically, the neoplastic cells in DCIS are genetically comparable to those in invasive disease, suggesting the tumour microenvironment is the driving force for progression. Clinical and mechanistic studies highlight the complex DCIS microenvironment, with multiple cell types competing to regulate progression. Here, we examine recent studies detailing distinct aspects of the DCIS microenvironment and discuss how these may inform more effective care.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Reza M Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
13
|
Rebeaud M, Bouche C, Dauvillier S, Attané C, Arellano C, Vaysse C, Fallone F, Muller C. A novel 3D culture model for human primary mammary adipocytes to study their metabolic crosstalk with breast cancer in lean and obese conditions. Sci Rep 2023; 13:4707. [PMID: 36949082 PMCID: PMC10033714 DOI: 10.1038/s41598-023-31673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Obesity is a negative prognosis factor for breast cancer. Yet, the biological mechanisms underlying this effect are still largely unknown. An emerging hypothesis is that the transfer of free fatty acids (FFA) between adipocytes and tumor cells might be altered under obese conditions, contributing to tumor progression. Currently there is a paucity of models to study human mammary adipocytes (M-Ads)-cancer crosstalk. As for other types of isolated white adipocytes, herein, we showed that human M-Ads die within 2-3 days by necrosis when grown in 2D. As an alternative, M-Ads were grown in a fibrin matrix, a 3D model that preserve their distribution, integrity and metabolic function for up to 5 days at physiological glucose concentrations (5 mM). Higher glucose concentrations frequently used in in vitro models promote lipogenesis during M-Ads culture, impairing their lipolytic function. Using transwell inserts, the matrix embedded adipocytes were cocultured with breast cancer cells. FFA transfer between M-Ads and cancer cells was observed, and this event was amplified by obesity. Together these data show that our 3D model is a new tool for studying the effect of M-Ads on tumor cells and beyond with all the components of the tumor microenvironment including the immune cells.
Collapse
Affiliation(s)
- Marie Rebeaud
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Caroline Bouche
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
- Département de Chirurgie Gynécologique oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Carlo Arellano
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
- Département de Chirurgie Gynécologique oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Charlotte Vaysse
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
- Département de Chirurgie Gynécologique oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Frédérique Fallone
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse UMR 5089, 205 route de Narbonne, BP 64182, 31077, Toulouse, France.
| |
Collapse
|
14
|
Macrophage-Conditioned Media Promotes Adipocyte Cancer Association, Which in Turn Stimulates Breast Cancer Proliferation and Migration. Biomolecules 2022; 12:biom12121757. [PMID: 36551185 PMCID: PMC9775594 DOI: 10.3390/biom12121757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women and the leading cause of female cancer deaths worldwide. Obesity causes chronic inflammation and is a risk factor for post-menopausal breast cancer and poor prognosis. Obesity triggers increased infiltration of macrophages into adipose tissue, yet little research has focused on the effects of macrophages in early stages of breast tumor development in obese patients. In this study, the effects of pro-inflammatory macrophages on breast cancer-adipocyte crosstalk were investigated. METHODS An innovative human cell co-culture system was built and used to model the paracrine interactions among adipocytes, macrophages, and breast cancer cells and how they facilitate tumor progression. The effects on cancer cells were examined using cell counts and migration assays. Quantitative reverse-transcription polymerase chain reaction was used to measure the expression levels of several cytokines and proteases to analyze adipocyte cancer association. RESULTS Macrophage-conditioned media intensified the effects of breast cancer-adipocyte crosstalk. Adipocytes became delipidated and increased production of pro-inflammatory cytokines, even in the absence of cancer cells, although the expression levels were highest with all three cell components. As a result, co-cultured breast cancer cells became more aggressive, with increased proliferation and migration compared to adipocyte-breast cancer co-cultures treated with unconditioned media. CONCLUSIONS A novel co-culture model was built to evaluate the crosstalk among human macrophages, adipocytes, and breast cancer cells. We found that macrophages may contribute to adipocyte inflammation and cancer association and thus promote breast cancer progression.
Collapse
|
15
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
16
|
Chaplin A, Rodriguez RM, Segura-Sampedro JJ, Ochogavía-Seguí A, Romaguera D, Barceló-Coblijn G. Insights behind the Relationship between Colorectal Cancer and Obesity: Is Visceral Adipose Tissue the Missing Link? Int J Mol Sci 2022; 23:13128. [PMID: 36361914 PMCID: PMC9655590 DOI: 10.3390/ijms232113128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major health problem worldwide, with an estimated 1.9 million new cases and 915,880 deaths in 2020 alone. The etiology of CRC is complex and involves both genetic and lifestyle factors. Obesity is a major risk factor for CRC, and the mechanisms underlying this link are still unclear. However, the generalized inflammatory state of adipose tissue in obesity is thought to play a role in the association between CRC risk and development. Visceral adipose tissue (VAT) is a major source of proinflammatory cytokines and other factors that contribute to the characteristic systemic low-grade inflammation associated with obesity. VAT is also closely associated with the tumor microenvironment (TME), and recent evidence suggests that adipocytes within the TME undergo phenotypic changes that contribute to tumor progression. In this review, we aim to summarize the current evidence linking obesity and CRC, with a focus on the role of VAT in tumor etiology and progression.
Collapse
Affiliation(s)
- Alice Chaplin
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ramon Maria Rodriguez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain
| | - Juan José Segura-Sampedro
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain
- General & Digestive Surgery Department, University Hospital Son Espases, 07120 Palma, Spain
- School of Medicine, University of the Balearic Islands, 07120 Palma, Spain
| | - Aina Ochogavía-Seguí
- General & Digestive Surgery Department, University Hospital Son Espases, 07120 Palma, Spain
| | - Dora Romaguera
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain
| |
Collapse
|
17
|
Identification of a Biomarker Combination for Survival Stratification in pStage II/III Gastric Cancer after Curative Resection. Cancers (Basel) 2022; 14:cancers14184427. [PMID: 36139587 PMCID: PMC9497152 DOI: 10.3390/cancers14184427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Gastric cancer (GC) is the fifth most common cancer worldwide and the fourth most common cause of cancer-related deaths, with a high frequency of recurrence and metastasis, and a poor prognosis. This study presents a novel combination of four proteins (PDGFRB, INHBA, MMP11, and galectin-10) in GC tissues that have been identified as useful survival stratification markers in patients with pStage II/III GC after curative resection by quantitative polymerase chain reaction (qPCR), proteomic analysis, and immunohistochemistry (IHC). Abstract Background: We sought to identify an optimal combination of survival risk stratification markers in patients with pathological (p) stage II/III gastric cancer (GC) after curative resection. Methods: We measured the expression levels of 127 genes in pStage II/III GC tissues of two patient cohorts by quantitative polymerase chain reaction (qPCR) and the expression of 1756 proteins between two prognosis (good and poor) groups by proteomic analysis to identify candidate survival stratification markers. Further, immunohistochemistry (IHC) using tumor microarrays (TMAs) in another cohort of patients was performed to identify an optimal biomarker combination for survival stratification in GC patients. Results: secreted protein acidic and rich in cysteine (SPARC), erb-b2 receptor tyrosine kinase 2 (ERBB2), inhibin subunit beta A (INHBA), matrix metallopeptidase-11 (MMP11), tumor protein p53 (TP53), and platelet-derived growth factor receptor-beta (PDGFRB) were identified as candidate biomarkers from qPCR analysis, and SPARC and galectin-10 were obtained from the proteomic analysis. The combination of PDGFRB, INHBA, MMP11, and galectin-10 was identified as the optimal combination of survival risk stratification markers. Conclusions: A combination of four proteins in GC tissues may serve as useful survival risk stratification markers in patients with pStage II/III GC following curative resection. Our results may facilitate future multicenter prospective clinical trials.
