1
|
Orešković D, Madero Pohlen A, Cvitković I, Alen JF, Raguž M, Álvarez-Sala de la Cuadra A, Bazarra Castro GJ, Bušić Z, Konstantinović I, Ledenko V, Martínez Macho C, Müller D, Žarak M, Jovanov-Milosevic N, Chudy D, Marinović T. Chronic hyperglycemia and intracranial meningiomas. BMC Cancer 2024; 24:488. [PMID: 38632533 PMCID: PMC11022447 DOI: 10.1186/s12885-024-12243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Meningiomas are among the most common primary tumors of the central nervous system. Previous research into the meningioma histological appearance, genetic markers, transcriptome and epigenetic landscape has revealed that benign meningiomas significantly differ in their glucose metabolism compared to aggressive lesions. However, a correlation between the systemic glucose metabolism and the metabolism of the tumor hasn't yet been found. We hypothesized that chronic levels of glycaemia (approximated with glycated hemoglobin (HbA1c)) are different in patients with aggressive and benign meningiomas. The study encompassed 71 patients with de novo intracranial meningiomas, operated on in three European hospitals, two in Croatia and one in Spain. Our results show that patients with WHO grade 2 meningiomas had significantly higher HbA1c values compared to patients with grade 1 lesions (P = 0.0290). We also found a significant number of patients (19/71; 26.7%) being hyperglycemic, harboring all the risks that such a condition entails. Finally, we found a significant correlation between our patients' age and their preoperative HbA1c levels (P = 0.0008, ρ(rho) = 0.388), suggesting that older meningioma patients are at a higher risk of having their glycaemia severely dysregulated. These findings are especially important considering the current routine and wide-spread use of corticosteroids as anti-edematous treatment. Further research in this area could lead to better understanding of meningiomas and have immediate clinical impact.
Collapse
Affiliation(s)
- D Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia.
| | - A Madero Pohlen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - I Cvitković
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - J F Alen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - M Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | | | - G J Bazarra Castro
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - Z Bušić
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - I Konstantinović
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - V Ledenko
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - C Martínez Macho
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - D Müller
- Department of Pathology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - M Žarak
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - N Jovanov-Milosevic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - D Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - T Marinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Neurology and Neurosurgery, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
2
|
van de Weijer LL, Ercolano E, Zhang T, Shah M, Banton MC, Na J, Adams CL, Hilton D, Kurian KM, Hanemann CO. A novel patient-derived meningioma spheroid model as a tool to study and treat epithelial-to-mesenchymal transition (EMT) in meningiomas. Acta Neuropathol Commun 2023; 11:198. [PMID: 38102708 PMCID: PMC10725030 DOI: 10.1186/s40478-023-01677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Meningiomas are the most common intracranial brain tumours. These tumours are heterogeneous and encompass a wide spectrum of clinical aggressivity. Treatment options are limited to surgery and radiotherapy and have a risk of post-operative morbidities and radiation neurotoxicity, reflecting the need for new therapies. Three-dimensional (3D) patient-derived cell culture models have been shown to closely recapitulate in vivo tumour biology, including microenvironmental interactions and have emerged as a robust tool for drug development. Here, we established a novel easy-to-use 3D patient-derived meningioma spheroid model using a scaffold-free approach. Patient-derived meningioma spheroids were characterised and compared to patient tissues and traditional monolayer cultures by histology, genomics, and transcriptomics studies. Patient-derived meningioma spheroids closely recapitulated morphological and molecular features of matched patient tissues, including patient histology, genomic alterations, and components of the immune microenvironment, such as a CD68 + and CD163 + positive macrophage cell population. Comprehensive transcriptomic profiling revealed an increase in epithelial-to-mesenchymal transition (EMT) in meningioma spheroids compared to traditional monolayer cultures, confirming this model as a tool to elucidate EMT in meningioma. Therefore, as proof of concept study, we developed a treatment strategy to target EMT in meningioma. We found that combination therapy using the MER tyrosine kinase (MERTK) inhibitor UNC2025 and the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) effectively decreased meningioma spheroid viability and proliferation. Furthermore, we demonstrated this combination therapy significantly increased the expression of the epithelial marker E-cadherin and had a repressive effect on WHO grade 2-derived spheroid invasion, which is suggestive of a partial reversal of EMT in meningioma spheroids.
Collapse
Affiliation(s)
- Laurien L van de Weijer
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Emanuela Ercolano
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Ting Zhang
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Maryam Shah
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Matthew C Banton
- Faculty of Health: School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Juri Na
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Claire L Adams
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - David Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, Devon, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB, UK
| | - C Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK.
| |
Collapse
|
3
|
Safari Yazd H, Bazargani SF, Fitzpatrick G, Yost RA, Kresak J, Garrett TJ. Metabolomic and Lipidomic Characterization of Meningioma Grades Using LC-HRMS and Machine Learning. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2187-2198. [PMID: 37708056 DOI: 10.1021/jasms.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Meningiomas are among the most common brain tumors that arise from the leptomeningeal cover of the brain and spinal cord and account for around 37% of all central nervous system tumors. According to the World Health Organization, meningiomas are classified into three histological subtypes: benign, atypical, and anaplastic. Sometimes, meningiomas with a histological diagnosis of benign tumors show clinical characteristics and behavior of aggressive tumors. In this study, we examined the metabolomic and lipidomic profiles of meningioma tumors, focusing on comparing low-grade and high-grade tumors and identifying potential markers that can discriminate between benign and malignant tumors. High-resolution mass spectrometry coupled to liquid chromatography was used for untargeted metabolomics and lipidomics analyses of 85 tumor biopsy samples with different meningioma grades. We then applied feature selection and machine learning techniques to find the features with the highest information to aid in the diagnosis of meningioma grades. Three biomarkers were identified to differentiate low- and high-grade meningioma brain tumors. The use of mass-spectrometry-based metabolomics and lipidomics combined with machine learning analyses to prospect and characterize biomarkers associated with meningioma grades may pave the way for elucidating potential therapeutic and prognostic targets.
