1
|
Shelley CS, Galiègue-Zouitina S, Andritsos LA, Epperla N, Troussard X. The role of the JunD-RhoH axis in the pathogenesis of hairy cell leukemia and its ability to identify existing therapeutics that could be repurposed to treat relapsed or refractory disease. Leuk Lymphoma 2025; 66:637-655. [PMID: 39689307 DOI: 10.1080/10428194.2024.2438800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Hairy cell leukemia (HCL) is an indolent malignancy of mature B-lymphocytes. While existing front-line therapies achieve excellent initial results, a significant number of patients relapse and become increasingly treatment resistant. A major molecular driver of HCL is aberrant interlocking expression of the transcription factor JunD and the intracellular signaling molecule RhoH. Here we discuss the molecular basis of how the JunD-RhoH axis contributes to HCL pathogenesis. We also discuss how leveraging the JunD-RhoH axis identifies CD23, CD38, CD66a, CD115, CD269, integrin β7, and MET as new potential therapeutic targets. Critically, preclinical studies have already demonstrated that targeting CD38 with isatuximab effectively treats preexisiting HCL. Isatuximab and therapeutics directed against each of the other six new HCL targets are currently in clinical use to treat other disorders. Consequently, leveraging the JunD-RhoH axis has identified a battery of therapies that could be repurposed as new means of treating relapsed or refractory HCL.
Collapse
Affiliation(s)
| | | | - Leslie A Andritsos
- Division of Hematology Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Narendranath Epperla
- Division of Hematology, University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Xavier Troussard
- Hematology CHU Caen Normandie, INSERM1245, MICAH, Normandie University of Caen and Rouen, UNIROUEN, UNICAEN, Hematology Institute, University Hospital Caen, Caen, France
| |
Collapse
|
2
|
Leprêtre F, Meneboo JP, Villenet C, Delestré L, Quesnel B, Shelley CS, Figeac M, Galiègue-Zouitina S. Full-length RNA-Seq of the RHOH gene in human B cells reveals new exons and splicing patterns. Sci Rep 2024; 14:28297. [PMID: 39550462 PMCID: PMC11569159 DOI: 10.1038/s41598-024-79307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
The RhoH protein is a member of the Ras superfamily of guanosine triphosphate-binding proteins. RhoH is an atypical Rho family member that is always GTP-bound and thus always activated. It is restrictively expressed in normal hematopoietic cells, where it is a negative regulator of cell growth and survival. We previously analyzed the RHOH gene structure and demonstrated that this gene is composed of 7 exons, one single encoding exon located at the 3' extremity of the gene, preceded by 6 noncoding exons. To further understand the transcription events associated with this gene, we performed full-length RNA-Seq on 12 B-cell lines. We identified new exons, new splice events and new splice sites, leading to the discovery of 38 RHOH mRNA molecules, 27 of which have never been described before. Here, we also describe new fusion transcripts. Moreover, our method allowed quantitative measurements of the different mRNA species relative to each other in relation to B-cell differentiation.
Collapse
Affiliation(s)
- Frédéric Leprêtre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France.
