1
|
Tausif YM, Thekkekkara D, Sai TE, Jahagirdar V, Arjun HR, Meheronnisha SK, Babu A, Banerjee A. Heat shock protein paradigms in cancer progression: future therapeutic perspectives. 3 Biotech 2024; 14:96. [PMID: 38449709 PMCID: PMC10912419 DOI: 10.1007/s13205-024-03951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Heat-shock proteins (HSPs), also known as stress proteins, are ubiquitously present in all forms of life. They play pivotal roles in protein folding and unfolding, the formation of multiprotein complexes, the transportation and sorting of proteins into their designated subcellular compartments, the regulation of the cell cycle, and signalling processes. These HSPs encompass HSP27, HSP40, HSP70, HSP60, and HSP90, each contributing to various cellular functions. In the context of cancer, HSPs exert influence by either inhibiting or activating diverse signalling pathways, thereby impacting growth, differentiation, and cell division. This article offers an extensive exploration of the functions of HSPs within the realms of pharmacology and cancer biology. HSPs are believed to play substantial roles in the mechanisms underlying the initiation and progression of cancer. They hold promise as valuable clinical markers for cancer diagnosis, potential targets for therapeutic interventions, and indicators of disease progression. In times of cellular stress, HSPs function as molecular chaperones, safeguarding the structural and functional integrity of proteins and aiding in their proper folding. Moreover, HSPs play a crucial role in cancer growth, by regulating processes such as angiogenesis, cell proliferation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Thummuru Ekshita Sai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Vaishnavi Jahagirdar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - H. R. Arjun
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Aniruddha Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| |
Collapse
|
2
|
Mitchem MM, Shrader C, Abedi E, Truman AW. Novel insights into the post-translational modifications of Ydj1/DNAJA1 co-chaperones. Cell Stress Chaperones 2024; 29:1-9. [PMID: 38309209 PMCID: PMC10939075 DOI: 10.1016/j.cstres.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 02/05/2024] Open
Abstract
The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Elizabeth Abedi
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
3
|
Somu P, Mohanty S, Basavegowda N, Yadav AK, Paul S, Baek KH. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers (Basel) 2024; 16:638. [PMID: 38339390 PMCID: PMC10854888 DOI: 10.3390/cancers16030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Sonali Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
4
|
Wu J, Yang Q, Zhu Y, Xia T, Yi L, Wang J, Ren X. DNAJA1 promotes proliferation and metastasis of breast cancer by activating mutant P53/NF-κB pathway. Pathol Res Pract 2023; 252:154921. [PMID: 37977037 DOI: 10.1016/j.prp.2023.154921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Breast cancer is one of the most common tumors with high malignancy and metastatic rate. DNAJA1 is closely related to tumor progress in several tumors. However, the role and mechanisms of DNAJA1 in the metastasis and proliferation of breast cancer are unknown. METHODS Immunohistochemistry and western blot were used to detect the protein expression genes. In vivo and vitro experiments were performed to evaluate the proliferation, invasive and metastatic abilities of breast cancer cells. RESULTS DNAJA1 was high expressed in 234 cases of breast cancer tissues and associated with metastasis, p53 expression and poor survival for patients. Knock down of DNAJA1 decreased the number of plate clone formation and the OD value of CCK8 assays in breast cancer cells. Depletion of DNAJA1 also in decreased the invasive abilities of breast cancer cells. In vivo, knock down DNAJA1 decreased the growth of subcutaneous tumor and lung metastatic nodes. Mechanically, DNAJA1 could bind with P53-R175H and reduced its degradation. Up regulation of DNAJA1 in mutant P53-R175H breast cancer cell promoted the nuclear translocation of p65, activated NF-κB pathway and enhanced the transcription of its downstream genes such as MMP9, CXCL10 et al. Blockade of NF-κB pathway effectively rescued the effects of DNAJA1 on proliferation and metastasis in breast cancer. CONCLUSION Our study reveals that DNAJA1 is up regulated in breast cancer and promotes breast cancer cells proliferation and metastasis via P53-R175H/NF-κB pathway. It might be a potential prognosis marker for the breast cancer patients.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Qiao Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Ye Zhu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of gastroenterology, The People' Hospital of Leshan, Leshan 644000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Tian Xia
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Lizhi Yi
- Department of gastroenterology, The People' Hospital of Leshan, Leshan 644000, Sichuan Province, People's Republic of China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China.
| | - Xiaoli Ren
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Munera López J, Alonso AM, Figueras MJ, Saldarriaga Cartagena AM, Hortua Triana MA, Diambra L, Vanagas L, Deng B, Moreno SNJ, Angel SO. Analysis of the Interactome of the Toxoplasma gondii Tgj1 HSP40 Chaperone. Proteomes 2023; 11:9. [PMID: 36976888 PMCID: PMC10056330 DOI: 10.3390/proteomes11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan that causes toxoplasmosis in humans and animals. Central to its dissemination and pathogenicity is the ability to rapidly divide in the tachyzoite stage and infect any type of nucleated cell. Adaptation to different cell contexts requires high plasticity in which heat shock proteins (Hsps) could play a fundamental role. Tgj1 is a type I Hsp40 of T. gondii, an ortholog of the DNAJA1 group, which is essential during the tachyzoite lytic cycle. Tgj1 consists of a J-domain, ZFD, and DNAJ_C domains with a CRQQ C-terminal motif, which is usually prone to lipidation. Tgj1 presented a mostly cytosolic subcellular localization overlapping partially with endoplasmic reticulum. Protein-protein Interaction (PPI) analysis showed that Tgj1 could be implicated in various biological pathways, mainly translation, protein folding, energy metabolism, membrane transport and protein translocation, invasion/pathogenesis, cell signaling, chromatin and transcription regulation, and cell redox homeostasis among others. The combination of Tgj1 and Hsp90 PPIs retrieved only 70 interactors linked to the Tgj1-Hsp90 axis, suggesting that Tgj1 would present specific functions in addition to those of the Hsp70/Hsp90 cycle, standing out invasion/pathogenesis, cell shape motility, and energy pathway. Within the Hsp70/Hsp90 cycle, translation-associated pathways, cell redox homeostasis, and protein folding were highly enriched in the Tgj1-Hsp90 axis. In conclusion, Tgj1 would interact with a wide range of proteins from different biological pathways, which could suggest a relevant role in them.
Collapse
Affiliation(s)
- Jonathan Munera López
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Andrés Mariano Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Maria Julia Figueras
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Ana María Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Miryam A. Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Luis Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Burlington, VT 05405, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sergio Oscar Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| |
Collapse
|
7
|
Nitzsche B, Höpfner M, Biersack B. Synthetic Small Molecule Modulators of Hsp70 and Hsp40 Chaperones as Promising Anticancer Agents. Int J Mol Sci 2023; 24:4083. [PMID: 36835501 PMCID: PMC9964478 DOI: 10.3390/ijms24044083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.
