1
|
Prasad P, Ganguly NK, Mittal SA. Huntingtin-interacting protein 1 in cancer progression: a path less explored. Med Oncol 2025; 42:164. [PMID: 40232352 DOI: 10.1007/s12032-025-02698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
Huntingtin-interacting protein 1 (HIP1) is a multi-domain heterodimeric protein mainly involved in clathrin-mediated endocytosis and vesicle trafficking. Besides endocytosis, HIP1 regulates proliferation, metastasis, and apoptosis by interacting with different binding partners in different cell types. HIP1 is overexpressed in most cancers and some oncogenic fusion proteins of receptor tyrosine kinases with HIP1 are reported. Clinical significance of HIP1-ALK fusion is being explored in lung cancers, where HIP1 functions as a metastatic suppressor. In some cancers, such as prostate and gliomas, and Merkel cell carcinoma raised HIP1 antibodies in sera can function as prognostic markers. However, there is limited information on the molecular regulators and mechanisms mediated through HIP1 in cancers. In this review, we systematically examine the recent literature on HIP1 to examine its role in various cancer types.
Collapse
Affiliation(s)
- Peeyush Prasad
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
- Manipal Academy of Higher Education, Manipal University, Manipal, India
| | - N K Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
| | - Shivani Arora Mittal
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India.
- Manipal Academy of Higher Education, Manipal University, Manipal, India.
| |
Collapse
|
2
|
Laragione T, Harris C, Gulko PS. Huntingtin-Interacting Protein 1-Related (HIP1R) Regulates Rheumatoid Arthritis Synovial Fibroblast Invasiveness. Cells 2025; 14:483. [PMID: 40214437 PMCID: PMC11987873 DOI: 10.3390/cells14070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Huntingtin-interacting protein 1-related (HIP1R) shares some function similarities with HIP1, and HIP1 regulates arthritis and RA fibroblast-like synoviocytes (FLS) invasiveness. Therefore, we hypothesized that HIP1R might be involved in the regulation of FLS phenotypes and molecular processes relevant to RA. siRNA was used to knockdown HIP1R, HIP1 or control in RA FLS, followed by cell studies for invasion in Matrigel, migration, proliferation, and adhesion. RNA was sequenced and analyzed. HIP1R knockdown significantly reduced RA FLS invasiveness and migration (p < 0.05). The DEGs in siRNA HIP1R had an enrichment for GO processes "astrocyte and glial cell projection", "small GTPase signaling", and "PDGFR signaling". The most significantly DEGs had decreased expression in siRNA HIP1R and included AKT1S1, GABBR2, GPR56, and TXNDC12. siRNA HIP1 RA FLS had an enrichment for the "Rap1 signaling pathway" and "Growth factor receptor binding". The most significantly DEGs in HIP1 siRNA included FGF2, PGF, and SLC39A8. HIP1R and HIP1 DEG lists had a greater than expected number of similar genes (p = 0.0015), suggesting that, despite the major differences detected, both have partially overlapping functions in RA FLS. The most significantly DEGs in both HIP1R and HIP1 analyses are involved in cancer cell behaviors and outcomes. HIP1R is a new gene implicated in RA FLS invasiveness and migration, and regulates unique pathways and cell processes relevant to both RA as well as cancer biology. Our study provides new insight into processes implicated in FLS invasiveness, which is relevant for joint damage in RA, and identify new potential gene targets for FLS-specific treatments.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.L.); (C.H.)
| |
Collapse
|
3
|
Laragione T, Harris C, Gulko PS. KIF1C and new Huntingtin-interacting protein 1 binding proteins regulate rheumatoid arthritis fibroblast-like synoviocytes' phenotypes. Front Immunol 2024; 15:1323410. [PMID: 38726004 PMCID: PMC11079228 DOI: 10.3389/fimmu.2024.1323410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Huntingtin-interacting protein-1 (HIP1) is a new arthritis severity gene implicated in the regulation of the invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). These invasive properties of FLS strongly correlate with radiographic and histology damage in patients with RA and rodent models of arthritis. While HIP1 has several intracellular functions, little is known about its binding proteins, and identifying them has the potential to expand our understanding of its role in cell invasion and other disease-contributing phenotypes, and potentially identify new targets for therapy. Methods FLS cell lines from arthritic DA (highly invasive) and from arthritis-protected congenic rats R6 (minimally invasive), which differ in an amino-acid changing HIP1 SNP, were cultured and lysed, and proteins were immunoprecipitated with an anti-HIP1 antibody. Immunoprecipitates were analyzed by mass spectrometry. Differentially detected (bound) proteins were selected for functional experiments using siRNA knockdown in human RA FLS to examine their effect in cell invasiveness, adhesion, cell migration and proliferation, and immunofluorescence microscopy. Results Proteins detected included a few known HIP1-binding proteins and several new ones. Forty-five proteins differed in levels detected in the DA versus R6 congenic mass spectrometry analyses. Thirty-two of these proteins were knocked down and studied in vitro, with 10 inducing significant changes in RA FLS phenotypes. Specifically, knockdown of five HIP1-binding protein genes (CHMP4BL1, COPE, KIF1C, YWHAG, and YWHAH) significantly decreased FLS invasiveness. Knockdown of KIF1C also reduced RA FLS migration. The binding of four selected proteins to human HIP1 was confirmed. KIF1C colocalized with lamellipodia, and its knockdown prevented RA FLS from developing an elongated morphology with thick linearized actin fibers or forming polarized lamellipodia, all required for cell mobility and invasion. Unlike HIP1, KIF1C knockdown did not affect Rac1 signaling. Conclusion We have identified new HIP1-binding proteins and demonstrate that 10 of them regulate key FLS phenotypes. These HIP1-binding proteins have the potential to become new therapeutic targets and help better understand the RA FLS pathogenic behavior. KIF1C knockdown recapitulated the morphologic changes previously seen in the absence of HIP1, but did not affect the same cell signaling pathway, suggesting involvement in the regulation of different processes.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