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | - Céline Villenet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | | - Bruno Quesnel
- CHU Lille, UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Université de Lille, 59000, Lille, France
| | | | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | |
Collapse
|
3
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
4
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Horiguchi H, Xu H, Duvert B, Ciuculescu F, Yao Q, Sinha A, McGuinness M, Harris C, Brendel C, Troeger A, Chiarle R, Williams DA. Deletion of murine Rhoh leads to de-repression of Bcl-6 via decreased KAISO levels and accelerates a malignancy phenotype in a murine model of lymphoma. Small GTPases 2022; 13:267-281. [PMID: 34983288 PMCID: PMC8741284 DOI: 10.1080/21541248.2021.2019503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RHOH/TFF, a member of the RAS GTPase super family, has important functions in lymphopoiesis and proximal T cell receptor signalling and has been implicated in a variety of leukaemias and lymphomas. RHOH was initially identified as a translocation partner with BCL-6 in non-Hodgkin lymphoma (NHL), and aberrant somatic hypermutation (SHM) in the 5' untranslated region of the RHOH gene has also been detected in Diffuse Large B-Cell Lymphoma (DLBCL). Recent data suggest a correlation between RhoH expression and disease progression in Acute Myeloid Leukaemia (AML). However, the effects of RHOH mutations and translocations on RhoH expression and malignant transformation remain unknown. We found that aged Rhoh-/- (KO) mice had shortened lifespans and developed B cell derived splenomegaly with an increased Bcl-6 expression profile in splenocytes. We utilized a murine model of Bcl-6 driven DLBCL to further explore the role of RhoH in malignant behaviour by crossing RhohKO mice with Iµ-HABcl-6 transgenic (Bcl-6Tg) mice. The loss of Rhoh in Bcl-6Tg mice led to a more rapid disease progression. Mechanistically, we demonstrated that deletion of Rhoh in these murine lymphoma cells was associated with decreased levels of the RhoH binding partner KAISO, a dual-specific Zinc finger transcription factor, de-repression of KAISO target Bcl-6, and downregulation of the BCL-6 target Blimp-1. Re-expression of RhoH in RhohKOBcl-6Tg lymphoma cell lines reversed these changes in expression profile and reduced proliferation of lymphoma cells in vitro. These findings suggest a previously unidentified regulatory role of RhoH in the proliferation of tumour cells via altered BCL-6 expression. (250).
Collapse
Affiliation(s)
- Hiroto Horiguchi
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beatrice Duvert
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Felicia Ciuculescu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chad Harris
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Anja Troeger
- Division of Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA, USA,Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA, USA,CONTACT David A. Williams Division of Hematology/Oncology, Boston Children’s Hospital, 300 Longwood Ave. Karp 08125.3, Boston, MA02115, USA
| |
Collapse
|
6
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
7
|
Galiègue‐Zouitina S, Fu Q, Carton‐Latreche C, Poret N, Cheok M, Leprêtre F, Figeac M, Quesnel B, El Bouazzati H, Shelley CS. Bimodal expression of RHOH during myelomonocytic differentiation: Implications for the expansion of AML differentiation therapy. EJHAEM 2021; 2:196-210. [PMID: 35845268 PMCID: PMC9175762 DOI: 10.1002/jha2.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
RhoH is an unusual member of the Rho family of small GTP-binding proteins in that it lacks GTPase activity. Since the RhoH protein is constantly bound by GTP, it is constitutively active and controlled predominantly by changes in quantitative expression. Abnormal levels of RHOH gene transcripts have been linked to a range of malignancies including acute myeloid leukemia (AML). One of the hallmarks of AML is a block in the normal program of myeloid differentiation. Here we investigate how myeloid differentiation is controlled by the quantitative expression of RHOH. Our analysis demonstrates that increasingly mature myeloid cells express progressively lower levels of RHOH. However, as monocytic myeloid cells terminally differentiate into macrophages, RHOH expression is up-regulated. This up-regulation is not apparent in AML where myeloid differentiation is blocked at stages of low RHOH expression. Nevertheless, when the up-regulation of RHOH is forced, then terminal macrophage differentiation is induced and the Cdc42 and Wnt intracellular signalling pathways are repressed. These results indicate that RHOH induction is a driver of terminal differentiation and might represent a means of effecting AML differentiation therapy. The potential of this therapeutic strategy is supported by forced up-regulation of RHOH reducing the ability of AML cells to produce tumours in vivo.