Collapse
Affiliation(s)
- Hoda Safari Yazd
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | | | - Garrett Fitzpatrick
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jesse Kresak
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Martín-Grau M, Pardo-Tendero M, Casanova P, Dromant M, Marrachelli VG, Morales JM, Borrás C, Pisoni S, Maestrini S, Di Blasio AM, Monleon D. Altered Lipid Moieties and Carbonyls in a Wistar Rat Dietary Model of Subclinical Fatty Liver: Potential Sex-Specific Biomarkers of Early Fatty Liver Disease? Antioxidants (Basel) 2023; 12:1808. [PMID: 37891887 PMCID: PMC10604774 DOI: 10.3390/antiox12101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat builds up in the liver. To date, there is a lack of knowledge about the subtype of lipid structures affected in the early stages of NAFLD. The aim of this study was to analyze serum and liver lipid moieties, specifically unsaturations and carbonyls, by nuclear magnetic resonance (NMR) in a subclinical Wistar rat model of NAFLD for detecting early alterations and potential sex dimorphisms. Twelve weeks of a high-fat diet (HFD) induced fat accumulation in the liver to a similar extent in male and female Wistar rats. In addition to total liver fat accumulation, Wistar rats showed a shift in lipid subtype composition. HFD rats displayed increased lipid carbonyls in both liver and serum, and decreased in unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), with a much stronger effect in male than female animals. Our results revealed that the change in fat was not only quantitative but also qualitative, with dramatic shifts in relevant lipid structures. Finally, we compared the results found in Wistar rats with an analysis in a human patient cohort of extreme obesity. For the first time to our knowledge, lipid carbonyl levels and lipoproteins profiles were analyzed in the context of subclinical NAFLD. The association found between lipid carbonyls and alanine aminotransferase (ALT) in a human cohort of extremely obese individuals further supports the potential role of lipid moieties as biomarkers of early NAFLD.
Collapse
Affiliation(s)
- María Martín-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Mercedes Pardo-Tendero
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Pilar Casanova
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Mar Dromant
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Vannina G Marrachelli
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Jose Manuel Morales
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Consuelo Borrás
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Serena Pisoni
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Sabrina Maestrini
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy
| | - Anna M Di Blasio
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy
| | - Daniel Monleon
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- CIBERFES_ISCIII, 46010 Valencia, Spain
| |
Collapse
|
5
|
Godlewski A, Czajkowski M, Mojsak P, Pienkowski T, Gosk W, Lyson T, Mariak Z, Reszec J, Kondraciuk M, Kaminski K, Kretowski M, Moniuszko M, Kretowski A, Ciborowski M. A comparison of different machine-learning techniques for the selection of a panel of metabolites allowing early detection of brain tumors. Sci Rep 2023; 13:11044. [PMID: 37422554 PMCID: PMC10329700 DOI: 10.1038/s41598-023-38243-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Metabolomics combined with machine learning methods (MLMs), is a powerful tool for searching novel diagnostic panels. This study was intended to use targeted plasma metabolomics and advanced MLMs to develop strategies for diagnosing brain tumors. Measurement of 188 metabolites was performed on plasma samples collected from 95 patients with gliomas (grade I-IV), 70 with meningioma, and 71 healthy individuals as a control group. Four predictive models to diagnose glioma were prepared using 10 MLMs and a conventional approach. Based on the cross-validation results of the created models, the F1-scores were calculated, then obtained values were compared. Subsequently, the best algorithm was applied to perform five comparisons involving gliomas, meningiomas, and controls. The best results were obtained using the newly developed hybrid evolutionary heterogeneous decision tree (EvoHDTree) algorithm, which was validated using Leave-One-Out Cross-Validation, resulting in an F1-score for all comparisons in the range of 0.476-0.948 and the area under the ROC curves ranging from 0.660 to 0.873. Brain tumor diagnostic panels were constructed with unique metabolites, which reduces the likelihood of misdiagnosis. This study proposes a novel interdisciplinary method for brain tumor diagnosis based on metabolomics and EvoHDTree, exhibiting significant predictive coefficients.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
6
|
Pereira BJA, Marcondes Lerario A, Sola PR, Laurentino TDS, Mohan DR, de Almeida AN, Pires de Aguiar PH, da Silva Paiva W, Wakamatsu A, Teixeira MJ, Oba-Shinjo SM, Marie SKN. Impact of a cell cycle and an extracellular matrix remodeling transcriptional signature on tumor progression and correlation with EZH2 expression in meningioma. J Neurosurg 2023; 138:649-662. [PMID: 36029259 DOI: 10.3171/2022.7.jns22953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors searched for genetic and transcriptional signatures associated with tumor progression and recurrence in their cohort of patients with meningiomas, combining the analysis of targeted exome, NF2-LOH, transcriptome, and protein expressions. METHODS The authors included 91 patients who underwent resection of intracranial meningioma at their institution between June 2000 and November 2007. The search of somatic mutations was performed by Next Generation Sequencing through a customized panel and multiplex ligation-dependent probe amplification for NF2 loss of heterozygosity. The transcriptomic profile was analyzed by QuantSeq 3' mRNA-Seq. The differentially expressed genes of interest were validated at the protein level analysis by immunohistochemistry. RESULTS The transcriptomic analysis identified an upregulated set of genes related to metabolism and cell cycle and downregulated genes related to immune response and extracellular matrix remodeling in grade 2 (atypical) meningiomas, with a significant difference in recurrent compared with nonrecurrent cases. EZH2 nuclear positivity associated with grade 2, particularly with recurrent tumors and EZH2 gene expression level, correlated positively with the expression of genes related to cell cycle and negatively to genes related to immune response and regulation of cell motility. CONCLUSIONS The authors identified modules of dysregulated genes in grade 2 meningiomas related to the activation of oxidative metabolism, cell division, cell motility due to extracellular remodeling, and immune evasion that were predictive of survival and exhibited significant correlations with EZH2 expression.