[Clinical Value of Autoantibody Prognostic Markers in Tumor Immune Checkpoint
Inhibitor Therapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:534-540. [PMID: 35899453 PMCID: PMC9346161 DOI: 10.3779/j.issn.1009-3419.2022.101.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Serum autoantibody markers have the advantages of easy specimen acquisition, simple detection technology and dynamic real-time monitoring. With the wide application of immune checkpoint inhibitors in the treatment of malignant tumors, autoantibody markers in predicting tumor immune checkpoint inhibitors efficacy and forecasting irAEs (immune related adverse events) show good prediction of potential. This review mainly focused on the progress of autoantibody markers in the prediction of therapeutic effect and the monitoring of irAE in tumor immunotherapy.
.
Collapse
|
5
|
Sun Y, Zhou Y, Xia J, Wen M, Wang X, Zhang J, Zhang Y, Zhang Z, Jiang T. Abnormally high HIP1 expression is associated with metastatic behaviors and poor prognosis in ESCC. Oncol Lett 2020; 21:79. [PMID: 33363616 PMCID: PMC7723162 DOI: 10.3892/ol.2020.12340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023] Open
Abstract
Huntingtin interacting protein 1 (HIP1) is overexpressed in several human malignancies. However, the biological function of HIP1 in esophageal squamous cell carcinoma (ESCC), and its effect on the prognosis of patients remain unclear. The present study aimed to investigate HIP1 expression in ESCC via immunohistochemistry, reverse transcription-quantitative PCR and western blot analyses. The association between HIP1 expression and the clinicopathological characteristics of 173 patients with ESCC was statistically analyzed. The effect of HIP1 expression on patient prognosis was assessed via Kaplan-Meier and Cox regression analyses. Lentivirus-delivered RNA interfering technique was used to overexpress and downregulate HIP1 expression in ESCC cell lines. The results demonstrated that HIP1 expression was significantly higher in ESCC tissues compared with adjacent normal tissues, and HIP1 expression was associated with histological differentiation, tumor-node-metastasis stage and lymph node metastasis. Furthermore, the overall survival time of patients with high HIP1 expression was significantly shorter than those with low HIP1 expression. Cellular mobility demonstrated that overexpressing HIP1 increased ESCC proliferation, migration and invasion, whereas silencing HIP1 decreased ESCC proliferation, migration and invasion. Furthermore, overexpressing HIP1 induced ESCC cells to enter the S and G2 phases from the G1 phase, whereas HIP1 knockdown arrested the cell cycle in the G1 phase. Taken together, the results of the present study suggest that HIP1 is associated with proliferation and metastatic behaviors in ESCC, and thus may be used as a potential prognostic indicator for patients with ESCC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yongan Zhou
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinghua Xia
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xuejiao Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiao Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yanning Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Tao Jiang
- Department of Thoracic Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
6
|
Zhu J, Wang X, Guan H, Xiao Q, Wu Z, Shi J, Zhang F, Gao P, Song Y, Wang Z. HIP1R acts as a tumor suppressor in gastric cancer by promoting cancer cell apoptosis and inhibiting migration and invasion through modulating Akt. J Clin Lab Anal 2020; 34:e23425. [PMID: 32548851 PMCID: PMC7521271 DOI: 10.1002/jcla.23425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Huntingtin‐interacting protein 1‐related (HIP1R) is a multi‐domain gene that exerts many cellular functions including altering T cell–mediated cytotoxicity and controlling intracellular trafficking. However, its clinical significance and function in gastric cancer (GC) have not been described. Methods The expression levels of HIP1R were tested by the transcriptional and translational expression analysis and immunohistochemistry (IHC) in matched adjacent non‐tumorous vs tumor tissue specimens. The biological function of HIP1R on apoptosis, migration, and proliferation was evaluated by flow cytometry, Transwell, Cell Counting Kit‐8 (CCK‐8) assays, colony formation assays, and EdU labeling assays, respectively. Results We found downregulated HIP1R in GC compared with adjacent non‐tumorous tissue, and HIP1R expression associated with N classification. We further found that the expression of HIP1R could induce apoptosis and inhibit proliferation, migration, invasion of GC cells, possibly through modulating Akt. Conclusions Our data indicate that HIP1R may act as a potential diagnostic biomarker and a tumor suppressor gene in GC, potentially representing a novel therapeutic target for future GC treatment.
