1
|
Meng XY, Zhou XH, Li S, Shi MJ, Li XH, Yang BY, Liu M, Yi KZ, Wang YZ, Zhang HY, Song J, Wang FB, Wang XH. Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features. Clin Chem 2024; 70:1463-1473. [PMID: 39431962 DOI: 10.1093/clinchem/hvae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. METHODS We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool's diagnostic capability. RESULTS Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. CONCLUSIONS Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan-Hao Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo-Yu Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke-Zhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun-Ze Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
2
|
da Silva Santos R, Pascoalino Pinheiro D, Gustavo Hirth C, Barbosa Bezerra MJ, Joyce de Lima Silva-Fernandes I, Andréa da Silva Oliveira F, Viana de Holanda Barros M, Silveira Ramos E, A. Moura A, Filho ODMM, Pessoa C, Miranda Furtado CL. Hypomethylation at H19DMR in penile squamous cell carcinoma is not related to HPV infection. Epigenetics 2024; 19:2305081. [PMID: 38245880 PMCID: PMC10802203 DOI: 10.1080/15592294.2024.2305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Penile squamous cell carcinoma (SCC) is a rare and aggressive tumour mainly related to lifestyle behaviour and human papillomavirus (HPV) infection. Environmentally induced loss of imprinting (LOI) at the H19 differentially methylated region (H19DMR) is associated with many cancers in the early events of tumorigenesis and may be involved in the pathogenesis of penile SCC. We sought to evaluate the DNA methylation pattern at H19DMR and its association with HPV infection in men with penile SCC by bisulfite sequencing (bis-seq). We observed an average methylation of 32.2% ± 11.6% at the H19DMR of penile SCC and did not observe an association between the p16INK4a+ (p = 0.59) and high-risk HPV+ (p = 0.338) markers with methylation level. The average methylation did not change according to HPV positive for p16INK4a+ or hrHPV+ (35.4% ± 10%) and negative for both markers (32.4% ± 10.1%) groups. As the region analysed has a binding site for the CTCF protein, the hypomethylation at the surrounding CpG sites might alter its insulator function. In addition, there was a positive correlation between intense polymorphonuclear cell infiltration and hypomethylation at H19DMR (p = 0.035). Here, we report that hypomethylation at H19DMR in penile SCC might contribute to tumour progression and aggressiveness regardless of HPV infection.
Collapse
Affiliation(s)
- Renan da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Maisa Viana de Holanda Barros
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Arlindo A. Moura
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Animal Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Odorico de Moraes Manoel Filho
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil
- Graduate Program in Medical Sciences, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
4
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
6
|
Regulatory mechanisms and function of hypoxia-induced long noncoding RNA NDRG1-OT1 in breast cancer cells. Cell Death Dis 2022; 13:807. [PMID: 36127332 PMCID: PMC9489765 DOI: 10.1038/s41419-022-05253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023]
Abstract
Hypoxia is a classic feature of the tumor microenvironment that has profound effects on cancer progression and is tightly associated with poor prognosis. Long noncoding RNAs (lncRNAs), a component of the noncoding genome, have been increasingly investigated due to their diverse roles in tumorigenesis. Previously, a hypoxia-induced lncRNA, NDRG1-OT1, was identified in MCF-7 breast cancer cells using next-generation sequencing. However, the regulatory mechanisms of NDRG1-OT1 remain elusive. Therefore, the purpose of this study was to investigate the regulatory mechanisms and functional roles of NDRG1-OT1 in breast cancer cells. Expression profiling of NDRG1-OT1 revealed that it was upregulated under hypoxia in different breast cancer cells. Overexpression and knockdown of HIF-1α up- and downregulated NDRG1-OT1, respectively. Luciferase reporter assays and chromatin immunoprecipitation assays validated that HIF-1α transcriptionally activated NDRG1-OT1 by binding to its promoter (-1773 to -1769 and -647 to -643 bp). Next, to investigate whether NDRG1-OT1 could function as a miRNA sponge, results of in silico analysis, expression profiling of predicted miRNAs, and RNA immunoprecipitation assays indicated that NDRG1-OT1 could act as a miRNA sponge of miR-875-3p. In vitro and in vivo functional assays showed that NDRG1-OT1 could promote tumor growth and migration. Lastly, a small peptide (66 a.a.) translated from NDRG1-OT1 was identified. In summary, our findings revealed novel regulatory mechanisms of NDRG1-OT1 by HIF-1α and upon miR-875-3p. Also, NDRG1-OT1 promoted the malignancy of breast cancer cells and encoded a small peptide.
Collapse
|
7
|
Wu W, Cao L, Jia Y, Xiao Y, Zhang X, Gui S. Emerging Roles of miRNA, lncRNA, circRNA, and Their Cross-Talk in Pituitary Adenoma. Cells 2022; 11:cells11182920. [PMID: 36139495 PMCID: PMC9496700 DOI: 10.3390/cells11182920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pituitary adenoma (PA) is a common intracranial tumor without specific biomarkers for diagnosis and treatment. Non-coding RNAs (ncRNAs), including microRNAs (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), regulate a variety of cellular processes, such as cell proliferation, differentiation, and apoptosis. Increasing studies have shown that the dysregulation of ncRNAs, especially the cross-talk between lncRNA/circRNA and miRNA, is related to the pathogenesis, diagnosis, and prognosis of PA. Therefore, ncRNAs can be considered as promising biomarkers for PA. In this review, we summarize the roles of ncRNAs from different specimens (i.e., tissues, biofluids, cells, and exosomes) in multiple subtypes of PA and highlight important advances in understanding the contribution of the cross-talk between ncRNAs (e.g., competing endogenous RNAs) to PA disease.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Youchao Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Xu Zhang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Correspondence: (X.Z.); (S.G.)
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
- Correspondence: (X.Z.); (S.G.)
| |
Collapse
|
8
|
H19 Overexpression Improved Efficacy of Mesenchymal Stem Cells in Ulcerative Colitis by Modulating the miR-141/ICAM-1 and miR-139/CXCR4 Axes. DISEASE MARKERS 2021; 2021:7107705. [PMID: 34630738 PMCID: PMC8494579 DOI: 10.1155/2021/7107705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
Overexpression of C-X-C motif chemokine receptor 4 (CXCR4) and intercellular cell adhesion molecule-1 (ICAM-1) may promote homing of mesenchymal stem cells (MSC). In this study, we treated ulcerative colitis animals with MSC preconditioned with or without H19 and compared the therapeutic effect of MSC and MSC-H19. We evaluated the regulatory relationship of H19 vs. miR-141/miR-139 and miR-141/miR-139 vs. ICAM-1/CXCR4. We established an ulcerative colitis mouse model to assess the effect of MSC and MSC-H19. H19 was found to bind to miR-141 and miR-139. The activity of H19 was strongly decreased in cells c-transfected with miR-141/miR-139 and WT H19. ICAM-1 was confirmed to be targeted by miR-141 and CXCR4 was targeted by miR-139. The H19 expression showed a negative regulatory relationship with the miR-141 and miR-139 expression but a positive regulatory relationship with the ICAM-1 and CXCR4 expression. In summary, the overexpression of H19 in MSC downregulated miR-139 and miR-141, thus increasing the activity of their targets ICAM-1 and CXCR4, respectively, to exhibit therapeutic effects in ulcerative colitis.
Collapse
|
9
|
Zhou X, Kurywchak P, Wolf-Dennen K, Che SP, Sulakhe D, D’Souza M, Xie B, Maltsev N, Gilliam TC, Wu CC, McAndrews KM, LeBleu VS, McConkey DJ, Volpert OV, Pretzsch SM, Czerniak BA, Dinney CP, Kalluri R. Unique somatic variants in DNA from urine exosomes of individuals with bladder cancer. Mol Ther Methods Clin Dev 2021; 22:360-376. [PMID: 34514028 PMCID: PMC8408559 DOI: 10.1016/j.omtm.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Bladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3' UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Kurywchak
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kerri Wolf-Dennen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara P.Y. Che
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mark D’Souza
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - T. Conrad Gilliam
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanna M. Pretzsch
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan A. Czerniak
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P. Dinney
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Chiu Y, Fadadu RP, Gaskins AJ, Rifas‐Shiman SL, Laue HE, Moley KH, Hivert M, Baccarelli A, Oken E, Chavarro JE, Cardenas A. Dietary fat intake during early pregnancy is associated with cord blood DNA methylation at IGF2 and H19 genes in newborns. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:388-398. [PMID: 34288135 PMCID: PMC8364885 DOI: 10.1002/em.22452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 05/03/2023]
Abstract
Maternal fat intake during pregnancy affects fetal growth, but mechanisms underlying this relationship are unclear. We performed an exploratory study of the associations of fat consumption during pregnancy with cord blood DNA methylation of the insulin-like growth factor 2 (IGF2) and H19 genes. We used data from 96 uncomplicated full-term pregnancies of mothers of whom majority had normal body mass index (BMI) (66%) in Project Viva, a prospective pre-birth cohort. We assessed maternal diet with validated food frequency questionnaires during the first and second trimesters and measured DNA methylation in segments of the IGF2- and H19-differentially methylated regions (DMRs) by pyrosequencing DNA extracted from umbilical cord blood samples. Mean (SD) age was 32.8 (4.1) years and prepregnancy BMI was 24.0 (4.4) kg/m2 . Mean DNA methylation was 56.3% (3.9%) for IGF2-DMR and 44.6% (1.9%) for H19-DMR. Greater first trimester intake of omega-6 polyunsaturated fat (effect per 1% of calories at the expense of carbohydrates) was associated with lower DNA methylation of IGF2-DMR (-1.2%; 95% confidence interval [CI]: -2.2%, -0.2%) and higher DNA methylation at H19-DMR (0.8%; 95% CI: 0.3%, 1.3%). On the other hand, greater first trimester intake of omega-3 polyunsaturated fat was associated with lower DNA methylation of the H19-DMR (-4.3%; 95% CI: -7.9%, -0.8%). We did not find significant associations of IGF2 and H19 methylation with IGF2 cord blood levels. Our findings suggest that early prenatal fat intake (omega-3, omega-6, and saturated fatty acids) may influence DNA methylation at the IGF2 and H19 locus, which could impact fetal development and long-term health.