Collapse
Affiliation(s)
| | - Antonio Marcondes Lerario
- 2Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Paula Rodrigues Sola
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Talita de Sousa Laurentino
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Dipika R Mohan
- 3Medical Scientist Training Program, and Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Paulo Henrique Pires de Aguiar
- 5Medical Research ABC Medical School, Santo André, Brazil.,6Pontifice Catholic University of São Paulo, Sorocaba, Brazil; and
| | | | - Alda Wakamatsu
- 7Department of Pathology, Hepatic Pathology Laboratory, University of São Paulo, São Paulo, Brazil
| | | | - Sueli Mieko Oba-Shinjo
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Matsuta R, Yamamoto H, Tomita M, Saito R. iDMET: network-based approach for integrating differential analysis of cancer metabolomics. BMC Bioinformatics 2022; 23:508. [PMID: 36443658 PMCID: PMC9706903 DOI: 10.1186/s12859-022-05068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Comprehensive metabolomic analyses have been conducted in various institutes and a large amount of metabolomic data are now publicly available. To help fully exploit such data and facilitate their interpretation, metabolomic data obtained from different facilities and different samples should be integrated and compared. However, large-scale integration of such data for biological discovery is challenging given that they are obtained from various types of sample at different facilities and by different measurement techniques, and the target metabolites and sensitivities to detect them also differ from study to study. RESULTS We developed iDMET, a network-based approach to integrate metabolomic data from different studies based on the differential metabolomic profiles between two groups, instead of the metabolite profiles themselves. As an application, we collected cancer metabolomic data from 27 previously published studies and integrated them using iDMET. A pair of metabolomic changes observed in the same disease from two studies were successfully connected in the network, and a new association between two drugs that may have similar effects on the metabolic reactions was discovered. CONCLUSIONS We believe that iDMET is an efficient tool for integrating heterogeneous metabolomic data and discovering novel relationships between biological phenomena.
Collapse
Affiliation(s)
- Rira Matsuta
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan
- Human Metabolome Technologies, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hiroyuki Yamamoto
- Human Metabolome Technologies, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan
| |
Collapse
|
8
|
Ding Y, Ge Y, Wang D, Liu Q, Sun S, Hua L, Deng J, Luan S, Cheng H, Xie Q, Gong Y, Zhang T. LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway. Mol Cells 2022; 45:388-402. [PMID: 35680373 PMCID: PMC9200663 DOI: 10.14348/molcells.2022.2232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.
Collapse
Affiliation(s)
- Yaodong Ding
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Ge
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haixia Cheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
9
|
Masalha W, Daka K, Woerner J, Pompe N, Weber S, Delev D, Krüger MT, Schnell O, Beck J, Heiland DH, Grauvogel J. Metabolic alterations in meningioma reflect the clinical course. BMC Cancer 2021; 21:211. [PMID: 33648471 PMCID: PMC7923818 DOI: 10.1186/s12885-021-07887-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Meningiomas are common brain tumours that are usually defined by benign clinical course. However, some meningiomas undergo a malignant transformation and recur within a short time period regardless of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can discriminate between benign and malignant meningioma courses. Methods We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered with the AutoPipe algorithm. Results We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-free survival was significantly longer in the glycine/serine cluster. Conclusion Our findings suggest that alterations in glycine/serine metabolism are associated with lower proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations, which may support histological classifications to predict the clinical outcome of patients with meningiomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07887-5.