Collapse
Affiliation(s)
- Jinliang Zhu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gastrointestinal Surgery, Shenyang Anorectal Hospital, Shenyang, China
| | - Xin Wang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiyuan Guan
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiong Xiao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Zhang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Gao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Association of single nucleotide polymorphism in NLRC3, NLRC5, HIP1, and LRP8 genes with fecal egg counts in goats naturally infected with Haemonchus contortus. Trop Anim Health Prod 2019; 52:1583-1598. [PMID: 31828571 DOI: 10.1007/s11250-019-02154-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Haemonchus contortus is a common, intractably pathogenic and economically important gastrointestinal nematode for goat producers worldwide, especially in tropical and subtropical regions. The objective of this study is to identify single nucleotide polymorphisms (SNPs) of 12 candidate goat genes mainly related to the innate immune response associated with fecal egg counts (FECs) of Haemonchus contortus in goat as an indicator of the level of parasite infection. Phenotypic data including FEC and blood traits were recorded in 189 native goats from China and 191 ones from Bangladesh, respectively. Bangladeshi goats had significantly (P < 0.01) lower FEC compared to that of Chinese goats, suggesting higher susceptible and infection rates in Chinese goat populations. FEC was significantly positive correlated with body weight (r = 0.64, P < 0.01) and hemoglobin (r = 0.49, P < 0.01) value, but negative with pack cell volume (r = - 0.63, P < 0.05) in goats. Genotyping of SNPs was performed using a matrix-assisted laser desorption ionization time of flight mass spectrometry assay and a generalized linear model was used to evaluate the association between each SNP and goat FEC trait. Eleven novel SNPs in the NLRC3, NLRC5, HIP1, and LRP8, out of 46 variants from these 12 genes, were significantly associated with FEC of goats with a nominal significance level of P < 0.05. Of these 11 SNPs, linkage disequilibrium were revealed among SNPs in LRP8 (r2 = 0.87 to 1), between SNPs in NLRC3, NLRC5, and HIP1 (r2 = 0.96 to 0.99), respectively. Further, haplotypes within NLRC3, NLRC5, and HIP1 were significantly associated (P < 0.001) with FEC. In artificial challenge trail, quantitative real-time PCR exposed that the relative expression of mRNA was higher in the resistant group for NLRC3 (P < 0.01), LRP8 and HIP1 (P < 0.001) but lower in the resistant group for NLRC5 (P < 0.0001), compared to the susceptible group. The possible SNP markers and genes identified in this study could be potentially used in marker-assisted selection for breeding local goats breeds resistant to gastrointestinal nematode parasite particularly for Haemonchus contortus, and then for improving health and productivity of goat.
Collapse
|
8
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
9
|
Zhao W, Chao H, Zhang L, Ta N, Zhao Y, Li B, Zhang K, Guan Z, Hou D, Chen K, Li H, Zhang L, Wang H, Li M. Integration of QTL Mapping and Gene Fishing Techniques to Dissect the Multi-Main Stem Trait in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1152. [PMID: 31616451 PMCID: PMC6764107 DOI: 10.3389/fpls.2019.01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/23/2019] [Indexed: 05/31/2023]
Abstract
Rapeseed is one of the most important oilseed crops in the world. Improving the production of rapeseed is beneficial to relieve the shortage of edible vegetable oil. As the organ of support and transport, the main stem of rapeseed controls the plant architecture, transports the water and nutrients, and determines the number of inflorescence. Increasing the number of main stems would be helpful for the yield improvement in Brassica napus (B. napus). This attractive multi-main stem (MMS) trait was observed in the KN DH population. We investigated not only the frequency of MMS traits but also dissected the genetic basis with QTL mapping analysis and Gene-Fishing technique. A total of 43 QTLs were identified for MMS based on high-density linkage map, which explained 2.95-14.9% of the phenotypic variation, among which two environmental stable QTLs (cqMMS.A3-2 and cqMMS.C3-5) were identified in winter and semi-winter environments. Epistatic interaction analysis indicated cqMMS.C3-5 was an important loci for MMS. According to the functional annotation, 159 candidate genes within QTL confidence intervals, corresponding to 148 Arabidopsis thaliana (A. thaliana) homologous genes, were identified, which regulated lateral bud development and tiller of stem, such as shoot meristemless (STM), WUSCHEL-regulated-related genes, cytokinin response factors (CRF5), cytokinin oxidase (CKX4), gibberellin-regulated (RDK1), auxin-regulated gene (ARL, IAR4), and auxin-mediated signaling gene (STV1). Based on Gene-Fishing analysis between the natural plants and the double-main stem (DMS) plant, 31 differentially expressed genes (DEGs) were also obtained, which were related to differentiation and formation of lateral buds, biotic stimulus, defense response, drought and salt-stress responses, as well as cold-response functional genes. In addition, by combining the candidate genes in QTL regions with the DEGs that were obtained by Gene-Fishing technique, six common candidate genes (RPT2A, HLR, CRK, LRR-RLK, AGL79, and TCTP) were identified, which might probably be related to the formation of MMS phenotype. The present results not only would give a new insight into the genetic basis underlying the regulation of MMS but also would provide clues for plant architecture breeding in rapeseed.