Collapse
|
18
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Papakonstantinou E, Piperigkou Z, Karamanos NK, Zolota V. Altered Adipokine Expression in Tumor Microenvironment Promotes Development of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:4139. [PMID: 36077676 PMCID: PMC9454958 DOI: 10.3390/cancers14174139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a remarkably important factor for breast carcinogenesis and aggressiveness. The implication of increased BMI in triple negative breast cancer (TNBC) development is also well established. A malignancy-promoting role of the adipose tissue has been supposed, where the adipocytes that constitute the majority of stromal cells release pro-inflammatory cytokines and growth factors. Alterations in adipokines and their receptors play significant roles in breast cancer initiation, progression, metastasis, and drug response. Classic adipokines, such as leptin, adiponectin, and resistin, have been extensively studied in breast cancer and connected with breast cancer risk and progression. Notably, new molecules are constantly being discovered and the list is continuously growing. Additionally, substantial progress has been made concerning their differential expression in association with clinical and pathological parameters of tumors and the prognostic and predictive value of their dysregulation in breast cancer carcinogenesis. However, evidence regarding the mechanisms by which adipose tissue is involved in the development of TNBC is lacking. In the present article we comment on current data on the suggested involvement of these mediators in breast cancer development and progression, with particular emphasis on TNBC, to draw attention to the design of novel targeted therapies and biomarkers.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics, School of Medicine, University of Patras, 26504 Patras, Greece or
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
20
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
21
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
22
|
Ring NAR, Valdivieso K, Grillari J, Redl H, Ogrodnik M. The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Dev Cell 2022; 57:1083-1101. [PMID: 35472291 DOI: 10.1016/j.devcel.2022.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Senescence is a cellular state which involves cell cycle arrest and a proinflammatory phenotype, and it has traditionally been associated with cellular and organismal aging. However, increasing evidence suggests key roles in tissue growth and regrowth, especially during development and regeneration. Conversely, cellular plasticity-the capacity of cells to undergo identity change, including differentiation and dedifferentiation-is associated with development and regeneration but is now being investigated in the context of age-related diseases such as Alzheimer disease. Here, we discuss the paradox of the role for cellular senescence in cellular plasticity: senescence can act as a cell-autonomous barrier and a paracrine driver of plasticity. We provide a conceptual framework for integrating recent data and use the interplay between cellular senescence and plasticity to provide insight into age-related diseases. Finally, we argue that age-related diseases can be better deciphered when senescence is recognized as a core mechanism of regeneration and development.
Collapse
Affiliation(s)
- Nadja Anneliese Ruth Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
23
|
Núñez-Ruiz A, Sánchez-Brena F, López-Pacheco C, Acevedo-Domínguez NA, Soldevila G. Obesity modulates the immune macroenvironment associated with breast cancer development. PLoS One 2022; 17:e0266827. [PMID: 35472214 PMCID: PMC9041840 DOI: 10.1371/journal.pone.0266827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Growing evidence demonstrates a strong correlation between obesity and an increased risk of breast cancer, although the mechanisms involved have not been completely elucidated. Some reports have described a crosstalk between adipocytes, cancer cells, and immune cells within the tumor microenvironment, however, it is currently unknown whether obesity can promote tumor growth by inducing systemic alterations of the immune cell homeostasis in peripheral lymphoid organs and adipose tissue. Here, we used the E0771 breast cancer cell line in a mouse model of diet-induced obesity to analyze the immune subpopulations present in the tumors, visceral adipose tissue (VAT), and spleen of lean and obese mice. Our results showed a significant reduction in the frequency of infiltrating CD8+ T cells and a decreased M1/M2 macrophage ratio, indicative of the compromised anti-tumoral immune response reported in obesity. Despite not finding differences in the percentage or numbers of intratumoral Tregs, phenotypic analysis showed that they were enriched in CD39+, PD-1+ and CCR8+ cells, compared to the draining lymph nodes, confirming the highly immunosuppressive profile of infiltrating Tregs reported in established tumors. Analysis of peripheral T lymphocytes showed that tumor development in obese mice was associated to a significant increase in the percentage of peripheral Tregs, which supports the systemic immunosuppressive effect caused by the tumor. Interestingly, evaluation of immune subpopulations in the VAT showed that the characteristic increase in the M1/M2 macrophage ratio reported in obesity, was completely reversed in tumor-bearing mice, resembling the M2-polarized profile found in the microenvironment of the growing tumor. Importantly, VAT Tregs, which are commonly decreased in obese mice, were significantly increased in the presence of breast tumors and displayed significantly higher levels of Foxp3, indicating a regulatory feedback mechanism triggered by tumor growth. Altogether, our results identify a complex reciprocal relationship between adipocytes, immune cells, and the tumor, which may modulate the immune macroenvironment that promotes breast cancer development in obesity.