Collapse
Affiliation(s)
- Waseem Masalha
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Karam Daka
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jakob Woerner
- Institute of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Pompe
- Institute of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Delev
- Department of Neurosurgery, RWTH University, Aachen, Germany
| | - Marie T Krüger
- Department of Neurosurgery, Cantonal Hospital St.Gallen, st. gallen, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Juergen Grauvogel
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
10
|
Silva JM, Wippel HH, Santos MDM, Verissimo DCA, Santos RM, Nogueira FCS, Passos GAR, Sprengel SL, Borba LAB, Carvalho PC, Fischer JDSDG. Proteomics pinpoints alterations in grade I meningiomas of male versus female patients. Sci Rep 2020; 10:10335. [PMID: 32587372 PMCID: PMC7316823 DOI: 10.1038/s41598-020-67113-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Meningiomas are among the most common primary tumors of the central nervous system (CNS) and originate from the arachnoid or meningothelial cells of the meninges. Surgery is the first option of treatment, but depending on the location and invasion patterns, complete removal of the tumor is not always feasible. Reports indicate many differences in meningiomas from male versus female patients; for example, incidence is higher in females, whereas males usually develop the malignant and more aggressive type. With this as motivation, we used shotgun proteomics to compare the proteomic profile of grade I meningioma biopsies of male and female patients. Our results listed several differentially abundant proteins between the two groups; some examples are S100-A4 and proteins involved in RNA splicing events. For males, we identified enriched pathways for cell-matrix organization and for females, pathways related to RNA transporting and processing. We believe our findings contribute to the understanding of the molecular differences between grade I meningiomas of female and male patients.
Collapse
Affiliation(s)
- Janaína M Silva
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
| | - Helisa H Wippel
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
| | - Denildo C A Verissimo
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
- Clinical Hospital of the Federal University of Paraná, Paraná, Brazil
| | - Renata M Santos
- Laboratory of Protein Chemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory of Protein Chemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sergio L Sprengel
- Clinical Hospital of the Federal University of Paraná, Paraná, Brazil
| | - Luis A B Borba
- Clinical Hospital of the Federal University of Paraná, Paraná, Brazil
- Hospital Universitário Evangélico Mackenzie, Paraná, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil.
| | - Juliana de S da G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil.
| |
Collapse
|
11
|
Maiuri F, Mariniello G, Peca C, Guadagno E, Corvino S, d'Avanzo S, Del Basso De Caro M, de Divitiis O. Multicentric and diffuse recurrences of meningiomas. Br J Neurosurg 2020; 34:439-446. [PMID: 32312105 DOI: 10.1080/02688697.2020.1754335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Meningiomas recur with a rate of 10-32% at 10 years. Several features influence the risk of recurrence.Objective: To define the pathological and surgical features at risk of multicentric-diffuse versus local-peripheral recurrence.Methods: Thirty-three patients operated on for intracranial meningiomas who experienced multicentric-diffuse recurrence were retrospectively analyzed. The data of these patients were compared to those of 50 patients who experienced local-peripheral recurrence. The analyzed factors included age and sex, tumor location and shape, brain-tumor interface, entity of resection, WHO grade, Ki67 MIB1, progesterone receptor (PR) expression, number of reoperations, progression of WHO grade, and outcome.Results: Meningiomas which recurred in multicentric-diffuse pattern showed at initial surgery a significantly higher rate of flat-shaped tumors (p = .0008) and of cases with Ki67 Li ≥ 4% (p = .037) than those which recurred in localized-peripheral pattern, whereas other factors did not significantly differ. Among patients with multicentric-diffuse recurrences, 25 underwent one to three reoperations; 17 among them (66%) are alive with local tumor control or slow progression 2-25 years after the initial surgery versus only 2 out of 8 who did not undergo surgery.Conclusions: Flat-shaped meningiomas and those with Ki67 Li ≥ 4% are at higher risk of multicentric-diffuse recurrence. Multiple reoperations over a period of several years may obtain rather long survivals in selected patients with prevalent intradural, not anaplastic tumors and not too extensive dural infiltration.
Collapse
Affiliation(s)
- Francesco Maiuri
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Giuseppe Mariniello
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Carmela Peca
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Elia Guadagno
- Department of Advanced Biomorphological Sciences, "Federico II" University School of Medicine, Naples, Italy
| | - Sergio Corvino
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Stefania d'Avanzo
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | | | - Oreste de Divitiis
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| |
Collapse
|
12
|
Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: the elusive hallmark of cancer. Oncogene 2019; 39:2024-2026. [DOI: 10.1038/s41388-019-1110-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
|
13
|
Rohilla S, Garg HK, Singh I, Yadav RK, Dhaulakhandi DB. rCBV- and ADC-based Grading of Meningiomas With Glimpse Into Emerging Molecular Diagnostics. Basic Clin Neurosci 2018; 9:417-428. [PMID: 30719256 PMCID: PMC6359681 DOI: 10.32598/bcn.9.6.417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/25/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction This study was conducted to grade meningiomas based on relative Cerebral Blood Volume (rCBV) and Apparent Diffusion Coefficient (ADC) to help surgeons plan the approach and extent of operation as well as decide on the need of any adjuvant radio/chemo therapy. The current and evolving genomic, proteomic, and spectroscopic technologies are also discussed which can supplement the current radiologic methods and procedures in grading meningiomas. Methods A total of 35 patients with meningioma prospectively underwent basic MR sequences (T1W, T2W, T2W/FLAIR) in axial, sagittal and coronal planes followed by Diffusion Weighted (DW) imaging having b value of 1000 (minimum ADC values used for analysis). Then, gadobenate dimeglumine/meglumine gadoterate was administered (0.1 mmol/kg at a rate of 4 mL/s) followed by saline flush (20 mL at a rate of 4 mL/s). Next, T2*W/FFE dynamic images were acquired; dynamics showing maximum fall in intensity was used for creating rCBV and relative Cerebral Blood Flow (rCBF) maps and calculating rCBV. Results Both maximum rCBV and minimum ADC within the tumor were not significant for differentiating benign from malignant meningiomas. A cut-off maximum rCBV of 2.5 mL/100 g in peritumoral edema was 75% sensitive, 84.6% specific, and 83.3% accurate in differentiating benign from malignant meningiomas. Conclusion Benign and malignant meningiomas can be differentiated based on maximum rCBV in peritumoral edema but ADC values within the tumor are insignificant in differentiating benign and malignant tumors. rCBV values within tumor, however, may be helpful in subtyping meningiomas, especially transitional and meningothelial meningiomas.