Collapse
Affiliation(s)
- Yu‐Han Chiu
- Department of EpidemiologyHarvard TH Chan School of Public HealthBostonMassachusettsUSA
| | - Raj P. Fadadu
- School of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Environmental Health SciencesUniversity of California, Berkeley School of Public Health, BerkeleyBerkeleyCaliforniaUSA
| | - Audrey J. Gaskins
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
| | - Sheryl L. Rifas‐Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
| | - Hannah E. Laue
- Department of EpidemiologyGeisel School of Medicine at Dartmouth CollegeHanoverNew HampshireUSA
| | - Kelle H. Moley
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Marie‐France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
- Diabetes Unit, Massachusetts General HospitalBostonMassachusettsUSA
| | - Andrea Baccarelli
- Department of Environmental Health SciencesMailman School of Public Health, Columbia UniversityNew York CityNew YorkUSA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
| | - Jorge E. Chavarro
- Department of EpidemiologyHarvard TH Chan School of Public HealthBostonMassachusettsUSA
- Department of NutritionHarvard TH Chan School of Public HealthBostonMassachusettsUSA
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Andres Cardenas
- Division of Environmental Health SciencesUniversity of California, Berkeley School of Public Health, BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
11
|
Nadella KS, Berthon A, Almeida MQ, Levy I, Faucz FR, Stratakis CA. Insulin-like growth factor 2 (IGF2) expression in adrenocortical disease due to PRKAR1A mutations compared to other benign adrenal tumors. Endocrine 2021; 72:823-834. [PMID: 33420948 DOI: 10.1007/s12020-020-02583-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Insulin-like growth factor-II (IGF2), a key regulator of cell growth and development, is tightly regulated in its expression by epigenetic control that maintains its monoallelic expression in most tissues. Biallelic expression of IGF2 resulting from loss of imprinting (LOI) has been reported in adrenocortical tumors. In this study, we wanted to check whether adrenocortical lesions due to PRKAR1A mutations lead to increased IGF2 expression from LOI and compare these findings to those in other benign adrenal lesions. METHODS We compared the expression of IGF2 by RNA and protein studies in primary pigmented nodular adrenocortical disease (PPNAD) caused by PRKAR1A gene mutations to that in primary macronodular adrenocortical hyperplasia (PMAH) and cortisol-producing adenomas (CPA) that did not have any mutations in known genes. We also checked LOI in all lesions by DNA allelic studies and the expression of other components of IGF2 signaling at the RNA and protein level. RESULTS We identified cell clusters overexpressing IGF2 in PPNAD; although immunostaining was patchy, overall, by RNA and immunoblotting PPNAD expressed high IGF2 message and protein. However, this was not due to LOI, as there was no correlation between IGF2 expression and the presence of LOI. CONCLUSIONS Our data pointed to over-expression of IGF2 protein in PPNAD compared to other benign adrenocortical lesions, such as PMAH and CPA. However, there was no correlation of IGF2 mRNA levels with LOI of IGF2/H19. The discrepancy between mRNA and protein levels with regards to LOI points, perhaps, to different control of IGF2 gene expression in PPNAD.
Collapse
Affiliation(s)
- Kiran S Nadella
- Section on Genetics & Endocrinology (SEGEN), Intramural Research Program (IRP), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), Bethesda, MD, USA
| | - Annabel Berthon
- Section on Genetics & Endocrinology (SEGEN), Intramural Research Program (IRP), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), Bethesda, MD, USA
| | - Madson Q Almeida
- Section on Genetics & Endocrinology (SEGEN), Intramural Research Program (IRP), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), Bethesda, MD, USA
| | - Isaac Levy
- Section on Genetics & Endocrinology (SEGEN), Intramural Research Program (IRP), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), Bethesda, MD, USA
| | - Fabio R Faucz
- Section on Genetics & Endocrinology (SEGEN), Intramural Research Program (IRP), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), Bethesda, MD, USA.
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Intramural Research Program (IRP), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), Bethesda, MD, USA
| |
Collapse
|
12
|
Ashrafizadeh M, Yaribeygi H, Sahebkar A. Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anticancer Agents Med Chem 2021; 20:667-677. [PMID: 32013836 DOI: 10.2174/1871520620666200203143803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
Abstract
There are concerns about the increased incidence of cancer both in developing and developed countries. In spite of recent progress in cancer therapy, this disease is still one of the leading causes of death worldwide. Consequently, there have been rigorous attempts to improve cancer therapy by looking at nature as a rich source of naturally occurring anti-tumor drugs. Curcumin is a well-known plant-derived polyphenol found in turmeric. This compound has numerous pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic and anti-tumor properties. Curcumin is capable of suppressing the growth of a variety of cancer cells including those of bladder cancer. Given the involvement of various signaling pathways such as PI3K, Akt, mTOR and VEGF in the progression and malignancy of bladder cancer, and considering the potential of curcumin in targeting signaling pathways, it seems that curcumin can be considered as a promising candidate in bladder cancer therapy. In the present review, we describe the molecular signaling pathways through which curcumin inhibits invasion and metastasis of bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Zhao C, Li Y, Hu X, Wang R, He W, Wang L, Qi L, Tong S. LncRNA HCP5 Promotes Cell Invasion and Migration by Sponging miR-29b-3p in Human Bladder Cancer. Onco Targets Ther 2020; 13:11827-11838. [PMID: 33235469 PMCID: PMC7680190 DOI: 10.2147/ott.s249770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. In this study, the roles of lncRNA HCP5 (human major histocompatibility complex p5) and miR-29b-3p in human BC were investigated. Their regulations involved in cell invasion and migration were also evaluated. METHODS Luciferase reporter assay was performed to detect the binding between miR-29b-3p and HCP5 or high-mobility group box 1 (HMGB1). Cell viability, migration, invasion and apoptosis were assessed by CCK-8, colony formation, transwell assay and flow cytometry, respectively. Expression levels of HMGB1/toll-like receptor 4 (TLR4) proteins were measured by Western blot. Xenograft model was built, and tumor volumes and weights were calculated. RESULTS The results revealed dysregulation of HCP5 and miR-29b-3p in BC samples and cells. HCP5 negatively regulated the expression of miR-29b-3p and enhanced cell viability, migration and invasion. MiR-29b-3p mediated the effect of HCP5 on cell viability, proliferation, migration and invasion in RT4 cells. In addition, miR-29b-3p could regulate the expression of HMGB1 through interaction with HMGB1. CONCLUSION The findings in this study supported that lncRNA HCP5 could promote cell invasion and migration by sponging miR-29b-3p in human BC.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Ruizhe Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, Hunan Province410008, People’s Republic of China
| |
Collapse
|
14
|
Chen C, Liu WR, Zhang B, Zhang LM, Li CG, Liu C, Zhang H, Huo YS, Ma YC, Tian PF, Qi Q, Li JJ, Tang Z, Zhang ZF, Giaccone G, Yue DS, Wang CL. LncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett 2020; 486:58-70. [PMID: 32439420 DOI: 10.1016/j.canlet.2020.05.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
First-generation EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib have significant activity in NSCLC patients with activating EGFR mutations. However, EGFR-TKI resistance inevitably occurs after approximately 12 months of treatment. Acquired mechanisms of resistance, other than secondary mutations in EGFR (T790 M) which account for 50-60%, are less well understood. Here, we identified lncRNA H19 as a significantly downregulated lncRNA in vitro models and clinical specimens with acquired EGFR-TKI resistance, H19 knockdown or overexpression conferred resistance or sensitivity, respectively, both in vitro and in vivo models. H19 downregulation contributed to erlotinib resistance through interaction and upregulation of PKM2, which enhanced the phosphorylation of AKT. AKT inhibitors restored the sensitivity of erlotinib-resistant cells to erlotinib. In EGFR-mutant patients treated with EGFR-TKIs, low H19 levels were associated with a shorter progression-free survival (PFS) (P = 0.021). These findings revealed a novel mechanism of low-level H19 in the regulation of erlotinib resistance in EGFR-mutant lung cancers. Combination of AKT inhibitors and EGFR-TKIs could be a rational therapeutic approach for some subgroups of EGFR-mutant lung cancer patients.