Collapse
Affiliation(s)
- Aleida Núñez-Ruiz
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
| | - Flor Sánchez-Brena
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
| | - Cynthia López-Pacheco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, UNAM, México City, México
| | | | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
- * E-mail:
| |
Collapse
|
24
|
Gonzalez Suarez N, Fernandez-Marrero Y, Torabidastgerdooei S, Annabi B. EGCG Prevents the Onset of an Inflammatory and Cancer-Associated Adipocyte-like Phenotype in Adipose-Derived Mesenchymal Stem/Stromal Cells in Response to the Triple-Negative Breast Cancer Secretome. Nutrients 2022; 14:1099. [PMID: 35268073 PMCID: PMC8912398 DOI: 10.3390/nu14051099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) cells secretome induces a pro-inflammatory microenvironment within the adipose tissue, which hosts both mature adipocytes and adipose-derived mesenchymal stem/stromal cells (ADMSC). The subsequent acquisition of a cancer-associated adipocyte (CAA)-like phenotype is, however, unknown in ADMSC. While epidemiological studies suggest that consuming a polyphenol-rich diet reduces the incidence of some obesity-related cancers, the chemopreventive impact of green tea-derived epigallocatechin-3-gallate (EGCG) against the cues that trigger the CAA phenotype remain undocumented in ADMSC. METHODS Human ADMSC were exposed to human TNBC-derived MDA-MB-231 conditioned media (TNBC cells secretome) supplemented or not with EGCG. Differential gene expression was assessed through RNA-Seq analysis and confirmed by RT-qPCR. Protein expression levels and the activation status of signal transduction pathways mediators were determined by Western blotting. ADMSC chemotaxis was assessed by a real-time cell migration assay. RESULTS The TNBC cells secretome induced in ADMSC the expression of the CAA cytokines CCL2, CCL5, IL-1β, and IL-6, and of immunomodulators COX2, HIF-1α, VEGFα, and PD-L1. The epithelial-to-mesenchymal biomarker Snail was found to control the CAA phenotype. EGCG inhibited the induction of CAA genes and the activation status of Smad2 and NF-κB. The induced chemotactic response was also inhibited by EGCG. CONCLUSION The induction of an inflammatory and CAA-like phenotype in ADMSC can be triggered by the TNBC cells secretome, while still efficiently prevented by diet-derived polyphenols.
Collapse
Affiliation(s)
- Narjara Gonzalez Suarez
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (N.G.S.); (S.T.)
| | - Yuniel Fernandez-Marrero
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, ON M4N 3M5, Canada;
| | - Sima Torabidastgerdooei
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (N.G.S.); (S.T.)
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (N.G.S.); (S.T.)
| |
Collapse
|
25
|
Lazar I, Clement E, Carrié L, Esteve D, Dauvillier S, Moutahir M, Dalle S, Delmas V, Andrieu-Abadie N, Larue L, Muller C, Nieto L. Adipocyte extracellular vesicles decrease p16 INK4A in melanoma: an additional link between obesity and cancer. J Invest Dermatol 2022; 142:2488-2498.e8. [PMID: 35150661 DOI: 10.1016/j.jid.2022.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Obesity is a recognized factor for increased risk and poor prognosis of many cancers, including melanoma. Here, using genetically engineered mouse models of melanoma (NRASQ61K transgenic expression, associated or not with Cdkn2A heterozygous deletion), we show that obesity increases melanoma initiation and progression by supporting tumor growth and metastasis thereby reducing survival. This effect is associated with a decrease in p16INK4A expression in tumors. Mechanistically, adipocytes downregulate p16INK4A in melanoma cells through β-catenin-dependent regulation, which increases cell motility. Furthermore, β-catenin is directly transferred from adipocytes to melanoma cells in extracellular vesicles, thus increasing its level and activity, which represses p16INK4A transcription. Adipocytes from obese individuals have a stronger effect than those from lean individuals, mainly due to an increase in the number of vesicles secreted, thus increasing the amount of β-catenin delivered to melanoma cells, and, consequently, amplifying their effect. In conclusion, here, we reveal that adipocyte extracellular vesicles control p16INK4A expression in melanoma, which promotes tumor progression. This work expands our understanding of the cooperation between adipocytes and tumors, particularly in obesity.
Collapse
Affiliation(s)
- Ikrame Lazar
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Emily Clement
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Lorry Carrié
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France; - Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, 31037, France
| | - David Esteve
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Stéphanie Dauvillier
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Mohamed Moutahir
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France
| | - Stéphane Dalle
- - Department of Dermatology, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex, 69495, France
| | - Véronique Delmas
- - Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, 91400, France; - Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France; - Equipe Labellisée Ligue Contre le Cancer
| | - Nathalie Andrieu-Abadie
- - Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, 31037, France
| | - Lionel Larue
- - Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, 91400, France; - Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France; - Equipe Labellisée Ligue Contre le Cancer
| | - Catherine Muller
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France; - Equipe Labellisée Ligue Contre le Cancer
| | - Laurence Nieto
- - Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR 5089, Université de Toulouse, CNRS, UPS, Toulouse, 31077, France; - Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, 31037, France.
| |
Collapse
|
26
|
Mehraj U, Ganai RA, Macha MA, Hamid A, Zargar MA, Bhat AA, Nasser MW, Haris M, Batra SK, Alshehri B, Al-Baradie RS, Mir MA, Wani NA. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol (Dordr) 2021; 44:1209-1229. [PMID: 34528143 DOI: 10.1007/s13402-021-00634-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer (BC), the second most common cause of cancer-related deaths, remains a significant threat to the health and wellness of women worldwide. The tumor microenvironment (TME), comprising cellular components, such as cancer-associated fibroblasts (CAFs), immune cells, endothelial cells and adipocytes, and noncellular components such as extracellular matrix (ECM), has been recognized as a critical contributor to the development and progression of BC. The interplay between TME components and cancer cells promotes phenotypic heterogeneity, cell plasticity and cancer cell stemness that impart tumor dormancy, enhanced invasion and metastasis, and the development of therapeutic resistance. While most previous studies have focused on targeting cancer cells with a dismal prognosis, novel therapies targeting stromal components are currently being evaluated in preclinical and clinical studies, and are already showing improved efficacies. As such, they may offer better means to eliminate the disease effectively. CONCLUSIONS In this review, we focus on the evolving concept of the TME as a key player regulating tumor growth, metastasis, stemness, and the development of therapeutic resistance. Despite significant advances over the last decade, several clinical trials focusing on the TME have failed to demonstrate promising effectiveness in cancer patients. To expedite clinical efficacy of TME-directed therapies, a deeper understanding of the TME is of utmost importance. Secondly, the efficacy of TME-directed therapies when used alone or in combination with chemo- or radiotherapy, and the tumor stage needs to be studied. Likewise, identifying molecular signatures and biomarkers indicating the type of TME will help in determining precise TME-directed therapies.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Rais A Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology , Awantipora, Jammu & Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology , Awantipora, Jammu & Kashmir, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory of Animal Research, Qatar University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska, Lincoln, NE, USA.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah, Kingdom of Saudi Arabia
| | - Raid Saleem Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, University of Kashmir, Srinagar, Jammu & Kashmir, India.