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Radiodiagnosis & Imaging, Post Graduate Institute of Medical Sciences, Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Harender K Garg
- Department of Radiodiagnosis & Imaging, Post Graduate Institute of Medical Sciences, Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Ishwar Singh
- Department of Neurosurgery, Post Graduate Institute of Medical Sciences, Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Rohtas K Yadav
- Department of Radiodiagnosis & Imaging, Post Graduate Institute of Medical Sciences, Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Dhara B Dhaulakhandi
- Department of Biotechnology & Molecular Medicine, Post Graduate Institute of Medical Sciences, Regional Cancer Centre, Sharma University of Health Sciences, Rohtak, Haryana, India
| |
Collapse
|
14
|
Epigenetic changes underlie the aggressiveness of histologically benign meningiomas that recur. Hum Pathol 2018; 84:105-114. [PMID: 30261191 DOI: 10.1016/j.humpath.2018.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022]
Abstract
Meningiomas are the most frequent primary brain tumor. Usually, they are curable by surgery, but even after seemingly complete resection, some low-grade lesions recur. Despite recent improvements, signatures having prognostic value in grade I tumors remain poorly characterized. The frequency and delicate location of these tumors suggest that the risk of recurrence might be more accurately predicted. Herein, we show an easy way to evaluate the methylation status of meningiomas and its correlation with the prognosis of the disease. A series of 120 meningiomas, including primary tumors and recurrences, were analyzed histopathologically, and 24 tumor suppressor genes (TSGs) were studied by methylation-specific multiple ligation probe amplification. Long-term follow-up was conducted to classify patients with grade I primary tumors according to their outcomes. We found that hypermethylation in at least one TSG is frequent. The number of hypermethylated TSG per case was significantly higher in recurrences than in primary tumors and in primary benign meningiomas that recurred than in tumors from patients who showed no evidence of disease during follow-up. Finally, hypermethylation in RASSF1A, MLH1, and CDKN2B was an independent prognostic factor associated with the time to recurrence of these benign tumors that were biologically aggressive. To our knowledge, this is one of the widest studies of primary grade I tumors of patients who developed a tumor recurrence. The frequency of epigenetic changes suggests that hypermethylation is an early event in meningiomas, whereas the accumulation of epigenetic changes is related to greater biological aggressiveness and may be a signature of potential clinical relevance.
Collapse
|
15
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
16
|
Cucu AI, Costea CF, Poeată I, Turliuc DM. Prognostic factors in atypical meningioma. ROMANIAN NEUROSURGERY 2017. [DOI: 10.1515/romneu-2017-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAtypical meningioma represent an intermediary group between the benign meningioma (grade I) and anaplastic meningioma (grade III), and are known for high recurrence rate and short life expectancy. After modification of the classification World Health Organization in 2007, subsequent studies have tried to find prognostic factors for recurrence and survival, which are inconstant from author to author. This paper aims to present a short review of the most important prognostic factors in atypical meningioma.
Collapse
|
17
|
Association between epidermal growth factor receptor amplification and ADP-ribosylation factor 1 methylation in human glioblastoma. Cell Oncol (Dordr) 2017. [PMID: 28631186 DOI: 10.1007/s13402-017-0329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Glioblastoma (GB) is the most frequent and most malignant primary brain tumor in adults. Previously, it has been found that both genetic and epigenetic factors may play critical roles in its etiology and prognosis. In addition, it has been found that the epidermal growth factor receptor gene (EGFR) is frequently over-expressed and amplified in primary GBs. Here, we assessed the promoter methylation status of 10 genes relevant to GB and explored associations between these findings and the EGFR gene amplification status. METHODS Tumor samples were obtained from 36 patients with primary GBs. In addition, 6 control specimens were included from patients who were operated for diseases other than brain tumors. The amplification status of the EGFR gene, and its deletion mutant EGFRvIII, were evaluated using FISH and MLPA, respectively. The IDH1/2 gene mutation status was verified using Sanger sequencing. A commercial DNA methylation kit was used to assess the promoter methylation status of 10 pre-selected genes. Metabolic profiles were measured using HR-MAS NMR spectroscopy. The EGFR and ARF1 mRNA expression levels were quantified using qRT-PCR. RESULTS Of the 10 genes analyzed, we found that only ARF1 promoter hypermethylation was significantly associated with EGFR gene amplification. ARF1 is a GTPase that is involved in vesicle trafficking and the Golgi apparatus. Subsequent tumor metabolism measurements revealed a positive association between EGFR amplification and different membrane precursors and methyl-donor metabolites. Finally, we found that EGFR gene amplifications were associated with distinct tumor infiltration patterns, thus representing a putative novel functional association between EGFR gene amplification and ARF1 gene promoter methylation in GB. CONCLUSIONS The results reported here provide a basis for a new hypotheses connecting EGFR gene amplification in GB cells with ARF1 gene promoter methylation, vesicle trafficking, membrane turnover and tumor metabolism. The mechanism(s) underlying these connections and their functional consequences remain to be established.