Collapse
Affiliation(s)
- Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Na Ta
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Yajun Zhao
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Baojun Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubo Guan
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Deficiency of the Endocytic Protein Hip1 Leads to Decreased Gdpd3 Expression, Low Phosphocholine, and Kypholordosis. Mol Cell Biol 2018; 38:MCB.00385-18. [PMID: 30224518 DOI: 10.1128/mcb.00385-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Deficiency of huntingtin-interacting protein 1 (Hip1) results in degenerative phenotypes. Here we generated a Hip1 deficiency allele where a floxed transcriptional stop cassette and a human HIP1 cDNA were knocked into intron 1 of the mouse Hip1 locus. CMV-Cre-mediated germ line excision of the stop cassette resulted in expression of HIP1 and rescue of the Hip1 knockout phenotype. Mx1-Cre-mediated excision led to HIP1 expression in spleen, kidney and liver, and also rescued the phenotype. In contrast, hGFAP-Cre-mediated, brain-specific HIP1 expression did not rescue the phenotype. Metabolomics and microarrays of several Hip1 knockout tissues identified low phosphocholine (PC) levels and low glycerophosphodiester phosphodiesterase domain containing 3 (Gdpd3) gene expression. Since Gdpd3 has lysophospholipase D activity that results in the formation of choline, a precursor of PC, Gdpd3 downregulation could lead to the low PC levels. To test whether Gdpd3 contributes to the Hip1 deficiency phenotype, we generated Gdpd3 knockout mice. Double knockout of Gdpd3 and Hip1 worsened the Hip1 phenotype. This suggests that Gdpd3 compensates for Hip1 loss. More-detailed knowledge of how Hip1 deficiency leads to low PC will improve our understanding of HIP1 in choline metabolism in normal and disease states.
Collapse
|
11
|
Laragione T, Brenner M, Lahiri A, Gao E, Harris C, Gulko PS. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann Rheum Dis 2018; 77:1627-1635. [PMID: 30049830 DOI: 10.1136/annrheumdis-2018-213498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVES While new treatments for rheumatoid arthritis (RA) have markedly improved disease control by targeting immune/inflammatory pathways, current treatments rarely induce remission, underscoring the need for therapies that target other aspects of the disease. Little is known about the regulation of disease severity and joint damage, which are major predictors of disease outcome, and might be better or complementary targets for therapy. In this study, we aimed to discover and characterise a new arthritis severity gene. METHODS An unbiased and phenotype-driven strategy including studies of unique congenic rat strains was used to identify new arthritis severity and joint damage genes. Fibroblast-like synoviocytes (FLS) from rats and patients with RA expressing or not Huntingtin-interacting protein 1 (HIP1) were studied for invasiveness, morphology and cell signalling. HIP1 knockout mice were used in in vivo confirmatory studies. Paired t-test was used. RESULTS DNA sequencing and subcongenic strains studied in pristane-induced arthritis identified a new amino acid changing functional variant in HIP1. HIP1 was required for the increased invasiveness of FLS from arthritic rats and from patients with RA. Knocking down HIP1 expression reduced receptor tyrosine kinase-mediated responses in RA FLS, including RAC1 activation, affecting actin cytoskeleton and cell morphology and interfering with the formation of lamellipodia, consistent with reduced invasiveness. HIP1 knockout mice were protected in KRN serum-induced arthritis and developed milder disease. CONCLUSION HIP1 is a new arthritis severity gene and a potential novel prognostic biomarker and target for therapy in RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biomarkers/metabolism
- Cell Movement/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fibroblasts/physiology
- Humans
- Mice, Knockout
- Polymorphism, Single Nucleotide
- Prognosis
- RNA, Small Interfering/genetics
- Rats
- Receptors, Platelet-Derived Growth Factor/physiology
- Signal Transduction
- Synovial Membrane/pathology
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Synoviocytes/physiology
- rac1 GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Max Brenner
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Amit Lahiri
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Erjing Gao
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Carolyn Harris
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Percio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
12
|
Wang J, Yu M, Guo Q, Ma Q, Hu C, Ma Z, Yin X, Li X, Wang Y, Pan H, Wang D, Huang J, Meng H, Tong H, Qian W, Jin J. Prognostic significance of huntingtin interacting protein 1 expression on patients with acute myeloid leukemia. Sci Rep 2017; 7:45960. [PMID: 28452374 PMCID: PMC5408226 DOI: 10.1038/srep45960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Huntingtin interacting protein 1 (HIP1) is an endocytic protein which is overexpressed in a variety of human cancers and involved in cancer-causing translocation in leukemia. However, the prognostic impact of HIP1 expression on AML remains unclear. In this study, quantification of HIP1 transcript by real-time quantitative PCR in bone marrow blasts was performed in 270 AML patients. As a result, high HIP1 expression was seen more frequently in older patients, M4/M5 morphology and genes of NPM1 and DNMT3A mutations, and underrepresented in favorable karyotype subgroups and CEBPA double allele mutations in our AML patients. We also found high HIP1 expressers showed lower levels of hemoglobin. In addition, overexpression of HIP1 was associated with an inferior overall survival. The prognostic value of HIP1 expression was validated in patients from an independent TCGA cohort. Notably, up-regulation of miR-16, miR-15a, miR-28 and miR-660 were seen in high HIP1 expressers from the two independent cohorts. In vitro, interfereing of HIP1 expression by siRNA suppressed the proliferation of leukemic cells, and downregulation of these miRNAs were seen in THP-1 and Kasumi cell lines after silencing HIP1 expression. In conclusion, the HIP1 gene expression might serve as a reliable predictor for overall survival in AML patients.