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
27
|
Tang Y, Zhang W, Sheng T, He X, Xiong X. Overview of the molecular mechanisms contributing to the formation of cancer‑associated adipocytes (Review). Mol Med Rep 2021; 24:768. [PMID: 34490479 PMCID: PMC8430316 DOI: 10.3892/mmr.2021.12408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Adipocytes are the main stromal cells in the tumor microenvironment. In addition to serving as energy stores for triglycerides, adipocytes may function as an active endocrine organ. The crosstalk between adipocytes and cancer cells was shown to promote the migration, invasion and proliferation of cancer cells and to cause phenotypic and functional changes in adipocytes. Tumor-derived soluble factors, such as TNF-α, plasminogen activator inhibitor 1, Wnt3a, IL-6, and exosomal microRNAs (miRNA/miRs), including miR-144, miR-126, miR-155, as well as other miRNAs, have been shown to act on adipocytes at the tumor invasion front, resulting in the formation of cancer-associated adipocytes (CAAs) with diminished reduced terminal differentiation markers and a dedifferentiated phenotype. In addition, the number and size of CAA lipid droplets have been found to be significantly reduced compared with those of mature adipocytes, whereas inflammatory cytokines and proteases are overexpressed. The aim of the present review was to summarize the latest findings on the biological changes of CAAs and the potential role of tumor-adipocyte crosstalk in the formation of CAAs, in the hope of providing novel perspectives for breast cancer treatment.
Collapse
Affiliation(s)
- Yunpeng Tang
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenkai Zhang
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianqiang Sheng
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
The paradoxical role of matrix metalloproteinase-11 in cancer. Biomed Pharmacother 2021; 141:111899. [PMID: 34346316 DOI: 10.1016/j.biopha.2021.111899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
The microenvironment surrounding the tumor affects biological processes, such as cell proliferation, angiogenesis, apoptosis, and invasion. Therefore, the ability to change these environments is an important attribute for tumor cells to obtain specific functions necessary for growth and metastasis. Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic metalloenzymes that facilitate protease-dependent tumor progression by degrading extracellular matrix (ECM) proteins, releasing cytokines, growth factors, and other cell surface molecules. As one of the most widely studied MMPs, MMP-11 is an important protease that is expressed in cancer cells, stromal cells, and the adjacent microenvironment. MMP-11 has a dual effect on tumors. On one hand, MMP-11 promotes tumor development by inhibiting apoptosis and promoting the migration and invasion of cancer cells in the early stage. On the other hand, in animal models, MMP-11 has a protective effect on tumor growth and metastasis at an advanced stage. Based on current findings regarding the importance of MMP-11 in altering the tumor microenvironment, there is a need to further understand how stromal cells and the ECM regulate tumor progression, which may result in the re-examination of MMPs as drug targets for cancer and other diseases. In this review, we summarize the dual role of MMP-11 in cancer and its potential clinical significance.
Collapse
|
29
|
Baboli M, Storey P, Sood TP, Fogarty J, Moccaldi M, Lewin A, Moy L, Kim SG. Bilateral gradient-echo spectroscopic imaging with correction of frequency variations for measurement of fatty acid composition in mammary adipose tissue. Magn Reson Med 2021; 86:33-45. [PMID: 33533056 PMCID: PMC8005455 DOI: 10.1002/mrm.28692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To develop a simultaneous dual-slab three-dimensional gradient-echo spectroscopic imaging (GSI) technique with frequency drift compensation for rapid (<6 min) bilateral measurement of fatty acid composition (FAC) in mammary adipose tissue. METHODS A bilateral GSI sequence was developed using a simultaneous dual-slab excitation followed by 128 monopolar echoes. A short train of navigator echoes without phase or partition encoding was included at the beginning of each pulse repetition time period to correct for frequency variation caused by respiration and heating of the cryostat. Voxel-wise spectral fitting was applied to measure the areas of the lipid spectral peaks to estimate the number of double-bond (ndb), number of methylene-interrupted double-bond (nmidb), and chain length (cl). The proposed method was tested in an oil phantom and 10 postmenopausal women to assess the influence of the frequency variation on FAC estimation. RESULTS The frequency drift observed over 5:27 min during the phantom scan was about 10 Hz. Phase correction based on the navigator reduced the median error of ndb, nmidb, and cl from 9.7%, 17.6%, and 3.2% to 2.1%, 9.5%, and 2.8%, respectively. The in vivo data showed a mean ± standard deviation frequency drift of 17.4 ± 2.5 Hz, with ripples at 0.3 ± 0.1 Hz. Our reconstruction algorithm successfully separated signals from the left and right breasts with negligible residual aliasing. Phase correction reduced the interquartile range within each subject's adipose tissue of ndb, nmidb, and cl by 18.4 ± 10.6%, 18.5 ± 13.9%, and 18.4 ± 10.6%, respectively. CONCLUSION This study shows the feasibility of obtaining bilateral spectroscopic imaging data in the breast and that incorporation of a frequency navigator improves the estimation of FAC.
Collapse
Affiliation(s)
- Mehran Baboli
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA,Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Pippa Storey
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Terlika Pandit Sood
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Justin Fogarty
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Melanie Moccaldi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA,New York University Laura and Isaac Perlmutter Cancer Center 160 East 34th Street, New York, NY 10016
| | - Alana Lewin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA,New York University Laura and Isaac Perlmutter Cancer Center 160 East 34th Street, New York, NY 10016
| | - Linda Moy
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA,New York University Laura and Isaac Perlmutter Cancer Center 160 East 34th Street, New York, NY 10016
| | - Sungheon Gene Kim
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016, USA,New York University Laura and Isaac Perlmutter Cancer Center 160 East 34th Street, New York, NY 10016,Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
30
|
Lechner J, Schulz T, Lejeune B, von Baehr V. Jawbone Cavitation Expressed RANTES/CCL5: Case Studies Linking Silent Inflammation in the Jawbone with Epistemology of Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:225-240. [PMID: 33859496 PMCID: PMC8044077 DOI: 10.2147/bctt.s295488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 12/04/2022]
Abstract
Background The role of signaling pathways as part of the cell-cell communication within cancer progression becomes a crucial area. Chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted), also known as the chemokine C-C motif ligand 5 (CCL5) (R/C), is a protein on which cancer research focus due to its link with aggressive cancer development. Objective Research on fatty-degenerative osteonecrosis in jawbone (FDOJ) shows striking overexpression of R/C in these areas. Here we try to elucidate a potential link between jawbone-derived R/C and breast cancer (BC) and compare these findings by immunohistochemical staining. Methods Thirty-nine FDOJ samples extracted from 39 BC patients and samples from 19 healthy control were analyzed for R/C expression using bead-based Luminex® analysis. R/C levels from 5 BC patients were measured in serum before and after FDOJ surgery. Bone density, histology, R/C expression, and immunohistochemistry were analysed in 4 clinical case studies. The R/C staining of two FDOJ BC patients is compared with the immunohistochemical staining of BC cell preparations. Results A high overexpression of R/C was seen in all FDOJ samples. R/C levels in serum were statistically downregulated after FDOJ surgery (p=0.0241). Discussion R/C induced “silent inflammation” in BC is widely discussed in scientific papers along with R/C triggering of different signaling pathways, which might be a key point in the development of BC. Conclusion Hypothesis that FDOJ may serve as a trigger of BC progression through R/C overexpression was set by the authors, who thus inspire clinicians to make aware of FDOJ throughout the dental and medical community in BC cases.