Collapse
Affiliation(s)
- Sylvie Galiègue‐Zouitina
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Qiangwei Fu
- California Institute for Biomedical ResearchLa JollaCaliforniaUSA
| | - Céline Carton‐Latreche
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Nicolas Poret
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Meyling Cheok
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | - Frédéric Leprêtre
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Martin Figeac
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Bruno Quesnel
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
- CHU LilleService des Maladies du SangLilleFrance
| | - Hassiba El Bouazzati
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | | |
Collapse
|
8
|
Ahmad Mokhtar AM, Hashim IF, Mohd Zaini Makhtar M, Salikin NH, Amin-Nordin S. The Role of RhoH in TCR Signalling and Its Involvement in Diseases. Cells 2021; 10:950. [PMID: 33923951 PMCID: PMC8072805 DOI: 10.3390/cells10040950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
As an atypical member of the Rho family small GTPases, RhoH shares less than 50% sequence similarity with other members, and its expression is commonly observed in the haematopoietic lineage. To date, RhoH function was observed in regulating T cell receptor signalling, and less is known in other haematopoietic cells. Its activation may not rely on the standard GDP/GTP cycling of small G proteins and is thought to be constitutively active because critical amino acids involved in GTP hydrolysis are absent. Alternatively, its activation can be regulated by other types of regulation, including lysosomal degradation, somatic mutation and transcriptional repressor, which also results in an altered protein expression. Aberrant protein expression of RhoH has been implicated not only in B cell malignancies but also in immune-related diseases, such as primary immunodeficiencies, systemic lupus erythematosus and psoriasis, wherein its involvement may provide the link between immune-related diseases and cancer. RhoH association with these diseases involves several other players, including its interacting partner, ZAP-70; activation regulators, Vav1 and RhoGDI and other small GTPases, such as RhoA, Rac1 and Cdc42. As such, RhoH and its associated proteins are potential attack points, especially in the treatment of cancer and immune-related diseases.
Collapse
Affiliation(s)
- Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia;
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Nor Hawani Salikin
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
9
|
RHO Family GTPases in the Biology of Lymphoma. Cells 2019; 8:cells8070646. [PMID: 31248017 PMCID: PMC6678807 DOI: 10.3390/cells8070646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
RHO GTPases are a class of small molecules involved in the regulation of several cellular processes that belong to the RAS GTPase superfamily. The RHO family of GTPases includes several members that are further divided into two different groups: typical and atypical. Both typical and atypical RHO GTPases are critical transducers of intracellular signaling and have been linked to human cancer. Significantly, both gain-of-function and loss-of-function mutations have been described in human tumors with contradicting roles depending on the cell context. The RAS family of GTPases that also belong to the RAS GTPase superfamily like the RHO GTPases, includes arguably the most frequently mutated genes in human cancers (K-RAS, N-RAS, and H-RAS) but has been extensively described elsewhere. This review focuses on the role of RHO family GTPases in human lymphoma initiation and progression.
Collapse
|
10
|
Olson MF. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 2018; 9:203-215. [PMID: 27548350 PMCID: PMC5927519 DOI: 10.1080/21541248.2016.1218407] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/24/2022] Open
Abstract
The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
11
|
Poret N, Fu Q, Guihard S, Cheok M, Miller K, Zeng G, Quesnel B, Troussard X, Galiègue-Zouitina S, Shelley CS. CD38 in Hairy Cell Leukemia Is a Marker of Poor Prognosis and a New Target for Therapy. Cancer Res 2016; 75:3902-11. [PMID: 26170397 DOI: 10.1158/0008-5472.can-15-0893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hairy cell leukemia (HCL) is characterized by underexpression of the intracellular signaling molecule RhoH. Reconstitution of RhoH expression limits HCL pathogenesis in a mouse model, indicating this could represent a new therapeutic strategy. However, while RhoH reconstitution is theoretically possible as a therapy, it is technically immensely challenging as an appropriately functional RhoH protein needs to be specifically targeted. Because of this problem, we sought to identify druggable proteins on the HCL surface that were dependent upon RhoH underexpression. One such protein was identified as CD38. Analysis of 51 HCL patients demonstrated that 18 were CD38-positive. Interrogation of the clinical record of 23 relapsed HCL patients demonstrated those that were CD38-positive had a mean time to salvage therapy 71 months shorter than patients who were CD38-negative. Knockout of the CD38 gene in HCL cells increased apoptosis, inhibited adherence to endothelial monolayers, and compromised ability to produce tumors in vivo. Furthermore, an anti-CD38 antibody proved effective against pre-existing HCL tumors. Taken together, our data indicate that CD38 expression in HCL drives poor prognosis by promoting survival and heterotypic adhesion. Our data also indicate that CD38-positive HCL patients might benefit from treatments based on CD38 targeting.