Collapse
Affiliation(s)
- Bianca Nitzsche
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernhard Biersack
- Organische Chemie 1, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
8
|
Manunu B, Serafin AM, Akudugu JM. BAG1, MGMT, FOXO1, and DNAJA1 as potential drug targets for radiosensitizing cancer cell lines. Int J Radiat Biol 2023; 99:292-307. [PMID: 35511481 DOI: 10.1080/09553002.2022.2074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Activation of some signaling pathways can promote cell survival and have a negative impact on tumor response to radiotherapy. Here, the role of differences in expression levels of genes related to the poly(ADP-ribose) polymerase-1 (PARP-1), heat shock protein 90 (Hsp90), B-cell lymphoma 2 (Bcl-2), and phosphoinositide 3-kinase (PI3K) pathways in the survival or death of cells following X-ray exposure was investigated. METHODS Eight human cell cultures (MCF-7 and MDA-MB-231: breast cancers; MCF-12A: apparently normal breast; A549: lung cancer; L132: normal lung; G28, G44 and G112: glial cancers) were irradiated with X-rays. The colony-forming and real-time PCR based on a custom human pathway RT2 Profiler PCR Array assays were used to evaluate cell survival and gene expression, respectively. RESULTS The surviving fractions at 2 Gy for the cell lines, in order of increasing radioresistance, were found to be as follows: MCF-7 (0.200 ± 0.011), G44 (0.277 ± 0.065), L132 (0.367 ± 0.023), MDA-MB-231 (0.391 ± 0.057), G112 (0.397 ± 0.113), A549 (0.490 ± 0.048), MCF-12A (0.526 ± 0.004), and G28 (0.633 ± 0.094). The rank order of radioresistance at 6 Gy was: MCF-7 < L132 < G44 < MDA-MB-231 < A549 < G28 < G112 < MCF-12A. PCR array data analysis revealed that several genes were differentially expressed between irradiated and unirradiated cell cultures. The following genes, with fold changes: BCL2A1 (21.91), TP53 (8743.75), RAD51 (11.66), FOX1 (65.86), TCP1 (141.32), DNAJB1 (3283.64), RAD51 (51.52), and HSPE1 (12887.29) were highly overexpressed, and BAX (-127.21), FOX1 (-81.79), PDPK1 (-1241.78), BRCA1 (-8.70), MLH1 (-12143.95), BCL2 (-18.69), CCND1 (-46475.98), and GJA1 (-2832.70) were highly underexpressed in the MDA-MB-231, MCF-7, MCF-12A, A549, L132, G28, G44, and G112 cell lines, respectively. The radioresistance in the malignant A549 and G28 cells was linked to upregulation in the apoptotic, DNA repair, PI3K, and Hsp90 pathway genes BAG1, MGMT, FOXO1, and DNAJA1, respectively, and inhibition of these genes resulted in significant radiosensitization. CONCLUSIONS Targeting BAG1, MGMT, FOXO1, and DNAJA1 with specific inhibitors might effectively sensitize radioresistant tumors to radiotherapy.
Collapse
Affiliation(s)
- Bayanika Manunu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
9
|
Kim HY, Hong S. Multi-Faceted Roles of DNAJB Protein in Cancer Metastasis and Clinical Implications. Int J Mol Sci 2022; 23:14970. [PMID: 36499297 PMCID: PMC9737691 DOI: 10.3390/ijms232314970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Heat shock proteins (HSPs) are highly conserved molecular chaperones with diverse cellular activities, including protein folding, assembly or disassembly of protein complexes, and maturation process under diverse stress conditions. HSPs also play essential roles in tumorigenesis, metastasis, and therapeutic resistance across cancers. Among them, HSP40s are widely accepted as regulators of HSP70/HSP90 chaperones and an accumulating number of biological functions as molecular chaperones dependent or independent of either of these chaperones. Despite large numbers of HSP40s, little is known about their physiologic roles, specifically in cancer progression. This article summarizes the multi-faceted role of DNAJB proteins as one subclass of the HSP40 family in cancer development and metastasis. Regulation and deregulation of DNAJB proteins at transcriptional, post-transcriptional, and post-translational levels contribute to tumor progression, particularly cancer metastasis. Furthermore, understanding differences in function and regulating mechanism between DNAJB proteins offers a new perspective on tumorigenesis and metastasis to improve therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, 155 Gaetbel-ro Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, 155 Gaetbel-ro Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
DNAJA1 Stabilizes EF1A1 to Promote Cell Proliferation and Metastasis of Liver Cancer Mediated by miR-205-5p. JOURNAL OF ONCOLOGY 2022; 2022:2292481. [PMID: 35586205 PMCID: PMC9110222 DOI: 10.1155/2022/2292481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Liver cancer is one of the most common and aggressive malignancies worldwide with poor prognosis. Studies on pathogenesis of liver cancer are urgently demanded to develop better treatment strategy. Here, we found that overexpression of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1) increased cell proliferation, invasion, and angiogenesis in Huh 7 and HepG2 cells, while depletion of DNAJA1 in MHCC-97H and HCC-M3 showed opposite effects. In vivo functional assays indicated that DNAJA1 promoted tumor growth and pulmonary metastasis in mice. Mechanistically, as a direct target of miR-205-5p, DNAJA1 promoted proliferation and metastasis of liver cancer cells by stabilizing eukaryotic elongation factor 1A1 (EF1A1). Moreover, DNAJA was markedly upregulated in liver cancer tissues (P < 0.05) and was significantly associated with poor prognosis. And its expression was correlated with differentiation (P < 0.001), dissemination (P < 0.001), and serum AFP (P = 0.029). The mRNA levels of miR-205-5p and DNAJA1 were negatively correlated in liver cancer. In conclusion, our study reveals that DNAJA1 acts as an oncogene in liver cancer via miR-205-5p/EF1A1 axis and might be a potential biomarker to predict the prognosis for liver cancer patients.
Collapse
|
12
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Ileri FC, Acun T. High expression of DNAJA1 ( HDJ2) predicts unfavorable survival outcomes in breast cancer. Biomark Med 2021; 15:941-950. [PMID: 34236236 DOI: 10.2217/bmm-2020-0728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: DNAJA1 is associated with several cancers, but its biomarker potential in breast cancer is not adequately known. Materials & methods: Q-RT-PCR, immunohistochemistry, COBRA methods and in silico tools (KM-Plotter, UALCAN) were used to analyze the expression level, methylation status and prognostic value of DNAJA1 in breast cancer. Results: DNAJA1 expression was significantly higher in clinical tumor samples compared with normal samples. High DNAJA1 mRNA expression is associated with poor survival values in breast cancer. DNAJA1 promoter region is hypomethylated in cell lines and clinical samples. Conclusion: High DNAJA1 expression predicts poor clinical survival outcomes for breast cancer. Other than promoter methylation, epigenetic factors also warrant investigation in future studies as a regulatory mechanism of DNAJA1 expression in breast cancer.