Collapse
|
31
|
Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. Int J Mol Sci 2021; 22:ijms22073775. [PMID: 33917351 PMCID: PMC8038661 DOI: 10.3390/ijms22073775] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer progression is highly dependent on the heterotypic interaction between tumor cells and stromal cells of the tumor microenvironment. Cancer-associated adipocytes (CAAs) are emerging as breast cancer cell partners favoring proliferation, invasion, and metastasis. This article discussed the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation in order to appreciate the molecular pathways that have been described to drive adipocyte dedifferentiation. Moreover, recent studies on the mechanisms through which CAAs affect the progression of breast cancer were reviewed, including adipokine regulation, metabolic reprogramming, extracellular matrix remodeling, and immune cell modulation. An in-depth understanding of the complex vicious cycle between CAAs and breast cancer cells is crucial for designing novel strategies for new therapeutic interventions.
Collapse
|
32
|
Le Lay S, Rome S, Loyer X, Nieto L. Adipocyte-derived extracellular vesicles in health and diseases: Nano-packages with vast biological properties. FASEB Bioadv 2021; 3:407-419. [PMID: 34124596 PMCID: PMC8171308 DOI: 10.1096/fba.2020-00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
As the largest human energy reservoir, adipocytes drive an intense dialog with other cells/organs throughout the body to regulate the size of adipose tissue and to communicate with other metabolic tissues and the brain to regulate energy supply. Adipokines have long been described as mediators of this crosstalk, participating in obesity‐associated complications. Recently, adipocyte‐derived extracellular vesicles (Ad‐EVs) have emerged as new key actors in this communication due to their powerful capacity to convey complex messages between cells. Ad‐EVs convey specific subpopulations of RNA, proteins, and lipids from their parental cells, and can transfer these cargoes into various recipient cells, modulating their metabolism and cell cycle. In healthy individuals, Ad‐EVs actively participate in adipose tissue remodeling to compensate energy supply variations by exchanging information between adipocytes or stroma‐vascular cells, including immune cells. Besides this, recent evidence points out that Ad‐EV secretion and composition from dysfunctional adipocytes are strongly impacted within adipose tissue where they modulate local intercellular communication, contributing to inflammation, fibrosis, abnormal angiogenesis, and at distance with other cells/tissues intrinsically linked to fat (muscle, hepatocytes and even cancer cells). Additionally, some data even suggests that Ad‐EVs might have a systemic action. In this review, we will describe the particular properties of Ad‐EVs and their involvement in health and diseases, with a particular focus on metabolic and cardiovascular diseases as well as cancer.
Collapse
Affiliation(s)
- Soazig Le Lay
- Université de Nantes CNRS INSERM, l'institut du thorax Nantes France.,Université Angers SFR ICAT Angers France
| | - Sophie Rome
- CarMeN Laboratory U1060/INSERM INRA/1397 Lyon-Sud Hospital Pierre Benite France.,Institute of Functional Genomic of Lyon (IGFL) ENS CNRS UMR 5242 University of Lyon Lyon France
| | | | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS) Université de Toulouse CNRS UPS Toulouse France
| |
Collapse
|
33
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
34
|
Li SJ, Wei XH, Zhan XM, He JY, Zeng YQ, Tian XM, Yuan ST, Sun L. Adipocyte-Derived Leptin Promotes PAI-1 -Mediated Breast Cancer Metastasis in a STAT3/miR-34a Dependent Manner. Cancers (Basel) 2020; 12:cancers12123864. [PMID: 33371368 PMCID: PMC7767398 DOI: 10.3390/cancers12123864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Although adipocytes affect the metastatic behavior of cancer cells, the underlying molecular mechanisms remain largely elusive. Thereby, we sought to screen for the signaling pathways responsible for adipocyte-induced motility of breast cancer cells by employing a breast cancer cell/adipocyte coculture system. Our study revealed that adipocyte coculture stimulated PAI-1 expression in breast cancer cells to potentiate cell motility. Furthermore, we obtained evidence that adipocytes secreted leptin to activate OBR in breast cancer cells, which phosphorylated STAT3 to promote the transcription of PAI-1 and repress the expression of miR-34a as the negative regulator of PAI-1. Our study provides new evidence for the involvement of adipocytes in breast cancer evolution, which advances the evolving roles of stromal cells in tumor pathogenesis. Abstract The crosstalk between cancer cells and adipocytes is critical for breast cancer progression. However, the molecular mechanisms underlying these interactions have not been fully characterized. In the present study, plasminogen activator inhibitor-1 (PAI-1) was found to be a critical effector of the metastatic behavior of breast cancer cells upon adipocyte coculture. Loss-of-function studies indicated that silencing PAI-1 suppressed cancer cell migration. Furthermore, we found that PAI-1 was closely related to the epithelial-mesenchymal transition (EMT) process in breast cancer patients. A loss-of-function study and a mammary orthotopic implantation metastasis model showed that PAI-1 promoted breast cancer metastasis by affecting the EMT process. In addition, we revealed that leptin/OBR mediated the regulation of PAI-1 through the interactions between adipocytes and breast cancer cells. Mechanistically, we elucidated that leptin/OBR further activated STAT3 to promote PAI-1 expression via miR-34a–dependent and miR-34a–independent mechanisms in breast cancer cells. In conclusion, our study suggests that targeting PAI-1 and interfering with its upstream regulators may benefit breast cancer patients.
Collapse
Affiliation(s)
- Si-Jing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Xiao-Hui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
| | - Xiao-Man Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Jin-Yong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
- China Cell-gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu-Qi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Xue-Mei Tian
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (S.-T.Y.); (L.S.)