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Mengxia Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Qi Guo
- Department of Nephrology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qiuling Ma
- Department of Hematology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chao Hu
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Zhixin Ma
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiufeng Yin
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xia Li
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yungui Wang
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Hanzhang Pan
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Dongmei Wang
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiansong Huang
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Hsu CY, Lin CH, Jan YH, Su CY, Yao YC, Cheng HC, Hsu TI, Wang PS, Su WP, Yang CJ, Huang MS, Calkins MJ, Hsiao M, Lu PJ. Huntingtin-Interacting Protein-1 Is an Early-Stage Prognostic Biomarker of Lung Adenocarcinoma and Suppresses Metastasis via Akt-mediated Epithelial-Mesenchymal Transition. Am J Respir Crit Care Med 2016; 193:869-880. [PMID: 26595459 DOI: 10.1164/rccm.201412-2226oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Non-small cell lung cancer (NSCLC) carries a poor survival rate mainly because of metastasis. However, the molecular mechanisms that govern NSCLC metastasis have not been described. Because huntingtin-interacting protein-1 (HIP1) is known to play a role in tumorigenesis, we tested the involvement of HIP1 in NSCLC progression and metastasis. OBJECTIVES HIP1 expression was measured in human NSCLC tumors, and correlation with survival outcome was evaluated. Furthermore, we investigated the ability of HIP1 to suppress metastasis. The molecular mechanism by which HIP1 contributes to suppress metastasis was investigated. METHODS We used tissue arrays containing samples from 121 patients with NSCLC to analyze HIP1 expression by immunohistochemistry. To investigate the role of HIP1 expression on metastasis, we evaluated cellular mobility, migration, and invasion using lung adenocarcinoma (AdCA) cells with modified HIP1 expression levels. The human disease mouse models with the same cells were applied to evaluate the HIP1 suppressing metastasis and its mechanism in vivo. MEASUREMENTS AND MAIN RESULTS HIP1 expression in AdCA progression was found to be an early-stage prognostic biomarker, with low expression correlated to poor prognosis. We also found HIP1 to be a metastatic suppressor in AdCA. HIP1 significantly repressed the mobility of lung cancer cells in vitro and in vivo and regulated the epithelial-mesenchymal transition by repressing AKT/glycogen synthase kinase-3β/β-catenin signaling. CONCLUSIONS HIP1 serves as an early-stage prognostic biomarker and a metastatic suppressor. Reduced expression during AdCA progression can relieve HIP1 suppression of Akt-mediated epithelial-mesenchymal transition and thereby lead to development of late metastases and poor prognosis.
Collapse
Affiliation(s)
- Che-Yu Hsu
- 1 Institute of Basic Medical Sciences, College of Medicine
| | - Cheng-Han Lin
- 2 Institute of Clinical Medicine, College of Medicine, and
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Yi-Hua Jan
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Chia-Yi Su
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Yun-Chin Yao
- 4 Clinical Medicine Research Center, National Cheng Kung University, Tainan, Taiwan
| | | | - Tai-I Hsu
- 1 Institute of Basic Medical Sciences, College of Medicine
| | - Po-Shun Wang
- 2 Institute of Clinical Medicine, College of Medicine, and
| | - Wen-Pin Su
- 2 Institute of Clinical Medicine, College of Medicine, and
| | - Chih-Jen Yang
- 5 Department of Internal Medicine, Kaohsiung Medical University Hospital and School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- 5 Department of Internal Medicine, Kaohsiung Medical University Hospital and School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Michael Hsiao
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan; and
| | - Pei-Jung Lu
- 1 Institute of Basic Medical Sciences, College of Medicine
- 2 Institute of Clinical Medicine, College of Medicine, and
| |
Collapse
|
14
|
Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5:3891. [PMID: 24852344 PMCID: PMC4050264 DOI: 10.1038/ncomms4891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin–actin interactions needed for recycling by G-clathrin during migration. Clathrin light chain (CLC) subunits are dispensable for clathrin-mediated endocytosis of a number of cargoes. Majeed et al. report that CLCs are however required for gyrating-clathrin-dependent recycling of inactive β1-integrins, the absence of which impairs cell migration.