Collapse
Affiliation(s)
- Furkan Celebi Ileri
- Department of Molecular Biology & Genetics, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| | - Tolga Acun
- Department of Molecular Biology & Genetics, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| |
Collapse
|
14
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance. Sci Rep 2020; 10:13831. [PMID: 32796891 PMCID: PMC7429498 DOI: 10.1038/s41598-020-70764-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 is regulated by a suite of co-chaperone molecules that bring “clients” to the primary chaperone for efficient folding. Rather than targeting Hsp70 itself, here we have examined the feasibility of inhibiting the Hsp70 co-chaperone DNAJA1 as a novel anticancer strategy. We found DNAJA1 to be upregulated in a variety of cancers, suggesting a role in malignancy. To confirm this role, we screened the NIH Approved Oncology collection for chemical-genetic interactions with loss of DNAJA1 in cancer. 41 compounds showed strong synergy with DNAJA1 loss, whereas 18 dramatically lost potency. Several hits were validated using a DNAJA1 inhibitor (116-9e) in castration-resistant prostate cancer cell (CRPC) and spheroid models. Taken together, these results confirm that DNAJA1 is a hub for anticancer drug resistance and that DNAJA1 inhibition is a potent strategy to sensitize cancer cells to current and future therapeutics. The large change in drug efficacy linked to DNAJA1 suggests a personalized medicine approach where tumor DNAJA1 status may be used to optimize therapeutic strategy.
Collapse
|
16
|
Yang S, Ren X, Liang Y, Yan Y, Zhou Y, Hu J, Wang Z, Song F, Wang F, Liao W, Liao W, Ding Y, Liang L. KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene 2020; 39:249-261. [PMID: 31477839 DOI: 10.1038/s41388-019-0978-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023]
Abstract
As an inhibitor of heat shock proteins (HSPs), KNK437 has been reported to play an anti-tumor role in several cancers. But its therapeutic effect and mechanisms in colorectal cancer (CRC) remain unclear. Here, KNK437 sharply inhibited the level of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1), followed by DNAJB1, but had little effect on the levels of HSP27, HSP105, HSP90, and HSP70 in CRC cells. DNAJA1 promoted CRC cell proliferation in vitro and tumor growth and metastasis in vivo. Mechanistically, DNAJA1 was activated by E2F transcription factor 1 (E2F1) and then promoted cell cycle by stabilizing cell division cycle protein 45 (CDC45), which could be reversed by KNK437. DNAJA1 was significantly upregulated in CRC tissues and positively correlated with serosa invasion, lymph node metastasis. High level of DNAJA1 predicted poor prognosis for CRC patients. Its expression was highly linked with E2F1 and CDC45 in CRC tissues. More importantly, KNK437 significantly suppressed the growth of DNAJA1 expressing tumor in vivo. The combined treatment of KNK437 with 5-FU/L-OHP chemotherapy reduced liver metastasis of CRC. These data reveal a novel mechanism of KNK437 in anti-tumor therapy of CRC and provides a newly therapeutic strategy with potential translation to the CRC patients.
Collapse
Affiliation(s)
- Shaoshan Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yunshi Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yongrong Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yangshu Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinlong Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Zhizhi Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
17
|
Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F, Landriscina M. Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol 2019; 35:25-37. [PMID: 31322279 DOI: 10.14670/hh-18-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
18
|
Miao W, Fan M, Huang M, Li JJ, Wang Y. Targeted Profiling of Heat Shock Proteome in Radioresistant Breast Cancer Cells. Chem Res Toxicol 2019; 32:326-332. [PMID: 30596229 DOI: 10.1021/acs.chemrestox.8b00330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in women. Radioresistance remains one of the most critical barriers in radiation therapy for breast cancer. In this study, we employed a parallel-reaction monitoring (PRM)-based targeted proteomic method to examine the reprogramming of the heat shock proteome during the development of radioresistance in breast cancer. In particular, we investigated the differential expression of heat shock proteins (HSPs) in two pairs of matched parental/radioresistant breast cancer cell lines. We were able to quantify 43 and 42 HSPs in the MCF-7 and MDA-MB-231 pairs of cell lines, respectively. By analyzing the commonly altered proteins, we found that several members of the HSP70 and HSP40 subfamilies of HSPs exhibited substantially altered expression upon development of radioresistance. Moreover, the expression of HSPB8 is markedly elevated in the radioresistant lines relative to the parental MCF-7 and MDA-MB-231 cells. Together, our PRM-based targeted proteomics method revealed the reprogramming of the heat shock proteome during the development of radioresistance in breast cancer cells and offered potential targets for sensitizing breast cancer cells toward radiation therapy.
Collapse
|
19
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
20
|
Merlino F, Daniele S, La Pietra V, Di Maro S, Di Leva FS, Brancaccio D, Tomassi S, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Reichart F, Cavallini C, Costa B, Piccarducci R, Taliani S, Da Settimo F, Martini C, Kessler H, Novellino E, Marinelli L. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J Med Chem 2018; 61:4791-4809. [PMID: 29775303 DOI: 10.1021/acs.jmedchem.8b00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Collapse
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Simona Daniele
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Salvatore Di Maro
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Stefano Tomassi
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Florian Reichart
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Chiara Cavallini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Barbara Costa
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Rebecca Piccarducci
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Claudia Martini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| |
Collapse
|
21
|
Ju JA, Gilkes DM. RhoB: Team Oncogene or Team Tumor Suppressor? Genes (Basel) 2018; 9:E67. [PMID: 29385717 PMCID: PMC5852563 DOI: 10.3390/genes9020067] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Although Rho GTPases RhoA, RhoB, and RhoC share more than 85% amino acid sequence identity, they play very distinct roles in tumor progression. RhoA and RhoC have been suggested in many studies to contribute positively to tumor development, but the role of RhoB in cancer remains elusive. RhoB contains a unique C-terminal region that undergoes specific post-translational modifications affecting its localization and function. In contrast to RhoA and RhoC, RhoB not only localizes at the plasma membrane, but also on endosomes, multivesicular bodies and has even been identified in the nucleus. These unique features are what contribute to the diversity and potentially opposing functions of RhoB in the tumor microenvironment. Here, we discuss the dualistic role that RhoB plays as both an oncogene and tumor suppressor in the context of cancer development and progression.
Collapse
Affiliation(s)
- Julia A Ju
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Daniele S, Pietrobono D, Costa B, Giustiniano M, La Pietra V, Giacomelli C, La Regina G, Silvestri R, Taliani S, Trincavelli ML, Da Settimo F, Novellino E, Martini C, Marinelli L. Bax Activation Blocks Self-Renewal and Induces Apoptosis of Human Glioblastoma Stem Cells. ACS Chem Neurosci 2018; 9:85-99. [PMID: 28368610 DOI: 10.1021/acschemneuro.7b00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is characterized by a poor response to conventional chemotherapeutic agents, attributed to the insurgence of drug resistance mechanisms and to the presence of a subpopulation of glioma stem cells (GSCs). GBM cells and GSCs present, among others, an overexpression of antiapoptotic proteins and an inhibition of pro-apoptotic ones, which help to escape apoptosis. Among pro-apoptotic inducers, the Bcl-2 family protein Bax has recently emerged as a promising new target in cancer therapy along with first BAX activators (BAM7, Compound 106, and SMBA1). Herein, a derivative of BAM-7, named BTC-8, was employed to explore the effects of Bax activation in different human GBM cells and in their stem cell subpopulation. BTC-8 inhibited GBM cell proliferation, arrested the cell cycle, and induced apoptosis through the induction of mitochondrial membrane permeabilization. Most importantly, BTC-8 blocked proliferation and self-renewal of GSCs and induced their apoptosis. Notably, BTC-8 was demonstrated to sensitize both GBM cells and GSCs to the alkylating agent Temozolomide. Overall, our findings shed light on the effects and the relative molecular mechanisms related to Bax activation in GBM, and they suggest Bax-targeting compounds as promising therapeutic tools against the GSC reservoir.