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
- Correspondence: (S.-T.Y.); (L.S.)
| |
Collapse
|
35
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 833] [Impact Index Per Article: 166.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
36
|
Annett S, Moore G, Robson T. Obesity and Cancer Metastasis: Molecular and Translational Perspectives. Cancers (Basel) 2020; 12:E3798. [PMID: 33339340 PMCID: PMC7766668 DOI: 10.3390/cancers12123798] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a modern health problem that has reached pandemic proportions. It is an established risk factor for carcinogenesis, however, evidence for the contribution of adipose tissue to the metastatic behavior of tumors is also mounting. Over 90% of cancer mortality is attributed to metastasis and metastatic tumor cells must communicate with their microenvironment for survival. Many of the characteristics observed in obese adipose tissue strongly mirror the tumor microenvironment. Thus in the case of prostate, pancreatic and breast cancer and esophageal adenocarcinoma, which are all located in close anatomical proximity to an adipose tissue depot, the adjacent fat provides an ideal microenvironment to enhance tumor growth, progression and metastasis. Adipocytes provide adipokines, fatty acids and other soluble factors to tumor cells whilst immune cells infiltrate the tumor microenvironment. In addition, there are emerging studies on the role of the extracellular vesicles secreted from adipose tissue, and the extracellular matrix itself, as drivers of obesity-induced metastasis. In the present review, we discuss the major mechanisms responsible for the obesity-metastatic link. Furthermore, understanding these complex mechanisms will provide novel therapies to halt the tumor-adipose tissue crosstalk with the ultimate aim of inhibiting tumor progression and metastatic growth.
Collapse
Affiliation(s)
| | | | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Science, 123 St Stephen’s Green, Dublin D02 YN77, Ireland; (S.A.); (G.M.)
| |
Collapse
|
37
|
Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158841. [PMID: 33075494 DOI: 10.1016/j.bbalip.2020.158841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
MicroRNA-221-3p (miR-221-3p) is associated with both metabolic diseases and cancers. However, its role in terminal adipocyte differentiation and lipid metabolism are uncharacterized. miR-221-3p or its inhibitor was transfected into differentiating or mature human adipocytes. Triglyceride (TG) content and adipogenic gene expression were monitored, global lipidome analysis was carried out, and mechanisms underlying the effects of miR-221-3p were investigated. Finally, cross-talk between miR-221-3p expressing adipocytes and MCF-7 breast carcinoma (BC) cells was studied, and miR-221-3p expression in tumor-proximal adipose biopsies from BC patients analyzed. miR-221-3p overexpression inhibited terminal differentiation of adipocytes, as judged from reduced TG storage and gene expression of the adipogenic markers SCD1, GLUT4, FAS, DGAT1/2, AP2, ATGL and AdipoQ, whereas the miR-221-3p inhibitor increased TG storage. Knockdown of the predicted miR-221-3p target, 14-3-3γ, had similar antiadipogenic effects as miR-221-3p overexpression, indicating it as a potential mediator of mir-221-3p function. Importantly, miR-221-3p overexpression inhibited de novo lipogenesis but increased the concentrations of ceramides and sphingomyelins, while reducing diacylglycerols, concomitant with suppression of sphingomyelin phosphodiesterase, ATP citrate lyase, and acid ceramidase. miR-221-3p expression was elevated in tumor proximal adipose tissue from patients with invasive BC. Conditioned medium of miR-221-3p overexpressing adipocytes stimulated the invasion and proliferation of BC cells, while medium of the BC cells enhanced miR-221-3p expression in adipocytes. Elevated miR-221-3p impairs adipocyte lipid storage and differentiation, and modifies their ceramide, sphingomyelin, and diacylglycerol content. These alterations are relevant for metabolic diseases but may also affect cancer progression.
Collapse
|
38
|
Mertz D, Sentosa J, Luker G, Takayama S. Studying Adipose Tissue in the Breast Tumor Microenvironment In Vitro: Progress and Opportunities. Tissue Eng Regen Med 2020; 17:773-785. [PMID: 32939672 DOI: 10.1007/s13770-020-00299-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The breast cancer microenvironment contains a variety of stromal cells that are widely implicated in worse patient outcomes. While many in vitro models of the breast tumor microenvironment have been published, only a small fraction of these feature adipocytes. Adipocytes are a cell type increasingly recognized to have complex functions in breast cancer. METHODS In this review, we examine findings from recent examples of in vitro experiments modeling adipocytes within the local breast tumor microenvironment. RESULTS Both two-dimensional and three-dimensional models of adipocytes in the breast tumor microenvironment are covered in this review and both have uncovered interesting phenomena related to breast tumor progression. CONCLUSION Certain aspects of breast cancer and associated adipocyte biology: extracellular matrix effects, cell-cell contact, and physiological mass transport can only be examined with a three-dimensional culture platform. Opportunities remain for innovative improvements to be made to in vitro models that further increase what is known about adipocytes during breast cancer progression.
Collapse
Affiliation(s)
- David Mertz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Jason Sentosa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Gary Luker
- Departments of Radiology, Biomedical Engineering, Microbiology and Immunology, University of Michigan, 500 S State St, Ann Arbor, MI, 48109, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA. .,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
39
|
Attané C, Milhas D, Hoy AJ, Muller C. Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer? Curr Med Chem 2020; 27:3984-4001. [PMID: 29708068 DOI: 10.2174/0929867325666180426165001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming represents an important hallmark of cancer cells. Besides de novo fatty acid synthesis, it is now clear that cancer cells can acquire Fatty Acids (FA) from tumor-surrounding adipocytes to increase their invasive capacities. Indeed, adipocytes release FA in response to tumor secreted factors that are transferred to tumor cells to be either stored as triglycerides and other complex lipids or oxidized in mitochondria. Like all cells, FA can be released over time from triglyceride stores through lipolysis and then oxidized in mitochondria in cancer cells. This metabolic interaction results in specific metabolic remodeling in cancer cells, and underpins adipocyte stimulated tumor progression. Lipolysis and fatty acid oxidation therefore represent novel targets of interest in the treatment of cancer. In this review, we summarize the recent advances in our understanding of the metabolic reprogramming induced by adipocytes, with a focus on breast cancer. Then, we recapitulate recent reports studying the effect of lipolysis and fatty acid oxidation inhibitors on tumor cells and discuss the interest to target these metabolic pathways as new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Delphine Milhas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Sydney, Australia
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
40
|
Matrix Metalloproteinase-11 Promotes Early Mouse Mammary Gland Tumor Growth through Metabolic Reprogramming and Increased IGF1/AKT/FoxO1 Signaling Pathway, Enhanced ER Stress and Alteration in Mitochondrial UPR. Cancers (Basel) 2020; 12:cancers12092357. [PMID: 32825455 PMCID: PMC7565046 DOI: 10.3390/cancers12092357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase 11 (MMP11) is an extracellular proteolytic enzyme belonging to the matrix metalloproteinase (MMP11) family. These proteases are involved in extracellular matrix (ECM) remodeling and activation of latent factors. MMP11 is a negative regulator of adipose tissue development and controls energy metabolism in vivo. In cancer, MMP11 expression is associated with poorer survival, and preclinical studies in mice showed that MMP11 accelerates tumor growth. How the metabolic role of MMP11 contributes to cancer development is poorly understood. To address this issue, we developed a series of preclinical mouse mammary gland tumor models by genetic engineering. Tumor growth was studied in mice either deficient (Loss of Function-LOF) or overexpressing MMP11 (Gain of Function-GOF) crossed with a transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV) (MMTV-PyMT). Both GOF and LOF models support roles for MMP11, favoring early tumor growth by increasing proliferation and reducing apoptosis. Of interest, MMP11 promotes Insulin-like Growth Factor-1 (IGF1)/protein kinase B (AKT)/Forkhead box protein O1 (FoxO1) signaling and is associated with a metabolic switch in the tumor, activation of the endoplasmic reticulum stress response, and an alteration in the mitochondrial unfolded protein response with decreased proteasome activity. In addition, high resonance magic angle spinning (HRMAS) metabolomics analysis of tumors from both models established a metabolic signature that favors tumorigenesis when MMP11 is overexpressed. These data support the idea that MMP11 contributes to an adaptive metabolic response, named metabolic flexibility, promoting cancer growth.