Collapse
Affiliation(s)
- Nicolas Poret
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Qiangwei Fu
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin
| | - Soizic Guihard
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Meyling Cheok
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Katie Miller
- Department of Biology, Saint Mary's University of Minnesota, Winona, Minnesota
| | - Gordon Zeng
- Department of Pathology, Gundersen Health System, La Crosse, Wisconsin
| | - Bruno Quesnel
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France. Service des Maladies du Sang, Hôpital Huriez, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Xavier Troussard
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Sylvie Galiègue-Zouitina
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France.
| | - Carl Simon Shelley
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin.
| |
Collapse
|
12
|
Abstract
Rho GTPases are a family of small GTPases, which play an important role in the regulation of the actin cytoskeleton. Not surprisingly, Rho GTPases are crucial for cell migration and therefore highly important for cancer cell invasion and the formation of metastases. In addition, Rho GTPases are involved in growth and survival of tumor cells, in the interaction of tumor cells with their environment, and they are vital for the cancer supporting functions of the tumor stroma. Recent research has significantly improved our understanding of the regulation of Rho GTPase activity, the specificity of Rho GTPases, and their function in tumor stem cells and tumor stroma. This review summarizes these novel findings and tries to define challenging questions for future research.
Collapse
Affiliation(s)
- Hui Li
- University of Copenhagen, BRIC, BMI, 2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|
13
|
Abstract
During metastasis, cancer cells disseminate to other parts of the body by entering the bloodstream in a process that is called intravasation. They then extravasate at metastatic sites by attaching to endothelial cells that line blood vessels and crossing the vessel walls of tissues or organs. This Review describes how cancer cells cross the endothelial barrier during extravasation and how different receptors, signalling pathways and circulating cells such as leukocytes and platelets contribute to this process. Identification of the mechanisms that underlie cancer cell extravasation could lead to the development of new therapies to reduce metastasis.
Collapse
Affiliation(s)
- Nicolas Reymond
- 1] Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK. [2] Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS) - UMR5237, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France. [3]
| | | | | |
Collapse
|
14
|
Troeger A, Chae HD, Senturk M, Wood J, Williams DA. A unique carboxyl-terminal insert domain in the hematopoietic-specific, GTPase-deficient Rho GTPase RhoH regulates post-translational processing. J Biol Chem 2013; 288:36451-62. [PMID: 24189071 DOI: 10.1074/jbc.m113.505727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved "CAAX" box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal "insert" domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh(-/-) mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh(-/-) T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.
Collapse
Affiliation(s)
- Anja Troeger
- From the Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
15
|
Troeger A, Williams DA. Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 2013; 319:2375-83. [PMID: 23850828 PMCID: PMC3997055 DOI: 10.1016/j.yexcr.2013.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/26/2023]
Abstract
The small guanosine triphosphotases (GTPases) Rho proteins are members of the Ras-like superfamily. Similar to Ras, most Rho GTPases cycle between active GTP-bound, and inactive GDP-bound conformations and act as molecular switches that control multiple cellular functions. While most Rho GTPases are expressed widely, the expression of Rac2 and RhoH are restricted to hematopoietic cells. RhoH is an atypical GTPase that lacks GTPase activity and remains in the active conformation. The generation of mouse knock-out lines has led to new understanding of the functions of both of these proteins in blood cells. The phenotype of these mice also led to the identification of mutations in human RAC2 and RHOH genes and the role of these proteins in immunodeficiency diseases. This review outlines the basic biology of Rho GTPases, focusing on Rac and RhoH and summarizes human diseases associated with mutations of these genes.