Collapse
Affiliation(s)
- Chen Chen
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei-Ran Liu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lian-Min Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chang Liu
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan-Song Huo
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu-Chen Ma
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng-Fei Tian
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qi Qi
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jing-Jing Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhe Tang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Dong-Sheng Yue
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
15
|
Buraschi S, Morcavallo A, Neill T, Stefanello M, Palladino C, Xu SQ, Belfiore A, Iozzo RV, Morrione A. Discoidin Domain Receptor 1 functionally interacts with the IGF-I system in bladder cancer. Matrix Biol Plus 2020; 6-7:100022. [PMID: 33543020 PMCID: PMC7852334 DOI: 10.1016/j.mbplus.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance. We discovered that the collagen receptor DDR1 cross-talks with insulin growth factor I (IGF-I) signaling in bladder cancer DDR1 co-precipitates with the IGF-IR and the insulin receptor (IR), and is phosphorylated upon stimulation with IGF ligands This collagen receptor modulates IGF-I-evoked motility and anchorage-independent growth DDR1 complexes with Pyk2, myosin IIA, IGF-IR and/or IR and regulates actin dynamics
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alaide Morcavallo
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manuela Stefanello
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shi-Qiong Xu
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
16
|
Wang M, Sun X, Wang H, Xin Y, Jiao W. Long non-coding RNAs in non-small cell lung cancer: functions and distinctions from other malignancies. Transl Cancer Res 2019; 8:2636-2653. [PMID: 35117021 PMCID: PMC8797712 DOI: 10.21037/tcr.2019.10.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Abstract
Lung cancer leads to the most cancer-related death in the world. It was shown from the increasing evidences that long non-coding RNAs (lncRNAs) are emerging as molecules for diagnosis, prognosis and even therapy of lung cancer and other malignancies. The biological functions or involved signaling pathways of lncRNAs are always found to be inconsistent among different types of malignancies. However, no available literature has systemically summarized differences in the functions and underlying molecular mechanisms of lncRNAs between lung cancer and other cancers. In this review, the biological functions and molecular mechanisms of lncRNAs in lung cancer were introduced. Furthermore, their functional differences between lung cancer and other malignancies were discussed. Finally, their potential clinical applications in future lung cancer therapy were focused on.
Collapse
Affiliation(s)
- Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanlu Xin
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
17
|
Fan Y, Vilgalys TP, Sun S, Peng Q, Tung J, Zhou X. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol 2019; 20:220. [PMID: 31651351 PMCID: PMC6813132 DOI: 10.1186/s13059-019-1813-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Identifying genetic variants that are associated with methylation variation-an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping-is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.
Collapse
Affiliation(s)
- Yue Fan
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tauras P Vilgalys
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
| | - Shiquan Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC, 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E, Avendaño-Félix M, Silva-Benítez E, López-Camarillo C, Ramos-Payán R. LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Front Oncol 2019; 9:1008. [PMID: 31632922 PMCID: PMC6783611 DOI: 10.3389/fonc.2019.01008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with 1. 8 million cases in 2018. Autophagy helps to maintain an adequate cancer microenvironment in order to provide nutritional supplement under adverse conditions such as starvation and hypoxia. Additionally, most of the cases of CRC are unresponsive to chemotherapy, representing a significant challenge for cancer therapy. Recently, autophagy induced by therapy has been shown as a unique mechanism of resistance to anticancer drugs. In this regard, long non-coding RNAs (lncRNAs) analysis are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. With increasing development of quantitative detection techniques, lncRNAs derived from patients' non-invasive samples (i.e., blood, stools, and urine) has become into a novel approach in precision oncology. Tumorspecific GAS5, HOTAIR, H19, and MALAT are novels CRC related lncRNAs detected in patients. Nonetheless, the effect and mechanism of lncRNAs in cancer autophagy and chemoresistance have not been extensively characterized. Chemoresistance and autophagy are relevant for cancer treatment and lncRNAs play a pivotal role in resistance acquisition for several drugs. LncRNAs such as HAGLROS, KCNQ1OT1, and H19 are examples of lncRNAs related to chemoresistance leaded by autophagy. Finally, clinical implications of lncRNAs in CRC are relevant, since they have been associated with tumor differentiation, tumor size, histological grade, histological types, Dukes staging, degree of differentiation, lymph node metastasis, distant metastasis, recurrent free survival, and overall survival (OS).
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
19
|
Xiao Z, Qiu Y, Lin Y, Medina R, Zhuang S, Rosenblum JS, Cui J, Li Z, Zhang X, Guo L. Blocking lncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging (Albany NY) 2019; 11:3585-3600. [PMID: 31170091 PMCID: PMC6594804 DOI: 10.18632/aging.101999] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Elevated expression of lncRNA H19 (H19) in the setting of hypoxia has been implicated as a promising therapeutic target for various cancers. However, little is known about the impact and underlying mechanism of H19 in ischemic brain stroke. This study found that H19 levels were elevated in the serum of stroke patients, as well as in the ischemic penumbra of rats with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and neuronal cells with oxygen glucose deprivation (OGD). Further, knockdown of H19 with siRNA alleviated cell apoptosis in OGD neuronal cells, and inhibition of H19 in MCAO/R rats significantly decreased neurological deficit, brain infarct volume and neuronal apoptosis. Lastly, with gain and loss of function studies, dual luciferase reported assay, RNA immunoprecipitation (RIP) and pull-down experiments, we demonstrated the dual competitive interaction of miR-19a with H19 and the 3'-UTR of Id2 mRNA, resulting in the identification of the H19-miR-19a-Id2 axis. With biological studies, we also revealed that H19-miR-19a-Id2 axis modulated hypoxia induced neuronal apoptosis. This study demonstrates that the identified H19-miR-19a-Id2 axis plays a critical role in hypoxia induced neuronal apoptosis, and blocking this axis may serve as a novel therapeutic strategy for ischemic brain injury.
Collapse
Affiliation(s)
- Zhipeng Xiao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Rogelio Medina
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, MD 20892, USA
| | - Sophie Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, MD 20892, USA
| | - Jing Cui
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, MD 20892, USA
| | - Zezhi Li
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Liemei Guo
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
20
|
Liu S, Qiu J, Tang X, Cui H, Zhang Q, Yang Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp Cell Res 2019; 381:215-222. [PMID: 31085188 DOI: 10.1016/j.yexcr.2019.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Endometriosis, a common gynecological disease, is associated with pelvic pain and infertility. Endometriosis affects approximately 10% of women, but that number increases to 30-50% in symptomatic premenopausal women. Despite the prevalence of endometriosis, the cause has yet to be fully elucidated. Recent study of the molecular pathways of endometrial cancer has brought the long non-coding RNA (lncRNA) H19 to our attention. In this paper, we explored the role of lncRNA-H19 in endometrial tissue proliferation. We found that ectopic endometrial cells taken from women with endometriosis showed elevated levels of lncRNA-H19, with expression levels correlating to disease progression. Knockdown of H19 in ectopic endometrial cells inhibited cell proliferation and invasion. Coinciding with this change was an increase in microRNA-124-3p (miR-124-3p) and a decrease in integrin beta-3 (ITGB3) levels. The addition of a miR-124-3p inhibitor mitigated this decrease in ITGB3. Up-regulation of miR-124-3p markedly suppressed ITGB3 expression by binding to the 3' untranslated region (3' UTR), while inhibition of miR-124-3p had the opposite effect. ITGB3 overexpression potently counteracted the effects of miR-124-3p mimics on ectopic endometrial cells. From these results, we can infer that in endometriosis both miR-124-3p and ITGB3 operate as downstream effector proteins in the H19-signaling pathway. Down-regulation of lncRNA-H19 could inhibit ectopic endometrial cell proliferation and invasion by modulating miR-124-3p and ITGB3, offering a novel target for treatment.
Collapse
Affiliation(s)
- Songping Liu
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, 212001, China; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China.