Collapse
|
15
|
Wong KK, Gascoyne DM, Brown PJ, Soilleux EJ, Snell C, Chen H, Lyne L, Lawrie CH, Gascoyne RD, Pedersen LM, Møller MB, Pulford K, Murphy D, Green TM, Banham AH. Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients. Leukemia 2013; 28:362-72. [PMID: 23884370 DOI: 10.1038/leu.2013.224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023]
Abstract
We previously identified autoantibodies to the endocytic-associated protein Huntingtin-interacting protein 1-related (HIP1R) in diffuse large B-cell lymphoma (DLBCL) patients. HIP1R regulates internalization of cell surface receptors via endocytosis, a process relevant to many therapeutic strategies including CD20 targeting with rituximab. In this study, we characterized HIP1R expression patterns, investigated a mechanism of transcriptional regulation and its clinical relevance in DLBCL patients treated with immunochemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone, R-CHOP). HIP1R was preferentially expressed in germinal center B-cell-like DLBCL (P<0.0001) and inversely correlated with the activated B-cell-like DLBCL (ABC-DLBCL) associated transcription factor, Forkhead box P1 (FOXP1). HIP1R was confirmed as a direct FOXP1 target gene in ABC-DLBCL by FOXP1-targeted silencing and chromatin immunoprecipitation. Lower HIP1R protein expression (≤ 10% tumoral positivity) significantly correlated with inferior overall survival (OS, P=0.0003) and progression-free survival (PFS, P=0.0148) in R-CHOP-treated DLBCL patients (n=157). Reciprocal expression with ≥ 70% FOXP1 positivity defined FOXP1(hi)/HIP1R(lo) patients with particularly poor outcome (OS, P=0.0001; PFS, P=0.0016). In an independent R-CHOP-treated DLBCL (n=233) microarray data set, patients with transcript expression in lower quartile HIP1R and FOXP1(hi)/HIP1R(lo) subgroups exhibited worse OS, P=0.0044 and P=0.0004, respectively. HIP1R repression by FOXP1 is strongly associated with poor outcome, thus further understanding of FOXP1-HIP1R and/or endocytic signaling pathways might give rise to novel therapeutic options for DLBCL.
Collapse
Affiliation(s)
- K K Wong
- 1] NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK [2] Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - D M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - P J Brown
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - E J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - C Snell
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - H Chen
- Centre for Human Proteomics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - L Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - C H Lawrie
- 1] NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK [2] Biodonostia Research Institute, San Sebastian, Spain [3] IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - R D Gascoyne
- Department of Pathology and Experimental Therapeutics, Centre for Lymphoid Cancer, BC Cancer Agency and BC Cancer Research Centre, Vancouver, Canada
| | - L M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - M B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - K Pulford
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - D Murphy
- 1] Centre for Human Proteomics, Royal College of Surgeons in Ireland, Dublin 2, Ireland [2] School of Biological Sciences, Dublin Institute of Technology, Dublin 8, Ireland
| | - T M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - A H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
16
|
Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases. Mol Cell Biol 2013; 33:3580-93. [PMID: 23836884 DOI: 10.1128/mcb.00473-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.
Collapse
|
17
|
Smith MR, Joshi I, Pei J, Slifker M, Jin F, Testa JR, Al-Saleem T. Murine mantle cell lymphoma model cell line. Leukemia 2012; 27:1592-4. [PMID: 23271511 DOI: 10.1038/leu.2012.370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Stoddart A, Tennant TR, Fernald AA, Anastasi J, Brodsky FM, Le Beau MM. The clathrin-binding domain of CALM-AF10 alters the phenotype of myeloid neoplasms in mice. Oncogene 2011; 31:494-506. [PMID: 21706055 PMCID: PMC3204175 DOI: 10.1038/onc.2011.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The PICALM (CALM) gene, whose product is involved in clathrin-mediated endocytosis, has been identified in two recurring chromosomal translocations, involving either MLL or MLLT10 (AF10). We developed a mouse model of CALM-AF10+ leukemia to examine the hypothesis that disruption of endocytosis contributes to leukemogenesis. Exclusion of the C-terminal portion of CALM from the fusion protein, which is required for optimal binding to clathrin, resulted in the development of a myeloproliferative disease, while inclusion of this domain led to the development of acute myeloid leukemia and changes in gene expression of several cancer-related genes, notably Pim1 and Crebbp. Nonetheless, the development of leukemia could not be attributed directly to interference with endocytosis or consequential changes in proliferation and signaling. In leukemia cells, full-length CALM-AF10 localized to the nucleus with no consistent effect on growth factor endocyctosis, and suppressed H3K79 methylation regardless of the presence of clathrin. Using FRET analysis, we show that CALM-AF10 has a propensity to homo-oligomerize, raising the possibility that the function of endocytic proteins involved in chimeric fusions may be to provide dimerization properties, a recognized mechanism for unleashing oncogenic properties of chimeric transcription factors, rather than disrupting the internalization of growth factor receptors.