Collapse
Affiliation(s)
- Anja Troeger
- Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstreet 5, 40225 Duesseldorf, Germany
| | | |
Collapse
|
16
|
Weston-Bell NJ, Hendriks D, Sugiyarto G, Bos NA, Kluin-Nelemans HC, Forconi F, Sahota SS. Hairy cell leukemia cell lines expressing annexin A1 and displaying B-cell receptor signals characteristic of primary tumor cells lack the signature BRAF mutation to reveal unrepresentative origins. Leukemia 2012; 27:241-5. [PMID: 22705994 DOI: 10.1038/leu.2012.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Hasegawa H, Komoda M, Yamada Y, Yonezawa S, Tsutsumida H, Nagai K, Atogami S, Tsuruda K, Osaka A, Sasaki D, Yanagihara K, Imaizumi Y, Tsukasaki K, Miyazaki Y, Kamihira S. Aberrant overexpression of membrane-associated mucin contributes to tumor progression in adult T-cell leukemia/lymphoma cells. Leuk Lymphoma 2011; 52:1108-17. [PMID: 21599593 DOI: 10.3109/10428194.2011.559671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aberrant overexpression of membrane-associated mucin (MUC1) is implicated in the pathogenesis of cancer, particularly of adenocarcinomas. Adult T-cell leukemia/lymphoma (ATL), an aggressive neoplasm etiologically associated with human T-lymphotropic virus type-1 (HTLV-1), exhibits invasive tropism into various organs, resulting in disease progression and resistance to treatment. In the present study, we showed that MUC1 is overexpressed exclusively in cells of ATL among hematological malignancies. Furthermore, increased expression of MUC1 correlated with a poor prognosis, suggesting MUC1 to be a prognostic marker in ATL. Various functional analyses with knockdown experiments using a specific siRNA for MUC1 revealed that MUC1 is involved in cell growth, cell aggregation, and resistance to apoptosis. Although it has been shown that the anti-adhesive properties of MUC1 facilitate migration and metastasis of tumor cells, our findings indicated that MUC1 contributes to cell-cell adhesion. Mucins thus seem to play a role in the pathogenesis and/or progression of ATL.
Collapse
Affiliation(s)
- Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
RhoH is a member of the Rho family of small GTP-binding proteins that lacks GTPase activity. Since RhoH is constantly bound by GTP, it is thought to be constitutively active and controlled predominantly by changes in quantitative expression. RhoH is produced specifically in haematopoietic cells and aberrant expression has been linked to various forms of leukaemia. Transcription of the RHOH gene is the first level at which the quantitative levels of the RhoH protein are regulated. Previous studies have demonstrated that RHOH gene transcription is initiated by three distinct promoter regions designated P1, P2 and P3 that define the 5' end of exons 1, 2 and 4 respectively. In the present study we report that the P3 promoter is largely responsible for RHOH gene transcription in the B-lymphocytic cell line Raji. The P3 promoter contains a minimal promoter region and a repressor region extending from -236 to +67 and +68 to +245 respectively, relative to the 5' end of exon 4. Chromatin immunoprecipitation demonstrated that two AP1 (activator protein 1) sites in the minimal promoter region bind JunD. When JUND is overexpressed, the endogenous RHOH gene is repressed; however, when JUND is inhibited, expression of endogenous RHOH is induced both in the Raji cell line and AML (acute myeloid leukaemia) cells. In the HCL (hairy cell leukaemia) cell line JOK-1, induction of RHOH increases expression of the α isoform of protein kinase C. This downstream target of RHOH is also induced in AML cells by JUND inhibition. Collectively, these data indicate that JunD is an inhibitor of RHOH gene expression.