Collapse
|
18
|
Genetic/molecular alterations of meningiomas and the signaling pathways targeted. Oncotarget 2016; 6:10671-88. [PMID: 25965831 PMCID: PMC4484411 DOI: 10.18632/oncotarget.3870] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/04/2015] [Indexed: 01/10/2023] Open
Abstract
Meningiomas are usually considered to be benign central nervous system tumors; however, they show heterogenous clinical, histolopathological and cytogenetic features associated with a variable outcome. In recent years important advances have been achieved in the identification of the genetic/molecular alterations of meningiomas and the signaling pathways involved. Thus, monosomy 22, which is often associated with mutations of the NF2 gene, has emerged as the most frequent alteration of meningiomas; in addition, several other genes (e.g., AKT1, KLF4, TRAF7, SMO) and chromosomes have been found to be recurrently altered often in association with more complex karyotypes and involvement of multiple signaling pathways. Here we review the current knowledge about the most relevant genes involved and the signaling pathways targeted by such alterations. In addition, we summarize those proposals that have been made so far for classification and prognostic stratification of meningiomas based on their genetic/genomic features.
Collapse
|
19
|
Feichtinger RG, Weis S, Mayr JA, Zimmermann FA, Bogner B, Sperl W, Kofler B. Alterations of oxidative phosphorylation in meningiomas and peripheral nerve sheath tumors. Neuro Oncol 2015; 18:184-94. [PMID: 26106125 DOI: 10.1093/neuonc/nov105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Changes in the mode of aerobic energy production are observed in many solid tumors, though the kinds of changes differ among tumor types. We investigated mitochondrial energy metabolism in meningiomas and peripheral nerve sheath tumors, taking into consideration the histologic heterogeneity of these tumors. METHODS Oxidative phosphorylation (OXPHOS) complexes and porin (a marker for mitochondrial mass) were analyzed by immunohistochemical staining of meningiomas (n = 76) and peripheral nerve sheath tumors (schwannomas: n = 10; neurofibromas: n = 4). The enzymatic activities of OXPHOS complexes and citrate synthase were determined by spectrophotometric measurement. Western blot analysis of OXPHOS complexes, porin, and mitochondrial transcription factor A was performed. Furthermore, mitochondrial DNA copy number was determined. RESULTS The tumors differed with regard to mitochondrial energy metabolism. Low levels of a subset of OXPHOS complexes were frequently observed in World Health Organization grade I meningiomas (percent of cases with a reduction; complex I: 63%; complex II: 67%; complex IV: 56%) and schwannomas (complex III: 40%, complex IV: 100%), whereas in neurofibromas a general reduction of all complexes was observed. In contrast, expression of complexes III and V was similar to that in normal brain tissue in the majority of tumors. Mitochondrial mass was comparable or higher in all tumors compared with normal brain tissue, whereas mitochondrial DNA copy number was reduced. CONCLUSIONS The reduction of OXPHOS complexes in meningiomas and peripheral nerve sheath tumors has potential therapeutic implications, since respiratory chain-deficient tumor cells might be selectively starved by inhibitors of glycolysis or by ketogenic diet.
Collapse
Affiliation(s)
- René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Serge Weis
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Johannes A Mayr
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Franz A Zimmermann
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Barbara Bogner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Wolfgang Sperl
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| |
Collapse
|
20
|
Wirth D, Smith TW, Moser R, Yaroslavsky AN. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy. Phys Med Biol 2015; 60:3003-11. [PMID: 25790138 DOI: 10.1088/0031-9155/60/7/3003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml(-1) aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.
Collapse
Affiliation(s)
- Dennis Wirth
- Department of Physics and Applied Physics, University of Massachusetts, Lowell 1 University Ave. Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
21
|
Ludwig N, Kim YJ, Mueller SC, Backes C, Werner TV, Galata V, Sartorius E, Bohle RM, Keller A, Meese E. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs. Neuro Oncol 2015; 17:1250-60. [PMID: 25681310 DOI: 10.1093/neuonc/nov014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Micro (mi)RNAs are key regulators of gene expression and offer themselves as biomarkers for cancer development and progression. Meningioma is one of the most frequent primary intracranial tumors. As of yet, there are limited data on the role of miRNAs in meningioma of different histological subtypes and the affected signaling pathways. METHODS In this study, we compared expression of 1205 miRNAs in different meningioma grades and histological subtypes using microarrays and independently validated deregulation of selected miRNAs with quantitative real-time PCR. Clinical utility of a subset of miRNAs as biomarkers for World Health Organization (WHO) grade II meningioma based on quantitative real-time data was tested. Potential targets of deregulated miRNAs were discovered with an in silico analysis. RESULTS We identified 13 miRNAs deregulated between different subtypes of benign meningiomas, and 52 miRNAs deregulated in anaplastic meningioma compared with benign meningiomas. Known and putative target genes of deregulated miRNAs include genes involved in epithelial-to-mesenchymal transition for benign meningiomas, and Wnt, transforming growth factor-β, and vascular endothelial growth factor signaling for higher-grade meningiomas. Furthermore, a 4-miRNA signature (miR-222, -34a*, -136, and -497) shows promise as a biomarker differentiating WHO grade II from grade I meningiomas with an area under the curve of 0.75. CONCLUSIONS Our data provide novel insights into the contribution of miRNAs to the phenotypic spectrum in benign meningiomas. By deregulating translation of genes belonging to signaling pathways known to be important for meningioma genesis and progression, miRNAs provide a second in line amplification of growth promoting cellular signals. MiRNAs as biomarkers for diagnosis of aggressive meningiomas might prove useful and should be explored further in a prospective manner.