Collapse
Affiliation(s)
- Simona Daniele
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Barbara Costa
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Valeria La Pietra
- Department
of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | | | - Giuseppe La Regina
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Roma, Italy
| | - Romano Silvestri
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Roma, Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Claudia Martini
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| |
Collapse
|
23
|
Meshalkina DA, Shevtsov MA, Dobrodumov AV, Komarova EY, Voronkina IV, Lazarev VF, Margulis BA, Guzhova IV. Knock-down of Hdj2/DNAJA1 co-chaperone results in an unexpected burst of tumorigenicity of C6 glioblastoma cells. Oncotarget 2017; 7:22050-63. [PMID: 26959111 PMCID: PMC5008343 DOI: 10.18632/oncotarget.7872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/20/2016] [Indexed: 01/04/2023] Open
Abstract
The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia.,First I.P. Pavlov State Medical University of St. Petersburg, St. Petersburg 197022, Russia
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Elena Y Komarova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Voronkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
24
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
25
|
Identification of DNAJA1 as a novel interacting partner and a substrate of human transglutaminase 2. Biochem J 2016; 473:3889-3901. [PMID: 27551108 DOI: 10.1042/bcj20160440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed multifunctional member of the transglutaminase enzyme family. It has been implicated to have roles in many physiological and pathological processes such as differentiation, apoptosis, signal transduction, adhesion and migration, wound healing and inflammation. Previous studies revealed that TG2 has various intra- and extra-cellular interacting partners, which contribute to these processes. In the present study, we identified a molecular co-chaperone, DNAJA1, as a novel interacting partner of human TG2 using a GST pull-down assay and subsequent mass spectrometry analysis, and further confirmed this interaction via ELISA and surface plasmon resonance measurements. Interaction studies were also performed with domain variants of TG2 and results suggest that the catalytic core domain of TG2 is essential for the TG2-DNAJA1 interaction. Cross-linking activity was not essential for the interaction since DNAJA1 was also found to interact with the catalytically inactive form of TG2. Furthermore, we have showed that DNAJA1 interacts with the open form of TG2 and regulates its transamidation activity under both in vitro and in situ conditions. We also found that DNAJA1 is a glutamine donor substrate of TG2. Since DNAJA1 and TG2 are reported to regulate common pathological conditions such as neurodegenerative disorders and cancer, the findings in the present paper open up possibilities to explore molecular mechanisms behind TG2-regulated functions.
Collapse
|
26
|
Daniele S, La Pietra V, Barresi E, Di Maro S, Da Pozzo E, Robello M, La Motta C, Cosconati S, Taliani S, Marinelli L, Novellino E, Martini C, Da Settimo F. Lead Optimization of 2-Phenylindolylglyoxylyldipeptide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas. J Med Chem 2016; 59:4526-38. [PMID: 27050782 DOI: 10.1021/acs.jmedchem.5b01767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In glioblastoma multiforme (GBM), translocator protein (TSPO) and murine double minute (MDM)2/p53 complex represent two druggable targets. We recently reported the first dual binder 3 possessing a higher anticancer effect in GBM cells than the standards PK11195 1 or Nutlin-3 2 singularly applied. Herein, through a structure-activity relationship study, we developed derivatives 4-10 with improved potencies toward both TSPO and MDM2. As a result, compound 9: (i) reactivated the p53 functionality; (ii) inhibited the viability of two human GBM cells; (iii) impaired the proliferation of glioma cancer stem cells (CSCs), more resistant to chemotherapeutics and responsible of GBM recurrence; (iv) sensitized GBM cells and CSCs to the activity of temozolomide; (v) directed its effects preferentially toward tumor cells with respect to healthy ones. Thus, 9 may represent a promising cytotoxic agent, which is worthy of being further developed for a therapeutic approach against GBM, where the downstream p53 signaling is intact and TSPO is overexpressed.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II , Via Montesano 49, Naples 80131, Italy
| | | | | | | | - Marco Robello
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | | | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II , Via Montesano 49, Naples 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II , Via Montesano 49, Naples 80131, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa , Pisa 56126, Italy
| | | |
Collapse
|
27
|
Giacomelli C, Natali L, Trincavelli ML, Daniele S, Bertoli A, Flamini G, Braca A, Martini C. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line. Int J Biochem Cell Biol 2016; 74:95-108. [DOI: 10.1016/j.biocel.2016.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
|
28
|
Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death. Sci Rep 2015; 5:15556. [PMID: 26494310 PMCID: PMC4616042 DOI: 10.1038/srep15556] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type.