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Hongyan Cui
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, 212001, China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, 212001, China
| | - Quanliang Yang
- Department of Oncology, Changzhou Oncology Hospital, Changzhou, Jiangsu, 213000, China.
| |
Collapse
|
21
|
Yu S, Wu C, Tan Q, Liu H. Long noncoding RNA H19 promotes chemotherapy resistance in choriocarcinoma cells. J Cell Biochem 2019; 120:15131-15144. [PMID: 31020694 DOI: 10.1002/jcb.28775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
Choriocarcinoma (CC) is a trophoblast tumor prone to early distant organ metastases. At present, the main treatment for CC is chemotherapy, but chemotherapy resistance readily occurs and leads to treatment failure. H19 is a long noncoding RNA, and its abnormal expression has been found in various tumors, including CC. H19 is also considered to be related to the drug resistance mechanism of the same cancers. To investigate the role of H19 in drug-resistant CC cells, the following experiments were designed. We used human CC cell line JEG-3 to establish cell lines resistant to methotrexate and 5-fluorouracil (JEG-3/MTX and JEG-3/5-FU) and detected the expression of H19 in JEG-3, JEG-3/MTX, JEG-3/5-FU cells, JEG-3 with MTX, and JEG-3 with 5-FU. We found that the expression of H19 in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. JEG-3 cells were treated with MTX or 5-FU for and quantitative real-time polymerase chain reaction assay revealed that H19 messenger RNA expression increased. Furthermore, after H19 was knocked out, the drug resistance index of the JEG-3/MTX and JEG-3/5-FU cells decreased; the proliferation, migration, and invasion ability diminished significantly; and apoptosis increased significantly. Finally, we detected the total and phosphorylation protein expression of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in the JEG-3/MTX and JEG-3/5-FU cells. The total protein of PI3K, AKT, and mTOR in the H19 knockout resistant cells showed no significant change relative to those in the H19 non-knockout resistant cells, whereas the phosphorylated proteins of PI3K, AKT, and mTOR were significantly decreased. Phosphorylated proteins of PI3K, AKT, and mTOR in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. After using inhibition of phosphorylated PI3K/AKT/mTOR, the proliferation, migration, and invasion ability of the JEG-3/MTX and JEG-3/5-FU cells diminished significantly; and apoptosis increased significantly. On the basis of the above experiments, we concluded that H19 is related to the drug resistance of CC, and the knockout of H19 can reduce the drug resistance of resistant CC cells; and decrease the proliferative, migratory, and invasive ability; and increase the apoptosis. PI3K/AKT/mTOR pathway might be involved in H19-mediated effects. H19 is expected to be a therapeutic target for the treatment of drug-resistant chorionic carcinoma.
Collapse
Affiliation(s)
- Shuran Yu
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenchun Wu
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qianxia Tan
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huining Liu
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Yang PJ, Hsieh MJ, Hung TW, Wang SS, Chen SC, Lee MC, Yang SF, Chou YE. Effects of Long Noncoding RNA H19 Polymorphisms on Urothelial Cell Carcinoma Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1322. [PMID: 31013794 PMCID: PMC6518101 DOI: 10.3390/ijerph16081322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Urothelial cell carcinoma (UCC) is one of the major malignancies of the genitourinary tract, and it is induced by carcinogenic epidemiological risk factors. H19 is one of the most crucial long noncoding RNAs (lncRNAs) and is involved in various types of bladder cancer. In this study, we examined H19 single-nucleotide polymorphisms (SNPs) to investigate UCC susceptibility and clinicopathological characteristics. Using real-time polymerase chain reaction, we analyzed five SNPs of H19 in 431 UCC patients and 431 controls without cancer. The results showed that patients with UCC carrying the H19 rs217727 CT + TT and rs2107425 CT + TT genetic variants had a high risk of developing muscle invasive tumors (pT2-T4) (p = 0.030; p = 0.025, respectively). With a median follow up of 39 months, CT+TT polymorphisms of rs2107425 were associated with worse disease-specific survival (adjusted hard ratio (AHR) = 2.043, 95% confidence interval (CI) = 1.029-4.059) in UCC patients aged older than 65 years. In conclusion, our results indicate that patients with UCC carrying the H19 rs217727 CT + TT and rs2107425 CT + TT genetic variants have a high risk of developing muscle invasive tumors. Thus, H19 polymorphisms may be applied as a marker or therapeutic target in UCC treatment.
Collapse
Affiliation(s)
- Po-Jen Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Shiuan-Chih Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Meng-Chih Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
23
|
Liu L, Liu L, Lu S. lncRNA H19 promotes viability and epithelial-mesenchymal transition of lung adenocarcinoma cells by targeting miR-29b-3p and modifying STAT3. Int J Oncol 2019; 54:929-941. [PMID: 30747209 PMCID: PMC6365046 DOI: 10.3892/ijo.2019.4695] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Considering the joint contribution of long non‑coding RNAs (lncRNAs) and microRNAs (miRNAs/miRs) to tumorigenesis, the aim of the present study was to investigate whether and how lncRNA H19 targets miR‑29b‑3p to affect the progression of lung adenocarcinoma by the modulation of signal transducer and activator of transcription 3 (STAT3). A total of 305 lung adenocarcinoma tissues and four human lung adenocarcinoma cell lines (i.e. Calu‑3, NCI‑H1975, A549 and NCI‑H23) were used. pcDNA3.1‑H19, short interfering RNA (si‑)H19, miR‑29b‑3p mimic, miR‑29b‑3p inhibitor and negative control (NC) were transfected into the cells, and the proliferation, viability and apoptosis of the cells were determined using a Cell Counting Kit‑8 assay, colony formation assay and flow cytometry, respectively. The results indicated that highly expressed H19 and poorly expressed miR‑29b‑3p could serve as predictors for the poor prognosis of lung adenocarcinoma patients. Additionally, si‑H19 and miR‑29b‑3p mimic significantly increased the apoptosis of lung adenocarcinoma cells, and decreased the survival rate and viability of cells. Simultaneously, expression of epithelial‑mesenchymal transition (EMT)‑specific proteins was significantly altered, i.e. increased epithelial cadherin expression, as well as decreased vimentin, Snail and Slug expression. Furthermore, miR‑29b‑3p was verified to be targeted and regulated by H19, and STAT3 was targeted and modified by miR‑29b‑3p. Ultimately, STAT3 was identified to decrease lung adenocarcinoma cell viability, survival, apoptosis and EMT imposed by miR‑29b‑3p. In conclusion, the results of the present study indicated that lncRNA H19/miR‑29b‑3p/STAT3 signaling was involved in the development of lung adenocarcinoma, which may be critical for developing effective diagnostic and treatment strategies for lung adenocarcinoma.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Respiration, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Linlin Liu
- Department of Respiration, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Sijing Lu
- Department of Respiration, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
24
|
Li Y, Yang X, Kang X, Liu S. The regulatory roles of long noncoding RNAs in the biological behavior of pancreatic cancer. Saudi J Gastroenterol 2019; 25:145-151. [PMID: 30720003 PMCID: PMC6526735 DOI: 10.4103/sjg.sjg_465_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a new class of regulators. LncRNAs are defined as endogenous transcribed RNA molecules with transcript length of >200 nt. Accumulating evidence has shown that lncRNAs are involved in many physiological processes such as cell cycle regulation, cell apoptosis and survival, cancer migration and metabolism. However, the biological and molecular mechanisms of lncRNAs in pancreatic cancer are still unclear. Recent studies have reported that many lncRNAs are dysregulated in pancreatic cancer and closely associated with tumorigenesis, diagnosis and prognosis. In this review, we described the regulation and functional role of lncRNAs and the potential underlying mechanism involved in pancreatic cancer, outlined the roles of lncRNA in pancreatic cancer, and discussed the potential possibility of lncRNAs as therapeutic targets in clinical practice. Moreover, the potential of lncRNAs used as sensitive biomarkers for diagnosis, prognosis and prediction of response to therapy in pancreatic cancer will also be discussed.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Xiaojuan Yang
- Department of Operating Room, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Xiaoning Kang
- Department of Operating Room, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastroenterological Surgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China,Address for correspondence: Dr. Shanglong Liu, Department of Gastroenterological Surgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China. E-mail:
| |
Collapse
|
25
|
James E, Jenkins TG. Epigenetics, infertility, and cancer: future directions. Fertil Steril 2018; 109:27-32. [PMID: 29307396 DOI: 10.1016/j.fertnstert.2017.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Although direct correlates between cancer and infertile epigenetic profiles are rare, the general similarities between the two disease processes offer insights into the study of both abnormalities. Foremost among them is the nature of these pathologies, where one disease (cancer) is categorized by an inability to control or inhibit cellular proliferation, and the other (male infertility) is caused by an inability to maintain the normally efficient extreme proliferation of the male germ cell. Based on this similarity alone, the study of epigenetics in both male fertility and cancer has the potential to offer intriguing insights in both fields. The creative application of harmonious studies of both infertility and cancer is likely to yield useful and informative data that may aid in both the understanding and treatment of both pathologies.