Collapse
Affiliation(s)
- Nicole Ludwig
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Yoo-Jin Kim
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Sabine C Mueller
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Christina Backes
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Tamara V Werner
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Valentina Galata
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Elke Sartorius
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Rainer M Bohle
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Andreas Keller
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Eckart Meese
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| |
Collapse
|
22
|
Barresi V, Branca G, Caffo M, Tuccari G. p-CREB expression in human meningiomas: correlation with angiogenesis and recurrence risk. J Neurooncol 2015; 122:87-95. [PMID: 25563814 DOI: 10.1007/s11060-014-1706-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
Despite total surgical resection, a percentage of meningiomas do unexpectedly recur. At present the prediction of recurrence risk and the management of recurrent tumours represent major issues in the patients affected by meningiomas. The present study aims at investigating the prognostic value of the expression of the phosphorylated transcription factor cyclic AMP responsive element binding protein (p-CREB) in a series of meningiomas of different histotype and grade. While no p-CREB expression was found in specimens of normal leptomeninges, 71 % of meningiomas in our cohort expressed p-CREB. In addition, nuclear expression of p-CREB was present in the endothelia of tumor vessels in all of the meningiomas, but not in the vessels of the non-neoplastic meninges. High expression of p-CREB was significantly more frequent in meningiomas showing atypical, chordoid or microcystic histotype (P = 0.0003), high histological grade (P < 0.0001), high Ki-67 labeling index (P = 0.0001), high microvessel density counts (P < 0.0001) and high vascular endothelial growth factor expression (P = 0.0113). In addition, high p-CREB expression was significantly associated with the development of recurrences (P = 0.0031) and it was a significant negative, albeit not independent, prognostic factor for disease free survival in patients with meningiomas submitted to complete surgical removal (P = 0.0019). In conclusion, we showed that p-CREB is expressed in human meningiomas and that it represents a significant predictor of recurrence risk in these tumors. Due to its high expression in more aggressive tumors and in the tumor vessels, it may represent a novel therapeutic target in meningiomas.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Human Pathology "Gaetano Barresi", AOU Polyclinic G. Martino, Pad D, Via Consolare Valeria, 98125, Messina, Italy,
| | | | | | | |
Collapse
|
23
|
Cornelius J, Slotty P, Kamp M, Schneiderhan T, Steiger H, El-Khatib M. Impact of 5-aminolevulinic acid fluorescence-guided surgery on the extent of resection of meningiomas – With special regard to high-grade tumors. Photodiagnosis Photodyn Ther 2014; 11:481-90. [DOI: 10.1016/j.pdpdt.2014.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/27/2014] [Accepted: 07/30/2014] [Indexed: 12/23/2022]
|
24
|
Monleon D, Garcia-Valles R, Morales JM, Brioche T, Olaso-Gonzalez G, Lopez-Grueso R, Gomez-Cabrera MC, Viña J. Metabolomic analysis of long-term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest. J Appl Physiol (1985) 2014; 117:1110-9. [PMID: 25190738 DOI: 10.1152/japplphysiol.00585.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exercise has been associated with several beneficial effects and is one of the major modulators of metabolism. The working muscle produces and releases substances during exercise that mediate the adaptation of the muscle but also improve the metabolic flexibility of the complete organism, leading to adjustable substrate utilization. Metabolomic studies on physical exercise are scarce and most of them have been focused on the effects of intense exercise in professional sportsmen. The aim of our study was to determine plasma metabolomic adaptations in mice after a long-term spontaneous exercise intervention study (18 mo). The metabolic changes induced by long-term spontaneous exercise were sufficient to achieve complete discrimination between groups in the principal component analysis scores plot. We identified plasma indicators of an increase in lipolysis (elevated unsaturated fatty acids and glycerol), a decrease in glucose and insulin plasma levels and in heart glucose consumption (by PET), and altered glucose metabolism (decreased alanine and lactate) in the wheel running group. Collectively these data are compatible with an increase in skeletal muscle insulin sensitivity in the active mice. We also found an increase in amino acids involved in catecholamine synthesis (tyrosine and phenylalanine), in the skeletal muscle pool of creatine phosphate and taurine, and changes in phospholipid metabolism (phosphocholine and choline in lipids) between the sedentary and the active mice. In conclusion, long-term spontaneous wheel running induces significant plasma and tissue (heart) metabolic responses that remain even when the animal is at rest.