Collapse
|
41
|
Ma Y, Zhang S, Jin Z, Shi M. Lipid-mediated regulation of the cancer-immune crosstalk. Pharmacol Res 2020; 161:105131. [PMID: 32810628 DOI: 10.1016/j.phrs.2020.105131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Besides acting as principle cellular building blocks and energy reservoirs, lipids also carry important signals associated with many fundamental cell biological processes, such as proliferation, differentiation, migration, stress responses and cell demise. Hyperactive lipid metabolism is closely associated with cancer progression and unfavorable outcomes. The underlying mechanisms are being gradually deciphered. In this review, we aim to summarize recent advances on how reprogrammed lipid metabolism and accompanying signaling cascades directly modulate cancer cells, as well as influencing stromal cells and immune cells within the tumor microenvironment. For future studies, special attention should be paid to lipid-mediated crosstalk among cancer cells, their neighboring stromal cells, and immune cells, plus how these multi-level communications determine anti-tumor immunity and bring novel immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.
| | - Shuqing Zhang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Ziqi Jin
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Minxin Shi
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| |
Collapse
|
42
|
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q, Wu Y. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res 2020; 39:156. [PMID: 32787888 PMCID: PMC7425140 DOI: 10.1186/s13046-020-01666-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a malignant breast tumor confronted with high invasion, metastasis and recurrence rate, and adipocytes are the largest components in breast tissue. The aberrant adipocytes, especially the BC-neighbored cancer-associated adipocytes (CAAs), are found in the invasive front of BC. CAAs present a vicious phenotype compared with mature mammary adipocytes and mediate the crosstalk network between adipocytes and BC cells. By releasing multiple adipokines such as leptin, adiponectin, interleukin (IL)-6, chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5), CAAs play essential roles in favor of proliferation, angiogenesis, dissemination, invasion and metastasis of BC. This article reviews the recent existing CAAs studies on the functions and mechanisms of adipocytes in the development of BC, including adipokine regulating, metabolic reprogramming, extracellular matrix (ECM) remodeling, microRNAs (miRNAs) and immune cell adjusting. Besides, adipocyte secretome and cellular interactions are implicated in the intervention to BC therapy and autologous fat grafting of breast reconstruction. Therefore, the potential functions and mechanisms of CAAs are very important for unveiling BC oncogenesis and progress. Deciphering the complex network between CAAs and BC is critical for designing therapeutic strategies and achieving the maximum therapeutic effects of BC.
Collapse
Affiliation(s)
- Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Ning Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
43
|
D'Esposito V, Ambrosio MR, Giuliano M, Cabaro S, Miele C, Beguinot F, Formisano P. Mammary Adipose Tissue Control of Breast Cancer Progression: Impact of Obesity and Diabetes. Front Oncol 2020; 10:1554. [PMID: 32850459 PMCID: PMC7426457 DOI: 10.3389/fonc.2020.01554] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Mammary adipose tissue (AT) is necessary for breast epithelium. However, in breast cancer (BC), cell-cell interactions are deregulated as the tumor chronically modifies AT microenvironment. In turn, breast AT evolves to accommodate the tumor, and to participate to its dissemination. Among AT cells, adipocytes and their precursor mesenchymal stem cells (MSCs) play a major role in supporting tumor growth and dissemination. They provide energy supplies and release a plethora of factors involved in cancer aggressiveness. Here, we discuss the main molecular mechanisms underlining the interplay between adipose (adipocytes and MSCs) and BC cells. Following close interactions with BC cells, adipocytes lose lipids and change morphology and secretory patterns. MSCs also play a major role in cancer progression. While bone marrow MSCs are recruited by BC cells and participate in metastatic process, mammary AT-MSCs exert a local action by increasing the release of cytokines, growth factors and extracellular matrix components and become principal actors in cancer progression. Common systemic metabolic diseases, including obesity and diabetes, further modify the interplay between AT and BC. Indeed, metabolic perturbations are accompanied by well-known alterations of AT functions, which might contribute to worsen cancer phenotype. Here, we highlight how metabolic alterations locally affect mammary AT and interfere with the molecular mechanisms of bidirectional communication between adipose and cancer cells.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Serena Cabaro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
44
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
45
|
Ren H, Shen Z, Shen J, Zhang Y, Zhang Y. Diagnostic value of Doppler ultrasound parameters combined with MMP-11 in early breast cancer and benign breast diseases. Oncol Lett 2020; 20:1028-1032. [PMID: 32724341 PMCID: PMC7377189 DOI: 10.3892/ol.2020.11676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022] Open
Abstract
Diagnostic value of Doppler ultrasound parameters combined with matrix metalloproteinase-11 (MMP-11) in early breast cancer and benign breast diseases were investigated. A total of 72 patients who underwent color Doppler ultrasound examination in Liaocheng Third People's Hospital from March 2015 to August 2018 were collected as research subjects, and the blood of 60 healthy subjects who underwent physical examinations was collected. The expression level of MMP-11 in serum of breast cancer patients was evaluated, and the diagnostic value of color Doppler ultrasound combined with MMP-11 in breast cancer was assessed. The diagnostic results of color Doppler ultrasound and the imaging characteristics of breast cancer patients were recorded. The results of biopsy and ultrasound were compared. The expression level of MMP-11 in serum of breast cancer patients was significantly higher than that of healthy subjects (P<0.05). The AUC of MMP-11 was 0.735, the sensitivity was 66.67%, and the specificity was 86.11%. Among the 72 patients, there were 41 patients diagnosed with breast cancer by serum MMP-11 examination, 38 patients diagnosed by ultrasound examination, 33 patients diagnosed by combined diagnosis, and 30 patients diagnosed by pathology biopsy. The pathological biopsy was used as the gold standard. The diagnostic efficacy of ultrasound combined with mammography examination was significantly better than the other two single examinations (P<0.050). In conclusion, Doppler ultrasound parameters combined with MMP-11 has a high diagnostic accordance rate in the diagnosis of breast cancer. At the same time, different diagnostic methods combined with the clinical manifestations of patients can improve the diagnostic accuracy, which is worthy of providing reference and advice for future clinical practice.