Collapse
Affiliation(s)
- Emma James
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Timothy G Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
26
|
Wu ZR, Yan L, Liu YT, Cao L, Guo YH, Zhang Y, Yao H, Cai L, Shang HB, Rui WW, Yang G, Zhang XB, Tang H, Wang Y, Huang JY, Wei YX, Zhao WG, Su B, Wu ZB. Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun 2018; 9:4624. [PMID: 30397197 PMCID: PMC6218470 DOI: 10.1038/s41467-018-06853-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
Aberrant expression of long noncoding RNA H19 has been associated with tumour progression, but the underlying molecular tumourigenesis mechanisms remain largely unknown. Here, we report that H19 expression is frequently downregulated in human primary pituitary adenomas and is negatively correlated with tumour progression. Consistently, upregulation of H19 expression inhibits pituitary tumour cell proliferation in vitro and tumour growth in vivo. Importantly, we uncover a function of H19, which controls cell/tumour growth through inhibiting function of mTORC1 but not mTORC2. Mechanistically, we show that H19 could block mTORC1-mediated 4E-BP1 phosphorylation without affecting S6K1 activation. At the molecular level, H19 interacted with 4E-BP1 at the TOS motif and competitively inhibited 4E-BP1 binding to Raptor. Finally, we demonstrate that H19 is more effective than cabergoline treatment in the suppression of pituitary tumours. Together, our study uncovered the role of H19-mTOR-4E-BP1 axis in pituitary tumour growth regulation that may be a potential therapeutic target for human pituitary tumours. LncRNA H19 has been shown to be aberrantly expressed in different cancers. Here, the authors show that H19 lncRNA is downregulated in pituitary adenomas and H19 is able to impede pituitary tumorigenesis via disruption of 4E-BPB1 and Raptor interaction to inhibit the phosphorylation of 4E-BP1.
Collapse
Affiliation(s)
- Ze Rui Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Lichong Yan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yan Ting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, China
| | - Yu Hang Guo
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Yong Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Lin Cai
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Han Bing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wei Wei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 410000, Chongqing, China
| | - Xiao Biao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Jin Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yong Xu Wei
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wei Guo Zhao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
27
|
Goovaerts T, Steyaert S, Vandenbussche CA, Galle J, Thas O, Van Criekinge W, De Meyer T. A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nat Commun 2018; 9:4120. [PMID: 30297886 PMCID: PMC6175939 DOI: 10.1038/s41467-018-06566-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Genomic imprinting plays an important role in growth and development. Loss of imprinting (LOI) has been found in cancer, yet systematic studies are impeded by data-analytical challenges. We developed a methodology to detect monoallelically expressed loci without requiring genotyping data, and applied it on The Cancer Genome Atlas (TCGA, discovery) and Genotype-Tissue expression project (GTEx, validation) breast tissue RNA-seq data. Here, we report the identification of 30 putatively imprinted genes in breast. In breast cancer (TCGA), HM13 is featured by LOI and expression upregulation, which is linked to DNA demethylation. Other imprinted genes typically demonstrate lower expression in cancer, often associated with copy number variation and aberrant DNA methylation. Downregulation in cancer frequently leads to higher relative expression of the (imperfectly) silenced allele, yet this is not considered canonical LOI given the lack of (absolute) re-expression. In summary, our novel methodology highlights the massive deregulation of imprinting in breast cancer.
Collapse
Affiliation(s)
- Tine Goovaerts
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sandra Steyaert
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Chari A Vandenbussche
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jeroen Galle
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Olivier Thas
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Tim De Meyer
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
28
|
Yu H, Rong L. Emerging role of long non-coding RNA in the development of gastric cancer. World J Gastrointest Oncol 2018; 10:260-270. [PMID: 30254721 PMCID: PMC6147769 DOI: 10.4251/wjgo.v10.i9.260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is a common, worldwide malignancy and has a poor prognosis due to late diagnosis. Long non-coding RNAs (lncRNAs) are a significant subtype of RNA molecules with a length longer than 200 nucleotides (nt) that rarely encode proteins. In recent decades, deregulation of lncRNAs has been shown to be involved in tumorigenesis and tumor progression in various human carcinomas, including gastric cancer. Accumulating evidence has shown that some lncRNAs may function as diagnostic biomarkers or therapeutic targets for gastric cancer. Thus, exploring the specific functions of lncRNAs will help both gain a better understanding of the pathogenesis and develop novel treatments for gastric cancer. In this review, we highlight the expression and functional roles of lncRNAs in gastric cancer, and analyze the potential applications of lncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Hang Yu
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, China
| | - Long Rong
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
29
|
Ferlita AL, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD. Non-Coding RNAs in Endometrial Physiopathology. Int J Mol Sci 2018; 19:ijms19072120. [PMID: 30037059 PMCID: PMC6073439 DOI: 10.3390/ijms19072120] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022] Open
Abstract
The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Francesca Andronico
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Salvatore Caruso
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
30
|
Yang W, Redpath RE, Zhang C, Ning N. Long non-coding RNA H19 promotes the migration and invasion of colon cancer cells via MAPK signaling pathway. Oncol Lett 2018; 16:3365-3372. [PMID: 30127936 DOI: 10.3892/ol.2018.9052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA H19 has been identified to be dysregulated in a number of tumor types, and is closely associated with cancer progression. RAS/mitogen-activated protein kinase (MAPK) is an important intracellular signaling transduction pathway. Activation of the RAS-MAPK signaling pathway is one of the most frequent carcinogenic events in human cancer. However, the mechanism of H19 in promoting the migration and invasion of colorectal cancer (CRC) cells, and the association between H19 and RAS-MAPK signaling pathway is not well understood. The aim of the present study was to investigate the function of H19 on CRC metastasis and invasion, and assess the association between H19 and the RAS-MAPK signaling pathway. The migration and invasion of CRC cells were analyzed using Transwell migration and invasion assays. To elucidate the association between H19 and the RAS-MAPK signaling pathway and determine the expression level of active RAS in CRC cells, Ras activity assay and Western blotting were performed. It was indicated that the overexpression of H19 was able to increase the migration and invasion of CRC cells and this may be mediated by the regulation of RAS activation. Therefore, H19 may promote metastasis and invasion in colorectal cancer by activating the RAS-MAPK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | | | - Chongyou Zhang
- Basic Medical College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ning Ning
- Department of Gastrointestinal Surgery, International Hospital of Peking University, Beijing 102206, P.R. China
| |
Collapse
|
31
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Zhang Q, Li X, Li X, Li X, Chen Z. LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells. J Cell Biochem 2018; 119:4447-4457. [PMID: 29219208 DOI: 10.1002/jcb.26537] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/03/2017] [Indexed: 01/05/2023]
Abstract
Recently, the long non-coding RNA (lncRNA) H19 has been identified as an oncogenic gene in multiple cancer types. However, the molecular basis for this observation has not been characterized in lung cancer, especially during epithelial mesenchymal transition (EMT) progression. Cell viability, migration, invasion, and apoptosis were measured using trypan blue exclusion assay, Transwell migration/invasion assay, and flow cytometry, respectively. Quantitative RT-PCR was used to measure relative expressions of H19, microR-484 (miR-484), and Rho associated coiled-coil containing protein kinase 2 (ROCK2). Western blot was used to measure expressions of apoptosis-, EMT-, and c-Jun N-terminal kinase (JNK) pathway-related proteins. Luciferase reporter assay was used to identify the target of H19. H19 was highly expressed in both lung cancer tissues and cells. Suppression of H19 significantly decreased A549 cell viability, migration, and invasion, but promoted apoptosis. Overexpression of H19 promoted cell migration, invasion, and EMT process. miR-484 was a target of H19 and overexpression of it reversed the effects of H19 on EMT. miR-484 regulated the expression of ROCK2. Mechanistic study revealed that suppressing H19 decreased the expression of proteins in JNK pathway, and ROCK2 was the main downstream molecule of H19. H19 promoted EMT in lung cancer A549 cells by negatively regulating miR-484.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiration, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaoliang Li
- Department of Respiration, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiao Li
- Department of Respiration, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaosu Li
- Department of Respiration, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhuochang Chen
- Department of Respiration, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Abstract
Even though the importance of epigenetics was first recognized in light of its role in tissue development, an increasing amount of evidence has shown that it also plays an important role in the development and progression of many common diseases. We discuss some recent findings on one representative epigenetic modification, DNA methylation, in some common diseases. While many new risk factors have been identified through the population-based epigenetic epidemiologic studies on the role of epigenetics in common diseases, this relatively new field still faces many unique challenges. Here, we describe those promises and unique challenges of epigenetic epidemiological studies and propose some potential solutions.
Collapse
Affiliation(s)
| | - Yun Liu
- The Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, Dong N, He J, Sun Q, Lv G, Xu C, Tao J, Ma N. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 2017; 7:22159-73. [PMID: 26989025 PMCID: PMC5008352 DOI: 10.18632/oncotarget.8063] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023] Open
Abstract
The overall biological role and clinical significance of long non-coding RNA H19 in colorectal cancer (CRC) remain largely unknown. Here, we firstly report that the lncRNA H19 recruits eIF4A3 and promotes the CRC cell proliferation. We observed higher expression of H19 was significantly correlated with tumor differentiation and advanced TNM stage in a cohort of 83 CRC patients. Multivariate analyses revealed that expression of H19 served as an independent predictor for overall survival and disease-free survival. Further experiments revealed that overexpression of H19 promoted the proliferation of CRC cells, while depletion of H19 inhibited cell viability and induced growth arrest. Moreover, expression profile data showed that H19 upregulated a series of cell-cycle genes. Using bioinformatics prediction and RNA immunoprecipitation assays, we identified eIF4A3 as an RNA-binding protein that binds to H19. We confirmed that combining eIF4A3 with H19 obstructed the recruitment of eIF4A3 to the cell-cycle gene mRNA. Our results suggest that H19, as a growth regulator, could serve as a candidate prognostic biomarker and target for new therapies in human CRC.