Collapse
|
29
|
Tebaldi T, Zaccara S, Alessandrini F, Bisio A, Ciribilli Y, Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 2015; 16:464. [PMID: 26081755 PMCID: PMC4470028 DOI: 10.1186/s12864-015-1643-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. Results We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. Conclusions We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary to, existing methods designed to identify p53 response elements. p53retriever is available as an R package at: http://tomateba.github.io/p53retriever. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1643-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toma Tebaldi
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Sara Zaccara
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Federica Alessandrini
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Alessandra Bisio
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| |
Collapse
|
30
|
Ouédraogo ZG, Müller-Barthélémy M, Kemeny JL, Dedieu V, Biau J, Khalil T, Raoelfils LI, Granzotto A, Pereira B, Beaudoin C, Guissou IP, Berger M, Morel L, Chautard E, Verrelle P. STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma. Brain Pathol 2015; 26:18-30. [PMID: 25736961 DOI: 10.1111/bpa.12254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 01/23/2023] Open
Abstract
Radiotherapy is an essential component of glioma standard treatment. Glioblastomas (GBM), however, display an important radioresistance leading to tumor recurrence. To improve patient prognosis, there is a need to radiosensitize GBM cells and to circumvent the mechanisms of resistance caused by interactions between tumor cells and their microenvironment. STAT3 has been identified as a therapeutic target in glioma because of its involvement in mechanisms sustaining tumor escape to both standard treatment and immune control. Here, we studied the role of STAT3 activation on tyrosine 705 (Y705) and serine 727 (S727) in glioma radioresistance. This study explored STAT3 phosphorylation on Y705 (pSTAT3-Y705) and S727 (pSTAT3-S727) in glioma cell lines and in clinical samples. Radiosensitizing effect of STAT3 activation down-modulation by Gö6976 was explored. In a panel of 15 human glioma cell lines, we found that the level of pSTAT3-S727 was correlated to intrinsic radioresistance. Moreover, treating GBM cells with Gö6976 resulted in a highly significant radiosensitization associated to a concomitant pSTAT3-S727 down-modulation only in GBM cell lines that exhibited no or weak pSTAT3-Y705. We report the constitutive activation of STAT3-S727 in all GBM clinical samples. Targeting pSTAT3-S727 mainly in pSTAT3-Y705-negative GBM could be a relevant approach to improve radiation therapy.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouédraogo
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, F-63000, CLERMONT-FERRAND, France.,Laboratoire de Pharmacologie, de Toxicologie et de Chimie Thérapeutique, Université de Ouagadougou, 03 BP 7021, OUAGADOUGOU 03, BURKINA FASO
| | - Mélanie Müller-Barthélémy
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, F-63000, CLERMONT-FERRAND, France
| | - Jean-Louis Kemeny
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,CHU Clermont-Ferrand, Service d'Anatomopathologie, F-63003, CLERMONT-FERRAND, France
| | - Véronique Dedieu
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, F-63000, CLERMONT-FERRAND, France
| | - Julian Biau
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, F-63000, CLERMONT-FERRAND, France.,Institut Curie, CNRS UMR3347, INSERM U2021, 91405, Orsay, France
| | - Toufic Khalil
- CHU Clermont-Ferrand, Service de Neurochirurgie, F-63003, CLERMONT-FERRAND, France.,Clermont Université, Université d'Auvergne, EA 7282, IGCNC, BP 10448, F-63000, CLERMONT-FERRAND, France
| | - Lala Ines Raoelfils
- Centre Jean Perrin, Service D'anatomopathologie, F-63000, CLERMONT-FERRAND, France
| | | | - Bruno Pereira
- CHU Clermont-Ferrand, Biostatistics unit, DRCI, F-63003, CLERMONT-FERRAND, France
| | - Claude Beaudoin
- Clermont Université, Université Blaise-Pascal, GReD, UMR CNRS 6293, INSERM U1103, 24 Avenue des Landais BP80026, 63171 Aubière 63177, AUBIERE, France
| | - Innocent Pierre Guissou
- Laboratoire de Pharmacologie, de Toxicologie et de Chimie Thérapeutique, Université de Ouagadougou, 03 BP 7021, OUAGADOUGOU 03, BURKINA FASO
| | - Marc Berger
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,CHU Clermont-Ferrand, Service d'Hématologie Biologique/Immunologie, F-63003, CLERMONT-FERRAND, France
| | - Laurent Morel
- Clermont Université, Université Blaise-Pascal, GReD, UMR CNRS 6293, INSERM U1103, 24 Avenue des Landais BP80026, 63171 Aubière 63177, AUBIERE, France
| | - Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, F-63000, CLERMONT-FERRAND, France
| | - Pierre Verrelle
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, CLERMONT-FERRAND, France.,Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, F-63000, CLERMONT-FERRAND, France
| |
Collapse
|
31
|
Roncuzzi L, Pancotti F, Baldini N. Involvement of HIF-1α activation in the doxorubicin resistance of human osteosarcoma cells. Oncol Rep 2014; 32:389-94. [PMID: 24840054 DOI: 10.3892/or.2014.3181] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/03/2014] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, survival outcomes remain unsatisfactory, particularly in patients with metastatic and/or recurrent disease. Unfortunately, treatment failure is commonly due to the development of chemoresistance, for which the underlying molecular mechanisms remain unclear. The aim of the present study was to investigate the role of hypoxia-inducible factor 1α (HIF‑1α) and its signalling pathways as mediators of drug-resistance in human osteosarcoma. Toward this aim, we established two osteosarcoma cell lines selected for resistance to doxorubicin, a drug of choice in the treatment of this tumour. Our results showed that the multidrug resistance (MDR) phenotype was also mediated by HIF-1α, the most important regulator of cell adaptation to hypoxia. Our data showed that this transcription factor promoted the outward transport of intracellular doxorubicin by activating the P-glycoprotein (P-gp) expression in osteosarcoma cells maintained in normoxic conditions. In addition, it hindered doxorubicin-induced apoptosis by regulating the expression of c-Myc and p21. Finally, we observed that the doxorubicin-resistant cells maintained for 2 months of continuous culture in a drug-free medium, lost their drug-resistance and this effect was associated with the absence of HIF-1α expression. The emerging role of HIF-1α in osteosarcoma biology indicates its use as a valuable therapeutic target.
Collapse
Affiliation(s)
- Laura Roncuzzi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, I-40136 Bologna, Italy
| | - Fabia Pancotti
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, I-40136 Bologna, Italy
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, I-40136 Bologna, Italy
| |
Collapse
|
32
|
Huang L, Yu Z, Zhang T, Zhao X, Huang G. HSP40 interacts with pyruvate kinase M2 and regulates glycolysis and cell proliferation in tumor cells. PLoS One 2014; 9:e92949. [PMID: 24658033 PMCID: PMC3962495 DOI: 10.1371/journal.pone.0092949] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/27/2014] [Indexed: 11/29/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is predominantly expressed in cancers, which is considered as a key regulator of the Warburg effect. In this study, HSP40 was identified as a novel binding partner of PKM2. HSP40-PKM2 association destabilized PKM2 protein through HSC70. In the presence of HSP40, PKM2 protein level and PKM2-mediated PDK1 expression were down-regulated. Moreover, HSP40 was involved in regulating glucose metabolism on PKM2 dependent way and at the mean time had an effect on mitochondrial oxygen respiration. In line with inhibition effect of HSP40 on glycolysis, the growth of cancer cells was inhibited by HSP40.Our data provided a new regulation mechanism of PKM2, which suggested a new therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Liangqian Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhai Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Teng Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Stark JL, Mehla K, Chaika N, Acton TB, Xiao R, Singh PK, Montelione GT, Powers R. Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relationship to pancreatic cancer. Biochemistry 2014; 53:1360-72. [PMID: 24512202 PMCID: PMC3985919 DOI: 10.1021/bi401329a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer has a dismal 5 year survival rate of 5.5% that has not been improved over the past 25 years despite an enormous amount of effort. Thus, there is an urgent need to identify truly novel yet druggable protein targets for drug discovery. The human protein DnaJ homologue subfamily A member 1 (DNAJA1) was previously shown to be downregulated 5-fold in pancreatic cancer cells and has been targeted as a biomarker for pancreatic cancer, but little is known about the specific biological function for DNAJA1 or the other members of the DnaJ family encoded in the human genome. Our results suggest the overexpression of DNAJA1 suppresses the stress response capabilities of the oncogenic transcription factor, c-Jun, and results in the diminution of cell survival. DNAJA1 likely activates a DnaK protein by forming a complex that suppresses the JNK pathway, the hyperphosphorylation of c-Jun, and the anti-apoptosis state found in pancreatic cancer cells. A high-quality nuclear magnetic resonance solution structure of the J-domain of DNAJA1 combined with a bioinformatics analysis and a ligand affinity screen identifies a potential DnaK binding site, which is also predicted to overlap with an inhibitory binding site, suggesting DNAJA1 activity is highly regulated.