Collapse
Affiliation(s)
- A Stoddart
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Huntingtin-interacting protein 1: a Merkel cell carcinoma marker that interacts with c-Kit. J Invest Dermatol 2011; 131:2113-20. [PMID: 21697888 PMCID: PMC3174286 DOI: 10.1038/jid.2011.171] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is a neoplasm thought to originate from the neuroendocrine Merkel cells of the skin. Although the prevalence of MCC has been increasing, treatments for this disease remain limited because of a paucity of information regarding MCC biology. We have found that the endocytic oncoprotein Huntingtin-interacting protein 1 (HIP1) is expressed at high levels in ∼90% of MCC tumors and serves as a more reliable histological cytoplasmic stain than the gold standard, cytokeratin 20. Furthermore, high anti-HIP1 antibody reactivity in the sera of a cohort of MCC patients predicts the presence of metastases. Another protein that is frequently expressed at high levels in MCC tumors is the stem cell factor (SCF) receptor tyrosine kinase, c-Kit. In working toward an understanding of how HIP1 might contribute to MCC tumorigenesis, we have discovered that HIP1 interacts with SCF-activated c-Kit. These data not only identify HIP1 as a molecular marker for management of MCC patients but also show that HIP1 interacts with and slows the degradation of c-Kit.
Collapse
|
20
|
Scott KL, Chin L. Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 2010; 16:2229-34. [PMID: 20354134 DOI: 10.1158/1078-0432.ccr-09-1695] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Golgi phosphoprotein 3 (GOLPH3; also known as GPP34/GMx33/MIDAS) represents an exciting new class of oncoproteins involved in vesicular trafficking. Encoded by a gene residing on human chromosome 5p13, which is frequently amplified in multiple solid tumor types, GOLPH3 was initially discovered as a phosphorylated protein localized to the Golgi apparatus. Recent functional, cell biological, and biochemical analyses show that GOLPH3 can function as an oncoprotein to promote cell transformation and tumor growth by enhancing activity of the mammalian target of rapamycin, a serine/threonine protein kinase known to regulate cell growth, proliferation, and survival. Although its precise mode of action in cancer remains to be elucidated, the fact that GOLPH3 has been implicated in protein trafficking, receptor recycling, and glycosylation points to potential links of these cellular processes to tumorigenesis. Understanding how these processes may be deregulated and contribute to cancer pathogenesis and drug response will uncover new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
21
|
Leonard JP, Williams ME, Goy A, Grant S, Pfreundschuh M, Rosen ST, Sweetenham JW. Mantle cell lymphoma: biological insights and treatment advances. ACTA ACUST UNITED AC 2010; 9:267-77. [PMID: 19717376 DOI: 10.3816/clm.2009.n.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mantle cell lymphoma (MCL) exhibits considerable molecular heterogeneity and complexity, and is regarded as one of the most challenging lymphomas to treat. With increased understanding of the pathobiology of MCL, it is proposed that MCL is the result of 3 major converging factors, namely, deregulated cell cycle pathways, defects in DNA damage responses, and dysregulation of cell survival pathways. In the present era of targeted therapies, these biologic insights have resulted in the identification of several novel rational targets for therapeutic intervention in MCL that are undergoing active clinical testing. To date, there is no standard of care in MCL. Several approaches including conventional anthracycline-based therapies and intensive high-dose strategies with and without stem cell transplantation have failed to produce durable remissions for most patients. Moreover, considering the heterogeneity of MCL, it is increasingly being recognized that risk-adapted therapy might be a relevant therapeutic approach in this disease. At the first and second Global Workshops on Mantle Cell Lymphoma, questions addressing advances in the pathobiology of MCL, optimization of existing therapies, assessment of current data with novel therapeutic strategies, and the identification of molecular or phenotypic risk factors for utilization in risk-adapted therapies were discussed and will be summarized herein.
Collapse
Affiliation(s)
- John P Leonard
- Center for Lymphoma and Myeloma, Clinical Research, Division of Hematology/Oncology, New York Weill Cornell Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Borlido J, Zecchini V, Mills IG. Nuclear Trafficking and Functions of Endocytic Proteins Implicated in Oncogenesis. Traffic 2009; 10:1209-20. [DOI: 10.1111/j.1600-0854.2009.00922.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Pyrzynska B, Pilecka I, Miaczynska M. Endocytic proteins in the regulation of nuclear signaling, transcription and tumorigenesis. Mol Oncol 2009; 3:321-38. [PMID: 19577966 DOI: 10.1016/j.molonc.2009.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence argues that many proteins governing membrane sorting during endocytosis participate also in nuclear signaling and transcriptional regulation, mostly by modulating the activity of various nuclear factors. Some adaptors and accessory proteins acting in clathrin-mediated internalization, as well as endosomal sorting proteins can undergo nuclear translocation and affect gene expression directly, while for others the effects may be more indirect. Although it is often unclear to what extent the endocytic and nuclear functions are interrelated, several of such proteins are implicated in the regulation of cell proliferation and tumorigenesis, arguing that their dual-function nature may be of physiological importance.