Collapse
Affiliation(s)
- Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Meng Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ya Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Nazhen Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jun He
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Qian Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Guixiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ji Tao
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
35
|
Duguang L, Jin H, Xiaowei Q, Peng X, Xiaodong W, Zhennan L, Jianjun Q, Jie Y. The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biol Ther 2017; 18:927-936. [PMID: 29053398 PMCID: PMC5718823 DOI: 10.1080/15384047.2017.1385682] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors that are difficult to diagnose at its early stage and there is no effective therapy. Recent studies uncovered that many non-protein-coding RNAs including the class of long noncoding RNAs (lncRNAs) are differentially expressed in various types of tumors and they are potent regulators of tumor progression and metastasis. LncRNA can mediate tumor initiation, proliferation, migration and metastasis through modulating epigenetic modification, alternative splicing, transcription, and protein translation. In this review, we discuss the molecular mechanism of lncRNAs in the involvement of tumor growth, survival, epithelial-mesenchymal transition, tumor microenvironment, cancer stem cells and chemoresistance in pancreatic ductal adenocarcinoma (PDAC).
Collapse
Affiliation(s)
- Li Duguang
- The Second Clinical College of Dalian Medical University, 9 Western District, Lvshun South Road, Dalian, Liaoning, P. R. China
| | - He Jin
- Medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Qian Xiaowei
- Medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Xu Peng
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Clinical medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Wang Xiaodong
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Clinical medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Li Zhennan
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Clinical medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Qian Jianjun
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Clinical medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yao Jie
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Clinical medical college of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
36
|
Wu T, Qu L, He G, Tian L, Li L, Zhou H, Jin Q, Ren J, Wang Y, Wang J, Kan X, Liu M, Shen J, Guo M, Sun Y. Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget 2017; 7:11553-66. [PMID: 26872375 PMCID: PMC4905493 DOI: 10.18632/oncotarget.7270] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/05/2015] [Indexed: 12/21/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a highly aggressive malignant cancer. The regulation of LSCC progression by long non-coding RNA (lncRNA) was not well understood. In this study, we reported that the lncRNA H19 was upregulated in LSCC. The expression levels of H19 were inversely correlated with the survival rate of LSCC patients. Knockdown of H19 expression inhibited LSCC cell migration, invasion and proliferation. We identified microRNA miR-148a-3p as an inhibitory target for H19. Overexpression of miR-148a-3p reduced LSCC migration, invasion and proliferation cell, while inhibition of miR-148a-3p did the opposite. The inhibition of LSCC progression induced by H19 knockdown required the activity of miR-148a-3p. We also identified DNA methyltransferase enzyme DNMT1 as a target of miR-148a-3p. Cellular DNA methylation levels were inhibited by both miR-148a-3p overexpression and H19 knockdown. In summary, our study demonstrated that the lncRNA H19 promoted LSCC progression via miR-148a-3p and DNMT1.
Collapse
Affiliation(s)
- Tianyi Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingmei Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Guoqing He
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Jin
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyuan Ren
- Department of Head and Neck Surgery, The Oncology Hospital of Jilin province, Changchun, China
| | - Yu Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingting Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Kan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Shen
- Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Role of Non-Coding RNAs in the Etiology of Bladder Cancer. Genes (Basel) 2017; 8:genes8110339. [PMID: 29165379 PMCID: PMC5704252 DOI: 10.3390/genes8110339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
According to data of the International Agency for Research on Cancer and the World Health Organization (Cancer Incidence in Five Continents, GLOBOCAN, and the World Health Organization Mortality), bladder is among the top ten body locations of cancer globally, with the highest incidence rates reported in Southern and Western Europe, North America, Northern Africa and Western Asia. Males (M) are more vulnerable to this disease than females (F), despite ample frequency variations in different countries, with a M:F ratio of 4.1:1 for incidence and 3.6:1 for mortality, worldwide. For a long time, bladder cancer was genetically classified through mutations of two genes, fibroblast growth factor receptor 3 (FGFR3, for low-grade, non-invasive papillary tumors) and tumor protein P53 (TP53, for high-grade, muscle-invasive tumors). However, more recently scientists have shown that this disease is far more complex, since genes directly involved are more than 150; so far, it has been described that altered gene expression (up- or down-regulation) may be present for up to 500 coding sequences in low-grade and up to 2300 in high-grade tumors. Non-coding RNAs are essential to explain, at least partially, this ample dysregulation. In this review, we summarize the present knowledge about long and short non-coding RNAs that have been linked to bladder cancer etiology.
Collapse
|
38
|
Liang W, Zou Y, Qin F, Chen J, Xu J, Huang S, Chen J, Dai S. sTLR4/MD-2 complex inhibits colorectal cancer migration and invasiveness in vitro and in vivo by lncRNA H19 down-regulation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1035-1041. [PMID: 29036538 DOI: 10.1093/abbs/gmx105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 02/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have multiple functions in gene regulation and during cellular processes. However, the functional roles of lncRNAs in colorectal cancer (CRC) have not yet been well understood. In our previous study, we demonstrated that sTLR4/MD-2 complex can inhibit CRC in vitro and in vivo by targeting LPS. Therefore, the aim of the present study is to investigate the expression of lncRNA H19 in CRC and to evaluate its effect on the inhibition of sTLR4/MD-2 complex. The expression of H19 is measured in 63 CRC tumor tissues and adjacent normal tissues by quantitative real-time PCR (qRT-PCR). The effects of H19 on migration and invasiveness are evaluated by wound healing assay, migration and invasion assays. Results showed that H19 is significantly overexpressed in cancerous tissues and CRC cell lines compared with adjacent normal tissues and a normal human intestinal epithelial cell line. Moreover, H19 overexpression is closely associated with CRC patients. Our in vitro data indicated that knockdown of H19 inhibits the migration and invasiveness of CRC cells. And in vivo sTLR4/MD-2 complex inhibits tumor growth in mice and the expression of H19 is down-regulated. These results suggest that sTLR4/MD-2 complex inhibits CRC migration and invasiveness in vitro and in vivo by lncRNA H19 down-regulation.
Collapse
Affiliation(s)
- Weijun Liang
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Yan Zou
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Fengxian Qin
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Jifei Chen
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Junyi Xu
- Department of General Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Shifeng Huang
- Department of General Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Jingfan Chen
- Department of General Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Shengming Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| |
Collapse
|
39
|
Schagdarsurengin U, Lammert A, Schunk N, Sheridan D, Gattenloehner S, Steger K, Wagenlehner F, Dansranjavin T. Impairment of IGF2 gene expression in prostate cancer is triggered by epigenetic dysregulation of IGF2-DMR0 and its interaction with KLF4. Cell Commun Signal 2017; 15:40. [PMID: 29017567 PMCID: PMC5633889 DOI: 10.1186/s12964-017-0197-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 01/29/2023] Open
Abstract
Background Human cancer cells often exhibit impaired IGF2 expression and the underlying mechanisms are multifaceted and complex. Besides the well-known imprinting control region IGF2/H19-ICR, the involvement of a differentially methylated region in the promoter P0 of IGF2 gene (IGF2-DMR0) has been suggested. Here, we evaluate several mechanisms potentially leading to up- and/or down-regulation of IGF2 expression in prostate cancer and present a novel role of Kruppel-like factor 4 (KLF4) as a transcriptional regulator of IGF2 binding in IGF2-DMR0. Methods Putative binding sites for transcription factors were identified in IGF2-DMR0 using JASPAR CORE database. Gene expressions were analyzed by RT-qPCR in prostate carcinoma and adjacent benign prostate hyperplasia samples obtained by radical prostatectomy (86 RP-PCa and 47 RP-BPH) and BPH obtained by transurethral prostate resection (13 TUR-BPH). Pyrosequencing and qMSP were used for DNA methylation studies in IGF2-DMR0, IGF2/H19-ICR and Glutathione-S-transferase-P1 (GSTP1) promoter. Loss of imprinting (LOI) was analyzed by RFLP. Copy number variation (CNV) test was performed using qBiomarker CNV PCR Assay. KLF4-binding and histone-modifications were analyzed by ChIP-qPCR in prostate cancer cell lines exhibiting differentially methylated IGF2-DMR0 (LNCaP hypomethylated and DU145 hypermethylated). KLF4 protein was analyzed by western blot. Statistical associations of gene expression to methylation, IGF2 LOI and CNV were calculated by Mann-Whitney-U-test. Correlations between gene expression and methylation levels were evaluated by Spearman’s-Rank-Correlation-test. Results We found a significant reduction of IGF2 expression in the majority of RP-PCa and RP-BPH in comparison to TUR-BPH. Analyzing potential molecular reasons, we found in RP-PCa and RP-BPH in comparison to TUR-BPH a significant hypomethylation of IGF2-DMR0, which coincided with hypermethylation of GSTP1-promoter, a prominent marker of prostate tumors. In contrast, IGF2 LOI and CNV did not associate significantly with up- and/or down-regulation of IGF2 expression in prostate tumors. By analyzing IGF2-DMR0, we detected a consensus sequence for KLF4 with a z-score of 7.6. Interestingly, we found that KLF4 binds to hypomethylated (17%) IGF2-DMR0 enriched with H3K9me3 and H3K27me3 (LNCaP), but does not bind under hypermethylated (85%) and H3K4me3-enriched conditions (DU145). KLF4 expression was detected in TUR-BPH as well as in RP-BPH and RP-PCa and showed a highly significant correlation to IGF2 expression. Conclusions Our study demonstrated that in human prostate cancer the impairment of IGF2 expression is accompanied by hypomethylation of IGF2-DMR0. We revealed that KLF4 is a putative transcriptional regulator of IGF2, which binds in IGF2-DMR0 in dependence of the prevailing epigenetic state in this region. Herewith we provide complementary new insights into IGF2 dysregulation mechanisms as a critical process in prostate tumorigenesis.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.,Epigenetics of Urogenital System, Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Angela Lammert
- Department of Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig-University Giessen, Aulweg 128, 35392, Giessen, Germany
| | - Natalie Schunk
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany
| | - Diana Sheridan
- Institute of Pathology, Justus-Liebig-University Giessen, Langhansstr. 10, 35392, Giessen, Germany
| | - Stefan Gattenloehner
- Institute of Pathology, Justus-Liebig-University Giessen, Langhansstr. 10, 35392, Giessen, Germany
| | - Klaus Steger
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.,Molecular Andrology, Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany
| | - Temuujin Dansranjavin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.