Collapse
Affiliation(s)
- Jaime L Stark
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Costa B, Bendinelli S, Gabelloni P, Da Pozzo E, Daniele S, Scatena F, Vanacore R, Campiglia P, Bertamino A, Gomez-Monterrey I, Sorriento D, Del Giudice C, Iaccarino G, Novellino E, Martini C. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor. PLoS One 2013; 8:e72281. [PMID: 23977270 PMCID: PMC3747081 DOI: 10.1371/journal.pone.0072281] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1. Proc Natl Acad Sci U S A 2011; 108:15300-5. [PMID: 21876155 DOI: 10.1073/pnas.1107425108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Yeast rad3-102, a mutant of the TFIIH complex involved in nucleotide excision repair (NER) and transcription, can perform NER initial steps but not late steps of postincision gap filing. Because removal of early-acting NER proteins prevents rad3-102 deleterious action, we used this feature to explore if chaperones act in early NER. We found that the cochaperone Ydj1 is required for NER and that Ydj1 guarantees TFIIH stoichiometry. Importantly, in the absence of Ydj1, the roles of TFIIH in transcription and transactivation, the ability to activate transcription by nuclear receptors in response to hormones, are strongly impaired. We propose that TFIIH constitutes a multitarget complex for Ydj1, as six of the seven TFIIH core components contain biologically relevant Ydj1- binding motives. Our results provide evidence for a role of chaperones in NER and transcription, with implications in cancer and TFIIH-associated syndromes.
Collapse
|
36
|
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312:129-42. [PMID: 21925790 DOI: 10.1016/j.canlet.2011.08.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
Collapse
Affiliation(s)
- Jason N Sterrenberg
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa
| | | | | |
Collapse
|
37
|
Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 2010; 128:1-36. [PMID: 20546782 PMCID: PMC2939300 DOI: 10.1016/j.pharmthera.2010.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.
Collapse
Affiliation(s)
- Leopold Arko
- Surgical and Molecular Neuro-oncology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Desoubzdanne D, Claparols C, Martins-Froment N, Zedde C, Balayssac S, Gilard V, Tercé F, Martino R, Malet-Martino M. Analysis of hydrophilic and lipophilic choline compounds in radioresistant and radiosensitive glioblastoma cell lines by HILIC-ESI-MS/MS. Anal Bioanal Chem 2010; 398:2723-30. [DOI: 10.1007/s00216-010-4196-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/04/2010] [Accepted: 09/05/2010] [Indexed: 11/29/2022]
|
39
|
Geryk-Hall M, Yang Y, Hughes DPM. Driven to death: Inhibition of farnesylation increases Ras activity and promotes growth arrest and cell death [corrected]. Mol Cancer Ther 2010; 9:1111-9. [PMID: 20406948 PMCID: PMC2868119 DOI: 10.1158/1535-7163.mct-09-0833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To improve cancer outcomes, investigators are turning increasingly to small molecule medicines that disrupt vital signaling cascades, inhibit malignant growth, or induce apoptosis. One vital signaling molecule is Ras, and a key step in Ras activation is membrane anchoring of Ras through prenylation, the C-terminal addition of a lipid anchor. Small molecule inhibitors of farnesyltransferase (FTI), the enzyme most often responsible for prenylating Ras, showed clinical promise, but development of FTIs such as tipifarnib has been stalled by uncertainty about their mechanism of action, because Ras seemed unimpeded in tipifarnib-treated samples. Interpretation was further complicated by the numerous proteins that may be farnesylated, as well as availability of an alternate prenylation pathway, geranylgeranylation. Our initial observations of varied response by cancer cell lines to tipifarnib led us to evaluate the role of FTI in Ras signal alteration using various tumor models. We describe our novel counterintuitive finding that endogenous Ras activity increases in cancer cell lines with low endogenous Ras activity when farnesyltransferase is inhibited by either tipifarnib or short hairpin RNA. In response to tipifarnib, variable growth arrest and/or cell death correlated with levels of activated extracellular signal–regulated kinase (ERK) and p38 mitogenactivated protein kinase (MAPK). Sensitivity to tipifarnib treatment was shown by growth inhibition and by an increase in subdiploid cell numbers; cells with such sensitivity had increased activation of ERK and p38 MAPK. Because Ras must be prenylated to be active, our findings suggest that geranylgeranylated N-Ras or K-Ras B interacts differently with downstream effector proteins in sensitive cancer cells responding to tipifarnib, switching the balance from cell proliferation to growth inhibition [corrected].
Collapse
Affiliation(s)
- Mandy Geryk-Hall
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
40
|
Jia L, Yang J, Hao X, Zheng M, He H, Xiong X, Xu L, Sun Y. Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target. Clin Cancer Res 2010; 16:814-24. [PMID: 20103673 DOI: 10.1158/1078-0432.ccr-09-1592] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Sensitive to apoptosis gene (SAG; also known as RBX2 or ROC2) was originally cloned as a redox-inducible antioxidant protein and was later characterized as a RING component of SCF E3 ubiquitin ligases. SAG overexpression inhibits apoptosis induced by many stimuli both in vitro and in vivo. SAG mRNA was overexpressed in human lung tumor tissues with a correlation to poor patient survival. To investigate whether SAG serves as an anticancer target, we determined the effect of SAG silencing on cell proliferation, survival, and radiosensitivity. EXPERIMENTAL DESIGN SAG protein expression in human tumors was evaluated by immunohistochemical staining using tumor tissue arrays. SAG expression in cancer cells was knocked down by siRNA silencing. The anticancer effects of SAG silencing were evaluated by in vitro assays for cell growth and survival and by an in vivo orthotopic xenograft tumor model. Radiosensitization by SAG silencing of human cancer cells was determined by clonogenic survival assay. Apoptosis induction was evaluated by fluorescence-activated cell sorting analysis, caspase-3 activation assay, and Western blotting of apoptosis-associated proteins. RESULTS SAG was overexpressed in multiple human tumor tissues compared with their normal counterparts. SAG silencing selectively inhibited cancer cell proliferation, suppressed in vivo tumor growth, and sensitized radiation-resistant cancer cells to radiation. Mechanistically, SAG silencing induced apoptosis with accumulation of NOXA, whereas SAG overexpression reduced NOXA levels and shortened NOXA protein half-life. CONCLUSIONS The findings showed that SAG E3 ubiquitin ligase plays an essential role in cancer cell proliferation and tumor growth and may serve as a promising anticancer and radiosensitizing target.