Collapse
Affiliation(s)
- Beata Pyrzynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
24
|
Abstract
From the signaling point of view, endocytosis has long been regarded as a major mechanism of attenuation, through the degradation of signaling receptors and, in some cases, of their ligands. This outlook has changed, over the past decade, as it has become clear that signaling persists in the endocytic route, and that intracellular endocytic stations (the 'signaling endosomes') actually contribute to the sorting of signals in space and time. Endocytosis-mediated recycling of receptors and of signaling molecules to specific regions of the plasma membrane is also coming into focus as a major mechanism in the execution of spatially restricted functions, such as cell motility. In addition, emerging evidence connects endocytosis as a whole, or individual endocytic proteins, to complex cellular programs, such as the control of the cell cycle, mitosis, apoptosis and cell fate determination. Thus, endocytosis seems to be deeply ingrained into the cell regulation blueprint and its subversion is predicted to play an important role in human diseases: first and foremost, cancer.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Dipartimento di Scienze Oncologiche, Università degli Studi di Torino, Istituto per la Ricerca e la Cura del Cancro, Candiolo, Turin, Italy
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma is characterized by dysregulation of cyclin D1, but this is not sufficient for lymphoma development. It is a difficult disease to treat, being incurable with standard chemotherapy and having a median survival of approximately 5 years. The purpose of this review is to update recent advances in mantle cell lymphoma biology with prognostic and potentially therapeutic implications, and mantle cell lymphoma treatment approaches and new agents. RECENT FINDINGS Genetic alterations that cooperate with cyclin D1 have been described that alter proliferation, in particular p27Kip and p16INK4, or apoptosis. Biological factors such as high-proliferation signature defined by gene expression profiles, loss of p27 and presence of mutant p53 confer poor prognosis. Proliferative rate also predicts patient outcome. Clinical criteria such as the international prognostic index, follicular lymphoma international prognostic index or a formula using age, performance status, white blood cell count and lactate dehydrogenase, separate prognostic groups. Not all patients require therapy at diagnosis. Although the best reported results have been with rituximab-hyperfractionated cyclophosphamide-vincristine-doxorubicin-dexamethasone-methotrexate/cytarabine, a cooperative group study of this regimen appears not quite as successful. Consolidation of remission after rituximab-cyclophosphamide-doxorubicin-vincristine-prednisone with high-dose therapy/stem-cell support prolongs remission and consolidation with radioimmunotherapy shows promise. Intensifying induction by alternating intensified rituximab-cyclophosphamide-doxorubicin-vincristine-prednisone with rituximab and high-dose cytarabine, followed by high-dose therapy appears quite promising. Novel agents active in relapsed disease include bortezomib, mammalian target of rapamycin inhibitors, immunomodulatory agents, antibodies and cyclin pathway-directed agents such as flavopiridol and cyclin-dependent kinase inhibitors. SUMMARY New insights into mantle cell lymphoma biology may lead to targeted therapy. Meanwhile, combinations of existing therapeutic approaches seem to have improved outcomes.
Collapse
|
26
|
Graves CW, Philips ST, Bradley SV, Oravecz-Wilson KI, Li L, Gauvin A, Ross TS. Use of a cryptic splice site for the expression of huntingtin interacting protein 1 in select normal and neoplastic tissues. Cancer Res 2008; 68:1064-73. [PMID: 18281481 DOI: 10.1158/0008-5472.can-07-5892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is a 116-kDa endocytic protein, which is necessary for the maintenance of several tissues in vivo as its deficiency leads to degenerative adult phenotypes. HIP1 deficiency also inhibits prostate tumor progression in mice. To better understand how deficiency of HIP1 leads to such phenotypes, we analyzed tumorigenic potential in mice homozygous for a Hip1 mutant allele, designated Hip1(Delta 3-5), which is predicted to result in a frame-shifted, nonsense mutation in the NH(2) terminus of HIP1. In contrast to our previous studies using the Hip1 null allele, an inhibition of tumorigenesis was not observed as a result of the homozygosity of the nonsense Delta 3-5 allele. To further examine the contrasting results from the prior Hip1 mutant mice, we cultured tumor cells from homozygous Delta 3-5 allele-bearing mice and discovered the presence of a 110-kDa form of HIP1 in tumor cells. Upon sequencing of Hip1 DNA and message from these tumors, we determined that this 110-kDa form of HIP1 is the product of splicing of a cryptic U12-type AT-AC intron. This event results in the insertion of an AG dinucleotide between exons 2 and 6 and restoration of the reading frame. Remarkably, this mutant protein retains its capacity to bind lipids, clathrin, AP2, and epidermal growth factor receptor providing a possible explanation for why tumorigenesis was not altered after this knockout mutation. Our data show how knowledge of the transcript that is produced by a knockout allele can lead to discovery of novel types of molecular compensation at the level of splicing.
Collapse
Affiliation(s)
- Chiron W Graves
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0942, USA
| | | | | | | | | | | | | |
Collapse
|