| |
Collapse
|
40
|
Chen SW, Zhu J, Ma J, Zhang JL, Zuo S, Chen GW, Wang X, Pan YS, Liu YC, Wang PY. Overexpression of long non-coding RNA H19 is associated with unfavorable prognosis in patients with colorectal cancer and increased proliferation and migration in colon cancer cells. Oncol Lett 2017; 14:2446-2452. [PMID: 28781681 DOI: 10.3892/ol.2017.6390] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/21/2017] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNA-imprinted maternally expressed transcript (non-protein coding) (H19) has been previously identified to be involved in the development of a number of types of cancer. However, the function of H19 in the pathogenesis of colorectal cancer remains unclear. The expression level of H19 in colorectal tumor tissues, and the association between H19 expression and clinicopathological variables and prognosis was investigated in the present study. In addition, the effect of H19 overexpression on viability, migration and epithelial-mesenchymal transition (EMT) of colon cancer cells was investigated in HCT-116 and SW-480 cells. The results of the present study suggest that overexpression of H19 is associated with decreased recurrence-free survival and overall survival rates in patients with colorectal cancer, and increased viability and migration in colon cancer cells. The induction of the EMT process may be an underlying molecular mechanism associated with the H19-induced increased metastasis potential of colon cancer cells.
Collapse
Affiliation(s)
- Shan-Wen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Ju Ma
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Jun-Ling Zhang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Shuai Zuo
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Guo-Wei Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Xin Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Yi-Sheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Yu-Cun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Peng-Yuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| |
Collapse
|
41
|
Yang Q, Wang X, Tang C, Chen X, He J. H19 promotes the migration and invasion of colon cancer by sponging miR-138 to upregulate the expression of HMGA1. Int J Oncol 2017; 50:1801-1809. [PMID: 28358427 DOI: 10.3892/ijo.2017.3941] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/09/2017] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is the most common digestive system malignancy, along with high mortality rate, familial transmissibility and hepatic metastasis. Our study investigated the role of long non-coding RNA H19 in colon cancer. We found that H19 was overexpressed in colon cancer tissues and cell lines, the interference of H19 by short hairpin RNA (shRNA) effectively decreased the migration and invasion of colon cancer cells (HT-29 and RKO). Besides, miR-138 was predicted a target of H19, and low expression of miR-138 was found in colon cancer tissues and cells. The silence of H19 strongly increased the expression of miR-138. The decreased level of miR-138 was elevated adding miR-138 mimic in RKO cells transfected with lncRNA-H19. Similarly, the upregulated level of miR-138 was downregulated adding miR-138 inhibitor in RKO cells transfected with H19 shRNA. The luciferase reporter confirmed the targeting reaction between H19 and miR-138. Moreover, the high-mobility group A (HMGA1) protein was predicted as a target of miR-138. HMGA1 was suppressed by H19 shRNA and could be up-regulated by miR-138 inhibitor. The migration and invasion ability of colon cancer was restrained by H19 shRNA and promoted by miR-138 inhibitor. Finally, the in vivo experiment revealed that H19 shRNA strongly reduced the tumor growth and tumor volume. H19 shRNA also inhibited metastasis via suppressing hepatic metastases and the expression of metastasis-related proteins. Taken together, our research indicated an H19-miR138-HMGA1 pathway in regulating the migration and invasion of colon cancer, providing new insight for treatment of colon cancer.
Collapse
Affiliation(s)
- Qingqiang Yang
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Wang
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunyan Tang
- Department of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuan Chen
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jianjun He
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
42
|
Tian B, Zhao Y, Liang T, Ye X, Li Z, Yan D, Fu Q, Li Y. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. J Drug Target 2017; 25:626-636. [PMID: 28286973 DOI: 10.1080/1061186x.2017.1306535] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.
Collapse
Affiliation(s)
- Binqiang Tian
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yingmei Zhao
- b Department of Gynaecology and Obstetrics , Shanghai Pudong Hospital, Fudan University Pudong Medical Center , Shanghai , China
| | - Tao Liang
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Xuxiao Ye
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Zuowei Li
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Dongliang Yan
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Qiang Fu
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yonghui Li
- a Department of Urology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
43
|
Wu W, Hu Q, Nie E, Yu T, Wu Y, Zhi T, Jiang K, Shen F, Wang Y, Zhang J, You Y. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep 2017; 7:45029. [PMID: 28327666 PMCID: PMC5361208 DOI: 10.1038/srep45029] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/17/2017] [Indexed: 11/29/2022] Open
Abstract
H19 expression is elevated in many human tumors including glioblastomas, suggesting an oncogenic role for the long noncoding RNA; yet the upregulation of H19 in glioblastomas remains unclear. Here we report that hypoxia significantly stimulated H19 expression in glioblastoma cell lines, which was related to hypoxia-inducible factors 1α (Hif-1α). Hif-1α promoted H19 expression in U87 and U251 cells. Meanwhile PTEN is an advantageous factor to affect H19 expression, through attenuating Hif-1α stability. Hif-1α also positively correlates with H19 in human glioblastoma samples depending on PTEN status. ChIP and luciferase reporter assays showed that Hif-1α induced H19 transcription through directly binding to the H19 promoter. Furthermore, Hif-1α upregulated specific protein 1 (SP1) expression in glioblastomas cells in vitro and in vivo, and SP1 also strongly interacted with the H19 promoter to promote H19 expression under hypoxia. We also showed that H19 acts as a molecular sponge that binds miR-181d, relieving inhibition of β-catenin expression. Therefore, H19 participates in hypoxia-driven migration and invasion in glioblastoma cells. In summary, our results uncover the mechanisms that stimulate H19 expression under hypoxia to promote malignant effects in glioblastomas and suggest H19 might be a promising therapeutic target.
Collapse
Affiliation(s)
- Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Qi Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Er Nie
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Youzhi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Tongle Zhi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Kuan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Feng Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
44
|
The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis. Int J Mol Sci 2017; 18:ijms18020450. [PMID: 28230721 PMCID: PMC5343984 DOI: 10.3390/ijms18020450] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC.
Collapse
|
45
|
H19 Overexpression Induces Resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in Colon Cancer Cells. Neoplasia 2017; 19:226-236. [PMID: 28189050 PMCID: PMC5300698 DOI: 10.1016/j.neo.2016.10.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
The long noncoding (lnc) RNA H19 was involved in the tumorigenesis of many types of cancer. However, the role of H19 in the tumorigenesis of colon cancer has not been fully illustrated. Recent studies suggested a potential relationship between H19 and vitamin D receptor (VDR) signaling. Considering the pivotal role of VDR signaling in the colon epithelium both physiologically and pathologically, the correlation between H19 and VDR signaling may have an important role in the development of colon cancer. In this study, the correlation between H19 and vitamin D receptor (VDR) signaling and the underlying mechanisms in colon cancer were investigated both in vitro and in vivo. The results suggested that VDR signaling was able to inhibit the expression of H19 through regulating C-Myc/Mad-1 network. H19, on the other hand, was able to inhibit the expression of VDR through micro RNA 675-5p (miR-675-5p). Furthermore, H19 overexpression induced resistance to the treatment with 1,25(OH)2D3 both in vitro and in vivo. Together, these results suggested that H19 overexpression might be one of the mechanisms underlying the development of resistance to the treatment with 1,25(OH)2D3 in the advanced stage of colon cancer.