Collapse
Affiliation(s)
- Lijun Jia
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohta K, Kuwahara K, Zhang Z, Makino K, Komohara Y, Nakamura H, Kuratsu JI, Sakaguchi N. Decreased expression of germinal center-associated nuclear protein is involved in chromosomal instability in malignant gliomas. Cancer Sci 2009; 100:2069-76. [PMID: 19686285 PMCID: PMC11158849 DOI: 10.1111/j.1349-7006.2009.01293.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/09/2009] [Accepted: 07/12/2009] [Indexed: 12/31/2022] Open
Abstract
Malignant glioma (MG) is highly proliferative and invasive, with the malignant characteristics associated with aneuploidy and chromosomal instability (CIN). Here, we found that the level of germinal center-associated nuclear protein (GANP), a mammalian homologue of yeast Sac3, was markedly decreased in MGs with a poor prognosis; and thus we explored the effect of its decrease on cell-cycle progression of MG cell lines. Glioblastomas showed a significantly lower level of ganp mRNA than anaplastic astrocytomas, as measured by real-time reverse transcription-PCR, in 101 cases of adult MG. MGs of ganp(Low) expression displayed more malignant characteristics, with loss of heterozygosity on chromosome 10, epidermal growth factor receptor gene amplification, and significantly poorer prognosis than the ganp(High) group. Human diploid fibroblasts depleted of ganp mRNA by the RNA interference (RNAi) method showed a decreased percentage of S-phase cells and a cellular-senescence phenotype. MG cell lines harboring abnormalities of various cell-cycle checkpoint molecules displayed slippage of mitotic checkpoints and an increased proportion of hyperploid cells after ganp RNAi-treatment. These results suggest that GANP protects cells from cellular senescence caused by DNA damage and that a significant decrease in GANP expression leads to malignancy by generating hyperploidy and CIN.
Collapse
Affiliation(s)
- Kazutaka Ohta
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kudo M, Jono H, Shinriki S, Yano S, Nakamura H, Makino K, Hide T, Muta D, Ueda M, Ota K, Ando Y, Kuratsu JI. Antitumor effect of humanized anti–interleukin-6 receptor antibody (tocilizumab) on glioma cell proliferation. J Neurosurg 2009; 111:219-25. [DOI: 10.3171/2008.12.jns081284] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Object
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates diverse physiological functions, including cell proliferation and survival. Recent studies have shown that IL-6 expression is often elevated in response to several types of glioma. Although IL-6 is said to play an important role in glioma, the involvement of IL-6 signaling has been quite controversial. The aim of this study was to evaluate the involvement of IL-6 signaling in glioma and the inhibitory effect of IL-6 signaling on glioma tumor proliferation.
Methods
The expression of IL-6 receptors (IL-6Rs) was evaluated in glioma tissues by means of immunohistochemical analysis, and the involvement of IL-6 signaling in glioblastoma multiforme (GBM) U87MG cell proliferation was also determined. In addition, to examine the inhibitory effect of IL-6 signaling on glioma cell proliferation, the authors investigated the effects of tocilizumab, the humanized anti–human IL-6R antibody in U87MG cells.
Results
Increased immunoreactivity for IL-6R was predominantly found in the cytoplasm of endothelial cells in all GBM samples. Inhibition of IL-6 signaling by both IL-6– and IL-6R–specific small interfering RNA and AG490, a specific inhibitor of JAK2 phosphorylation, suppressed glioma cell proliferation. Furthermore, tocilizumab, a clinically developed humanized anti–human IL-6R antibody, exerted an antiproliferative effect on cells from the GBM cell line U87MG via the IL-6R–dependent JAK-STAT3 pathway.
Conclusions
The IL-6 signaling pathway plays an important role in glioma cell proliferation, and tocilizumab exerts an antitumor effect in U87MG glioma cells. These results may bring new insight into the molecular pathogenesis of glioma and may lead to a new therapeutic intervention.
Collapse
Affiliation(s)
- Mareina Kudo
- 1Departments of Neurosurgery and
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Shinriki
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | - Mitsuharu Ueda
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutoshi Ota
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
43
|
Noda SE, El-Jawahri A, Patel D, Lautenschlaeger T, Siedow M, Chakravarti A. Molecular Advances of Brain Tumors in Radiation Oncology. Semin Radiat Oncol 2009; 19:171-8. [DOI: 10.1016/j.semradonc.2009.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Jia L, Soengas MS, Sun Y. ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence. Cancer Res 2009; 69:4974-82. [PMID: 19509229 PMCID: PMC2744327 DOI: 10.1158/0008-5472.can-08-4671] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulator of Cullins-1 (ROC1) or Ring Box Protein-1 (RBX1) is a RING component of SCF (Skp-1, cullins, F-box proteins) E3 ubiquitin ligases, which regulate diverse cellular processes by targeting a variety of substrates for degradation. However, little is known about the role of ROC1 in human cancer. Here, we report that ROC1 is ubiquitously overexpressed in primary human tumor tissues and human cancer cell lines. ROC1 silencing by siRNA significantly inhibited the growth of multiple human cancer cell lines via induction of senescence and apoptosis as well as G(2)-M arrest. Senescence induction is coupled with DNA damage in p53/p21- and p16/pRB-independent manners. Apoptosis is associated with accumulation of Puma and reduction of Bcl-2, Mcl-1, and survivin; and G(2)-M arrest is associated with accumulation of 14-3-3sigma and elimination of cyclin B1 and Cdc2. In U87 glioblastoma cells, these phenotypic changes occur sequentially upon ROC1 silencing, starting with G(2)-M arrest, followed by apoptosis and senescence. Thus, ROC1 silencing triggers multiple death and growth arrest pathways to effectively suppress tumor cell growth, suggesting that ROC1 may serve as a potential anticancer target.
Collapse
Affiliation(s)
- Lijun Jia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Maria S. Soengas
- Melanoma Group, Molecular Pathology Programme, Spanish National Cancer Research Institute, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Mitra A, Shevde LA, Samant RS. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis 2009; 26:559-67. [PMID: 19340594 DOI: 10.1007/s10585-009-9255-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
HSP40 (DNAJ) is an understudied family of co-chaperones. The human genome codes for over 41 members of HSP40 family that reside at distinct intracellular locations. Despite their large numbers, little is known about their physiologic roles. Recent research has revealed involvement of some of the DNAJ family members in various types of cancers. In this article we summarize the information about the involvement of human DNAJ family members in various aspects of cancer biology. Furthermore we discuss the potential role of the J domain of DNAJ proteins in cancer biology.
Collapse
Affiliation(s)
- Aparna Mitra
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | | |
Collapse
|
46
|
de Tayrac M, Etcheverry A, Aubry M, Saïkali S, Hamlat A, Quillien V, Le Treut A, Galibert MD, Mosser J. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer 2009; 48:55-68. [PMID: 18828157 DOI: 10.1002/gcc.20618] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma multiforme shows multiple chromosomal aberrations, the impact of which on gene expression remains unclear. To investigate this relationship and to identify putative initiating genomic events, we integrated a paired copy number and gene expression survey in glioblastoma using whole human genome arrays. Loci of recurrent copy number alterations were combined with gene expression profiles obtained on the same tumor samples. We identified a set of 406 "cis-acting DNA targeted genes" corresponding to genomic aberrations with direct copy-number-driving changes in gene expression, defined as genes with either significantly concordant or correlated changes in DNA copy number and expression. Functional annotation revealed that these genes participate in key processes of cancer cell biology, providing insights into the genetic mechanisms driving glioblastoma. The robustness of the gene selection was validated on an external microarray data set including 81 glioblastomas and 23 non-neoplastic brain samples. The integration of array CGH and gene expression data highlights a robust cis-acting DNA targeted genes signature that may be critical for glioblastoma progression, with two tumor suppressor genes PCDH9 and STARD13 that could be involved in tumor invasiveness and resistance to etoposide.