Collapse
Affiliation(s)
- Hui Ren
- Department of Ultrasound, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhipeng Shen
- Department of Ultrasound, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jirui Shen
- Department of Ultrasound, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yu Zhang
- Department of Ultrasound, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yunhua Zhang
- Department of Ultrasound, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
46
|
Adipocyte dedifferentiation in health and diseases. Clin Sci (Lond) 2020; 133:2107-2119. [PMID: 31654064 DOI: 10.1042/cs20190128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022]
Abstract
Adipose tissues collectively as an endocrine organ and energy storage are crucial for systemic metabolic homeostasis. The major cell type in the adipose tissue, the adipocytes or fat cells, are remarkably plastic and can increase or decrease their size and number to adapt to changes in systemic or local metabolism. Changes in adipocyte size occur through hypertrophy or atrophy, and changes in cell numbers mainly involve de novo generation of new cells or death of existing cells. Recently, dedifferentiation, whereby a mature adipocyte is reverted to an undifferentiated progenitor-like status, has been reported as a mechanism underlying adipocyte plasticity. Dedifferentiation of mature adipocytes has been observed under both physiological and pathological conditions. This review covers several aspects of adipocyte dedifferentiation, its relevance to adipose tissue function, molecular pathways that drive dedifferentiation, and the potential of therapeutic targeting adipocyte dedifferentiation in human health and metabolic diseases.
Collapse
|
47
|
Gonzalez-Avila G, Sommer B, García-Hernández AA, Ramos C. Matrix Metalloproteinases' Role in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:97-131. [PMID: 32266655 DOI: 10.1007/978-3-030-40146-7_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve in the tumor microenvironment (TME) by the acquisition of characteristics that allow them to initiate their passage through a series of events that constitute the metastatic cascade. For this purpose, tumor cells maintain a crosstalk with TME non-neoplastic cells transforming them into their allies. "Corrupted" cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs) as well as neoplastic cells express and secrete matrix metalloproteinases (MMPs). Moreover, TME metabolic conditions such as hypoxia and acidification induce MMPs' synthesis in both cancer and stromal cells. MMPs' participation in TME consists in promoting events, for example, epithelial-mesenchymal transition (EMT), apoptosis resistance, angiogenesis, and lymphangiogenesis. MMPs also facilitate tumor cell migration through the basement membrane (BM) and extracellular matrix (ECM). The aim of the present chapter is to discuss MMPs' contribution to the evolution of cancer cells, their cellular origin, and their influence in the main processes that take place in the TME.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando García-Hernández
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
48
|
Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer. Trends Cancer 2020; 6:593-604. [PMID: 32610069 DOI: 10.1016/j.trecan.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Over the past decade, it has become apparent that metabolic reprogramming is a key event in tumor progression. The tumor microenvironment (TME) is a source of metabolites for tumor cells. Lipid-filled mature adipocytes are frequently found in proximity to invasive human tumors and release free fatty acids (FFAs) through lipolysis. These FFAs are taken up by tumor cells and used to promote tumor progression by mechanisms that include mitochondrial fatty acid oxidation (FAO). This review discusses recent advances in our understanding of this metabolic symbiosis between adipocytes and cancer cells and underlines the differences in this metabolic crosstalk between the various types of cancer and their localization.
Collapse
|
49
|
Adipocytes in Breast Cancer, the Thick and the Thin. Cells 2020; 9:cells9030560. [PMID: 32120856 PMCID: PMC7140407 DOI: 10.3390/cells9030560] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
It is well established that breast cancer development and progression depend not only on tumor-cell intrinsic factors but also on its microenvironment and on the host characteristics. There is growing evidence that adipocytes play a role in breast cancer progression. This is supported by: (i) epidemiological studies reporting the association of obesity with a higher cancer risk and poor prognosis, (ii) recent studies demonstrating the existence of a cross-talk between breast cancer cells and adipocytes locally in the breast that leads to acquisition of an aggressive tumor phenotype, and (iii) evidence showing that cancer cachexia applies also to fat tissue and shares similarities with stromal-carcinoma metabolic synergy. This review summarizes the current knowledge on the epidemiological link between obesity and breast cancer and outlines the results of the tumor-adipocyte crosstalk. We also focus on systemic changes in body fat in patients with cachexia developed in the course of cancer. Moreover, we discuss and compare adipocyte alterations in the three pathological conditions and the mechanisms through which breast cancer progression is induced.
Collapse
|
50
|
Clement E, Lazar I, Attané C, Carrié L, Dauvillier S, Ducoux-Petit M, Esteve D, Menneteau T, Moutahir M, Le Gonidec S, Dalle S, Valet P, Burlet-Schiltz O, Muller C, Nieto L. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J 2020; 39:e102525. [PMID: 31919869 DOI: 10.15252/embj.2019102525] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are emerging key actors in adipocyte communication. Notably, small extracellular vesicles shed by adipocytes stimulate fatty acid oxidation and migration in melanoma cells and these effects are enhanced in obesity. However, the vesicular actors and cellular processes involved remain largely unknown. Here, we elucidate the mechanisms linking adipocyte extracellular vesicles to metabolic remodeling and cell migration. We show that adipocyte vesicles stimulate melanoma fatty acid oxidation by providing both enzymes and substrates. In obesity, the heightened effect of extracellular vesicles depends on increased transport of fatty acids, not fatty acid oxidation-related enzymes. These fatty acids, stored within lipid droplets in cancer cells, drive fatty acid oxidation upon being released by lipophagy. This increase in mitochondrial activity redistributes mitochondria to membrane protrusions of migrating cells, which is necessary to increase cell migration in the presence of adipocyte vesicles. Our results provide key insights into the role of extracellular vesicles in the metabolic cooperation that takes place between adipocytes and tumors with particular relevance to obesity.
Collapse
Affiliation(s)
- Emily Clement
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Ikrame Lazar
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lorry Carrié
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - David Esteve
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Thomas Menneteau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Mohamed Moutahir
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UPS, Université de Toulouse, Toulouse, France
| | - Stéphane Dalle
- Department of Dermatology, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UPS, Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|