Collapse
|
46
|
Disparities in Cervical Cancer Incidence and Mortality: Can Epigenetics Contribute to Eliminating Disparities? Adv Cancer Res 2017; 133:129-156. [PMID: 28052819 DOI: 10.1016/bs.acr.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Screening for uterine cervical intraepithelial neoplasia (CIN) followed by aggressive treatment has reduced invasive cervical cancer (ICC) incidence and mortality. However, ICC cases and carcinoma in situ (CIS) continue to be diagnosed annually in the United States, with minorities bearing the brunt of this burden. Because ICC peak incidence and mortality are 10-15 years earlier than other solid cancers, the number of potential years of life lost to this cancer is substantial. Screening for early signs of CIN is still the mainstay of many cervical cancer control programs. However, the accuracy of existing screening tests remains suboptimal. Changes in epigenetic patterns that occur as a result of human papillomavirus infection contribute to CIN progression to cancer, and can be harnessed to improve existing screening tests. However, this requires a concerted effort to identify the epigenomic landscape that is reliably altered by HPV infection specific to ICC, distinct from transient changes.
Collapse
|
47
|
Effect of Long Noncoding RNA H19 Overexpression on Intestinal Barrier Function and Its Potential Role in the Pathogenesis of Ulcerative Colitis. Inflamm Bowel Dis 2016; 22:2582-2592. [PMID: 27661667 DOI: 10.1097/mib.0000000000000932] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recently, long noncoding RNA (lncRNA) H19 has been reported to be related with VDR signaling and the development of inflammatory diseases including osteoarthritis. The aim of this study was to investigate the correlation between the expression level of H19 and VDR in ulcerative colitis (UC) tissues and to investigate the effect of H19 overexpression on intestinal epithelial barrier function. METHODS The expression level of H19, miR-675-5p, and VDR in UC tissues and paired normal tissues collected from 12 patients with UC was investigated by quantitative real-time polymerase chain reaction. Caco-2 monolayers were used to test the effect of H19 and miR-675-5p overexpression on the intestinal epithelial barrier function and the status of tight junction proteins and VDR. Luciferase assay was used to validate the target site of miR-675-5p in the 3'UTR of VDR mRNA. RESULTS The expression of H19 was found to be negatively correlated with the expression of VDR in UC tissues (r = 0.5369, P < 0.05). The expression of miR-675-5p was also found to be negatively correlated with the expression of VDR in UC tissues (r = 0.5233, P < 0.01). H19 overexpression increased Caco-2 monolayer permeability and decreased the expression of tight junction proteins and VDR, which was significantly attenuated by cotransfection with miR-675-5p inhibitors. The 3'UTR of VDR mRNA was validated to be one of the direct targets of miR-675-5p. CONCLUSIONS This study reveals the destructive effect of H19 overexpression on intestinal epithelial barrier function and suggests a potential role of H19 in the development of UC. In addition, H19 overexpression may be one of the mechanisms underlying the decreased expression of VDR in UC tissues and the interaction between H19 and VDR signaling may provide potential therapeutic targets for UC.
Collapse
|
48
|
Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan DCC, Zhang JF, Waye MMY. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 2016; 6:22513-25. [PMID: 26068968 PMCID: PMC4673179 DOI: 10.18632/oncotarget.4154] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/23/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, the long non-coding RNA (lncRNA) H19 has been identified as an oncogenic gene in multiple cancer types and elevated expression of H19 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in colorectal cancer (CRC) especially during epithelial to mesenchymal transition (EMT) progression. In our studies, H19 was characterized as a novel regulator of EMT in CRC. We found that H19 was highly expressed in mesenchymal-like cancer cells and primary CRC tissues. Stable expression of H19 significantly promotes EMT progression and accelerates in vivo and in vitro tumor growth. Furthermore, by using bioinformatics study and RNA immunoprecipitation combined with luciferase reporter assays, we demonstrated that H19 functioned as a competing endogenous RNA (ceRNA) for miR-138 and miR-200a, antagonized their functions and led to the de-repression of their endogenous targets Vimentin, ZEB1, and ZEB2, all of which were core marker genes for mesenchymal cells. Taken together, these observations imply that the lncRNA H19 modulated the expression of multiple genes involved in EMT by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and EMT progression.
Collapse
Affiliation(s)
- Wei-Cheng Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Cheuk-Wa Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Yan Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Mao Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Guo-Xin Hu
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Li Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Li-Jia Xiao
- Department of Clinical Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, P.R. China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Mary Miu-Yee Waye
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.,Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| |
Collapse
|
49
|
Huang B, Song JH, Cheng Y, Abraham JM, Ibrahim S, Sun Z, Ke X, Meltzer SJ. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene 2016; 35:4927-4936. [PMID: 26876208 PMCID: PMC4985510 DOI: 10.1038/onc.2016.25] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
Abstract
Alterations in long non-coding RNAs (lncRNAs) are associated with human carcinogenesis. One group of lncRNAs, which are antisense in orientation to coding mRNAs (ASs), have been recently described in cancers but are poorly understood. We sought to identify ASs involved in human gastric cancer (GC) and to elucidate their mechanisms of action in carcinogenesis. We performed massively parallel RNA sequencing in GCs and matched normal tissues, as well as in GC-derived and normal gastric epithelial cell lines. One AS, designated Homo sapiens keratin 7 (KRT7-AS), was selected due to its marked upregulation and concordant expression with its cognate sense counterpart, KRT7, in GC tissues and cell lines. KRT7-AS formed an RNA-RNA hybrid with KRT7 and controlled KRT7 expression at both the mRNA and the post-transcriptional levels. Moreover, forced overexpression of the KRT7-overlapping region (OL) of KRT7-AS (but not its non-KRT7-OL portions) increased keratin 7 protein levels in cells. Finally, forced overexpression of full-length KRT7-AS or OL KRT7-AS (but not its non-KRT7-OL regions) promoted GC cell proliferation and migration. We conclude that lncRNA KRT7-AS promotes GC, at least in part, by increasing KRT7 expression.
Collapse
Affiliation(s)
- B Huang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J H Song
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Y Cheng
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J M Abraham
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Ibrahim
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Z Sun
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - X Ke
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S J Meltzer
- Division of Gastroenterology, Departments of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Wang L, Sun Y, Yi J, Wang X, Liang J, Pan Z, Li L, Jiang G. Targeting H19 by lentivirus-mediated RNA interference increases A549 cell migration and invasion. Exp Lung Res 2016; 42:346-353. [PMID: 27607135 DOI: 10.1080/01902148.2016.1223229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Lung cancer is one of the most common and a lethal malignancy in the world and non-small cell lung cancer (NSCLC) is the most usual type. H19 long non-coding RNA (lncRNA) plays essential roles in tumor development. But its role in tumor metastasis is still unclear. MATERIALS AND METHODS MACC1 RNAi and Lentivirus-mediated H19-specific shRNA was used to establish H19 stable knocking-down A549 cells. Transwell assays were performed to examine the effect of H19 knocking-down on A549 cells migration and invasion. The downstream signaling proteins targeted by H19 were also examined by western blot. AG1478 and U0126 were used as the inhibitor of EGFR and ERK1/2, respectively. RESULTS The knockdown of H19 increased the migration and invasion of A549 cells, and knockdown of metastasis-associated in colon cancer 1 (MACC1) decreased the migration and invasion of A549 cells. Furthermore, MACC1 protein targeted by H19 was upregulated as well as the downstream signaling proteins including epidermal growth factor receptor (EGFR), β-catenin, extracellular-signal-regulated kinase 1/2 (ERK1/2). Inhibited the expression of EGFR or ERK1/2 significantly decreased the migration and invasion of tumor cells. CONCLUSION Our findings showed that H19 functions as a suppressor of NSCLC and plays an important role in the migration and invasion of NSCLC. More importantly, H19 may regulate NSCLC metastasis through modulating cellular signaling pathway proteins related to cell proliferation and cell adhesion, including MACC1, EGFR, β-catenin and ERK1/2. These results put forward our understanding of the detailed mechanism of H19 lncRNA regulating the process of NSCLC metastasis.
Collapse
Affiliation(s)
- Lin Wang
- a Department of Oncology , Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou , China
| | - Yan Sun
- b Department of Gastroenterology , The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Jiqun Yi
- a Department of Oncology , Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou , China
| | - Xiuwen Wang
- a Department of Oncology , Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou , China
| | - Jizhen Liang
- a Department of Oncology , Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou , China
| | - Zhaojun Pan
- a Department of Oncology , Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou , China
| | - Li Li
- a Department of Oncology , Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou , China
| | - Gaofeng Jiang
- c Central Laboratory, Tianyou Hospital, Wuhan University of Science and Technology , Wuhan , China
| |
Collapse
|