Collapse
Affiliation(s)
- Marie de Tayrac
- Faculty of Medicine, CNRS-UMR 6061, Regulation of Transcription and Oncogenesis, IFR140 GFAS, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Mutated ras has been identified in approximately 30% of human tumors, and dysregulation of ras function and signal transduction pathways is a critical step in tumorigenesis. Herein, we review the early data that supports the concept that the intrinsic radiosensitivity of tumor cells can be altered by oncogenic ras expression and that this impacts the PI3K-dependent signaling cascade. This ras-induced radioresistance can be reversed using prenyl transferase inhibitors (PTIs.). We discuss the effects of PTIs as a radiosensitizer in both in vivo and in vitro studies and show that PTIs can lead to increased radiosensitization in vivo through a variety of potential mechanisms that enhance radiation-induced cell kill. We critically evaluate the use of ras biomarkers in predicting the clinical response to PTIs that may explain the mixed results seen thus far in clinical trials using PTIs as a clinical radiosensitizer. We conclude that Ras-mediated radioresistance is the result of multiple intercommunicating pathways functioning against a complex genetic background and a solitary biomarker may not be adequate to predict for PTI-mediated radiosensitization. Nonetheless, our knowledge of the ras-signaling pathway has led to development and testing of specific therapies directed against PI3K-AKT signaling pathways as a future approach towards clinical radiosensitization.
Collapse
Affiliation(s)
- Ramesh Rengan
- Department of Radiation Oncology, University of Pennsylvania, 2-Donner, HUP, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
48
|
Aghi M, Visted T, Depinho RA, Chiocca EA. Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene 2008; 27:4249-54. [PMID: 18345032 PMCID: PMC7100519 DOI: 10.1038/onc.2008.53] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncolytic herpes simplex viruses (HSVs), in clinical trials for the treatment of malignant gliomas, are assumed to be selective for tumor cells because their replication is strongly attenuated in quiescent cells, but not in cycling cells. Oncolytic selectivity is thought to occur because mutations in viral ICP6 (encoding a viral ribonucleotide reductase function) and/or γ34.5 function are respectively complemented by mammalian ribonucleotide reductase and GADD34, whose genes are expressed in cycling cells. However, it is estimated that only 5–15% of malignant glioma cells are in mitosis at any one time. Therefore, effective replication of HSV oncolytic viruses might be limited to a subpopulation of tumor cells, since at any one time the majority of tumor cells would not be cycling. However, we report that an HSV with defective ICP6 function replicates in quiescent cultured murine embryonic fibroblasts obtained from mice with homozygous p16 deletions. Furthermore, intracranial inoculation of this virus into the brains of p16−/− mice provides evidence of viral replication that does not occur when the virus is injected into the brains of wild-type mice. These approaches provide in vitro and in vivo evidence that ICP6-negative HSVs are ‘molecularly targeted,’ because they replicate in quiescent tumor cells carrying specific oncogene deletions, independent of cell cycle status.
Collapse
Affiliation(s)
- M Aghi
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
49
|
Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in Malignant Glioma: Standard of Care and Future Directions. J Clin Oncol 2007; 25:4127-36. [PMID: 17827463 DOI: 10.1200/jco.2007.11.8554] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioma has been considered resistant to chemotherapy and radiation. Recently, concomitant and adjuvant chemoradiotherapy with temozolomide has become the standard treatment for newly diagnosed glioblastoma. Conversely (neo-)adjuvant PCV (procarbazine, lomustine, vincristine) failed to improve survival in the more chemoresponsive tumor entities of anaplastic oligoastrocytoma and oligodendroglioma. Preclinical investigations suggest synergism or additivity of radiotherapy and temozolomide in glioma cell lines. Although the relative contribution of the concomitant and the adjuvant chemotherapy, respectively, cannot be assessed, the early introduction of chemotherapy and the simultaneous administration with radiotherapy appear to be key for the improvement of outcome. Epigenetic inactivation of the DNA repair enzyme methylguanine methyltransferase (MGMT) seems to be the strongest predictive marker for outcome in patients treated with alkylating agent chemotherapy. Patients whose tumors do not have MGMT promoter methylation are less likely to benefit from the addition of temozolomide chemotherapy and require alternative treatment strategies. The predictive value of MGMT gene promoter methylation is being validated in ongoing trials aiming at overcoming this resistance by a dose-dense continuous temozolomide administration or in combination with MGMT inhibitors. Understanding of molecular mechanisms allows for rational targeting of specific pathways of repair, signaling, and angiogenesis. The addition of tyrosine kinase inhibitors vatalanib (PTK787) and vandetinib (ZD6474), the integrin inhibitor cilengitide, the monoclonal antibodies bevacizumab and cetuximab, the mammalian target of rapamycin inhibitors temsirolimus and everolimus, and the protein kinase C inhibitor enzastaurin, among other agents, are in clinical investigation, building on the established chemoradiotherapy regimen for newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Roger Stupp
- Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
50
|
Moyal ECJ, Laprie A, Delannes M, Poublanc M, Catalaa I, Dalenc F, Berchery D, Sabatier J, Bousquet P, De Porre P, Alaux B, Toulas C. Phase I Trial of Tipifarnib (R115777) Concurrent With Radiotherapy in Patients with Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys 2007; 68:1396-401. [PMID: 17570606 DOI: 10.1016/j.ijrobp.2007.02.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To conduct a Phase I trial to determine the maximally tolerated dose (MTD) of tipifarnib in combination with conventional three-dimensional conformal radiotherapy (RT) for patients with glioblastoma multiforme. METHODS AND MATERIALS After resection or biopsy, tipifarnib was given 1 week before and then continuously during RT (60 Gy), followed by adjuvant administration until progression. The tipifarnib dose during RT was escalated in cohorts of 3 starting at 200 mg/day. RESULTS Thirteen patients were enrolled, and 12 were evaluable for MTD. Of these patients, 7 had undergone biopsy, 4 had partial resection, and 1 had gross total resection. No dose-limiting toxicity (DLT) was observed during the concomitant treatment at 200 mg. All 3 patients at 300 mg experienced DLT during the concomitant treatment: 1 with sudden death and 2 with acute pneumonitis. The MTD was reached at 300 mg. The adjuvant treatment was suppressed from the protocol after a case of pneumonitis during this treatment. Six additional patients were included at 200 mg/day of the new protocol, confirming the safety of this treatment. Of the 9 evaluable patients, 1 had partial response, 4 had stable disease, and 3 had rapid progression; the patient with gross total resection was relapse-free after 21 months. Median survival of the evaluable patients was 12 months (range, 5.2-21 months). CONCLUSION Tipifarnib (200 mg/day) concurrent with standard radiotherapy is well tolerated in patients with glioblastoma. Preliminary efficacy results are encouraging.
Collapse
|