Collapse
|
19
|
Gündogdu MS, Liu H, Metzdorf D, Hildebrand D, Aigner M, Aktories K, Heeg K, Kubatzky KF. The haematopoietic GTPase RhoH modulates IL3 signalling through regulation of STAT activity and IL3 receptor expression. Mol Cancer 2010; 9:225. [PMID: 20738848 PMCID: PMC2936343 DOI: 10.1186/1476-4598-9-225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/25/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND RhoH is a constitutively active member of the family of Rho GTPases. Its expression is restricted to the haematopoietic lineage, where it serves as a positive regulator for T cell selection and mast cell function and as a negative regulator for growth-related functions in other lineages. Here, we examined the activation of signal transducer and activator of transcription (STAT) proteins in response to stimulation with interleukin 3 (IL3). RESULTS Using the murine IL3-dependent cell line BaF3 we investigated the influence of RhoH protein expression levels on IL3-mediated cellular responses. RhoH overexpressing cells showed lower sensitivity to IL3 and decreased STAT5 activation. SiRNA-mediated repression of RhoH gene expression led to an increase in proliferation and STAT5 activity which correlated with an increased number of IL3 receptor α chain molecules, also known as CD123, expressed at the cell surface. Interestingly, these findings could be reproduced using human THP-1 cells as a model system for acute myeloid leukaemia, where low RhoH levels are known to be an unfavourable prognostic marker. Overexpression of RhoH on the other hand caused an induction of STAT1 activity and western blot analysis revealed that activated STAT1 is phosphorylated on Tyr701. STAT1 is known to induce apoptosis or cell cycle arrest and we detected an upregulation of cyclin-dependent kinase inhibitors (CDKI) p21Cip1 and p27Kip1 in RhoH overexpressing BaF3 cells. CONCLUSIONS We propose that RhoH functions as a negative regulator for IL3-induced signals through modulation of the JAK-STAT pathway. High levels of RhoH allow the IL3-dependent activation of STAT1 causing decreased proliferation through upregulation of p21Cip1 and p27Kip1. Low RhoH levels on the other hand led to an upregulation of IL3-dependent cell growth, STAT5 activity and an increase of CD123 surface expression, linking RhoH to a CD123/STAT5 phenotype that has been described in AML patients.
Collapse
Affiliation(s)
- Mehtap S Gündogdu
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Ruprecht-Karls-Universität, Im Neuenheimer Feld 324, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|
21
|
Abstract
Progress in the treatment of patients with hairy cell leukemia (HCL) has led to a significant change in the natural history of the disease. With current regimens, the majority of patients achieve a complete remission, and their survival curves are similar to those for appropriate age-matched individuals without the disease. At the same time, new technologies are allowing better understanding of the molecular mechanisms responsible for the pathogenesis of this and other indolent lymphoid neoplasms. Several studies using modern techniques with different sensitivities have demonstrated the persistence of minimal residual disease (MRD) after therapy with nucleoside analogues in majority of patients. However, it is not clear whether such MRD would invariably lead to leukemia recurrence or what level of MRD can predict relapse. The role of monoclonal antibodies, naked or conjugated with toxins, in the management of HCL and their ability to eradicate MRD is under investigation. Whether such strategies of chemoimmunotherapy would lead to further improvements in the outcome of patients with HCL needs to be further investigated.
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Rho GTPase function in tumorigenesis. Biochim Biophys Acta Rev Cancer 2009; 1796:91-8. [PMID: 19327386 DOI: 10.1016/j.bbcan.2009.03.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 02/07/2023]
Abstract
Malignant tumor cells display uncontrolled proliferation, loss of epithelial cell polarity, altered interactions with neighboring cells and the surrounding extracellular matrix, and enhanced migratory properties. Proteins of the Rho GTPase family regulate all these processes in cell culture and, for that reason, Rho GTPases, their regulators, and their effectors have been suggested to control tumor formation and progression in humans. However, while the tumor-relevant functions of Rho GTPases are very well documented in vitro, we are only now beginning to assess their contribution to cancer in human patients and in animal models. This review will give a very brief overview of Rho GTPase function in general and then focus on in vivo evidence for a role of Rho GTPases in malignant tumors, both in human patients and in genetically modified mice.
Collapse
|
23
|
Fueller F, Kubatzky KF. The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Commun Signal 2008; 6:6. [PMID: 18823547 PMCID: PMC2565660 DOI: 10.1186/1478-811x-6-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 01/25/2023] Open
Abstract
Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule in the NFκB, PI3 kinase and Map kinase pathways. The recent generation of RhoH knockout mice showed a defect in thymocyte selection and TCR signalling of thymic and peripheral T-cells. However, RhoH-deficient mice did not develop lymphomas or showed obvious defects in haematopoiesis.
Collapse
Affiliation(s)
- Florian Fueller
- Ruprecht-Karls-Universität Heidelberg, Hygiene Institut, Abteilung für Hygiene und Medizinische Mikrobiologie, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|