Collapse
Affiliation(s)
- Daniel Monleon
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | | | - Jose Manuel Morales
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Thomas Brioche
- Laboratory "Movement Sport and Health Sciences," University Rennes, France; and
| | | | - Raul Lopez-Grueso
- Sports Research Centre, Miguel Hernandez University of Elche, Elche, Spain
| | | | - Jose Viña
- Department of Physiology, University of Valencia, Valencia, Spain;
| |
Collapse
|
25
|
van de Nes JAP, Griewank KG, Schmid KW, Grabellus F. Immunocytochemical analysis of glucose transporter protein-1 (GLUT-1) in typical, brain invasive, atypical and anaplastic meningioma. Neuropathology 2014; 35:24-36. [PMID: 25168354 DOI: 10.1111/neup.12148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022]
Abstract
Glucose transporter-1 (GLUT-1) is one of the major isoforms of the family of glucose transporter proteins that facilitates the import of glucose in human cells to fuel anaerobic metabolism. The present study was meant to determine the extent of the anaerobic/hypoxic state of the intratumoral microenvironment by staining for GLUT-1 in intracranial non-embolized typical (WHO grade I; n = 40), brain invasive and atypical (each WHO grade II; n = 38) and anaplastic meningiomas (WHO grade III, n = 6). In addition, GLUT-1 staining levels were compared with the various histological criteria used for diagnosing WHO grade II and III meningiomas, namely, brain invasion, increased mitotic activity and atypical cytoarchitectural change, defined by the presence of at least three out of hypercellularity, sheet-like growth, prominent nucleoli, small cell change and "spontaneous" necrosis. The level of tumor hypoxia was assessed by converting the extent and intensity of the stainings by multiplication in an immunoreactive score (IRS) and statistically evaluated. The results were as follows. (1) While GLUT-1 expression was found to be mainly weak in WHO grade I meningiomas (IRS = 1-4) and to be consistently strong in WHO grade III meningiomas (IRS = 6-12), in WHO grade II meningiomas GLUT-1 expression was variable (IRS = 1-9). (2) Histologically typical, but brain invasive meningiomas (WHO grade II) showed no or similarly low levels of GLUT-1 expression as observed in WHO grade I meningiomas (IRS = 0-4). (3) GLUT-1 expression was observed in the form of a patchy, multifocal staining reaction in 76% of stained WHO grade I-III meningiomas, while diffuse staining (in 11%) and combined multifocal and areas of diffuse staining (in 13%) were only detected in WHO grades II and III meningiomas, except for uniform staining in angiomatous WHO grade I meningioma. (4) "Spontaneous" necrosis and small cell change typically occurred away from the intratumoral capillary network embedded within the pattern of GLUT-1 staining. Taken together, GLUT-1 staining cannot be applied as a substitute for histologic grading in order to predict tumor behavior. However, assessment of tumor hypoxia in association with "spontaneous" necrosis and foci of small cell change may substantially contribute to the neuropathologic diagnosis of WHO grades II and III meningioma.
Collapse
|
26
|
Hammouche S, Clark S, Wong AHL, Eldridge P, Farah JO. Long-term survival analysis of atypical meningiomas: survival rates, prognostic factors, operative and radiotherapy treatment. Acta Neurochir (Wien) 2014; 156:1475-81. [PMID: 24965072 DOI: 10.1007/s00701-014-2156-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 06/05/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND The rarity and the inconsistent criteria for defining atypical meningioma prior to the WHO 2007 classification made its management and prognostic factors poorly understood. Only few articles have addressed the survival rates of WHO-classified atypical meningiomas. The small number or the disproportionate representation of irradiated patients was a weakness for these articles. This study evaluated whether the extent of surgery and receiving adjuvant radiotherapy after an initial operation along with other patient characteristics influenced the recurrence and survival rates of atypical meningiomas. METHODS The clinical and surgical notes of the 79 patients with grade II atypical meningioma treated at our center over 13 years were retrospectively evaluated. The histology grading was consistent with WHO 2007 classification. The Simpson grading system was used to assess the extent of surgical resection. Kaplan Meier analysis, Cox multivariate regression analysis, and the Log-rank test were conducted using STATA® statistical package. RESULTS The average age at the time of initial operation was 58 years, and 54 % were males. The mean follow-up period was 50 months. In Cox multivariate analysis, only Simpson grading was predictive of recurrence (hazard ratio = 2.22 / 1 increase in Simpson grade. p = 0.003). Simpson grade I patients had a relapse-free survival rate of 97 and 74 % at one and five years, respectively, compared with 88 and 32 % in the subtotal resection group (Simpson grades II to IV). There was no statistically significant correlation between recurrence and subjecting patients to postoperative radiotherapy. Apart from Simpson grade I patients, there was a general trend for worse outcome in irradiated patients. CONCLUSIONS The most important prognostic factor in determining recurrence was Simpson grading. There was no statistically significant impact of adjuvant radiotherapy on the recurrence of atypical meningiomas. Meta-analysis for the existing literature is needed.
Collapse
Affiliation(s)
- Salah Hammouche
- Neurosurgery Department, The Walton Centre for Neurology and Neurosurgery NHS Foundation Trust, Liverpool, L9 7LJ, Merseyside, UK,
| | | | | | | | | |
Collapse
|
27
|
Marrachelli VG, Monleon D, Rentero P, Mansego ML, Morales JM, Galan I, Segura R, Martinez F, Martin-Escudero JC, Briongos L, Marin P, Lliso G, Chaves FJ, Redon J. Genomic and metabolomic profile associated to microalbuminuria. PLoS One 2014; 9:e98227. [PMID: 24918908 PMCID: PMC4053470 DOI: 10.1371/journal.pone.0098227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/30/2014] [Indexed: 01/14/2023] Open
Abstract
To identify factors related with the risk to develop microalbuminuria using combined genomic and metabolomic values from a general population study. One thousand five hundred and two subjects, Caucasian, more than 18 years, representative of the general population, were included. Blood pressure measurement and albumin/creatinine ratio were measured in a urine sample. Using SNPlex, 1251 SNPs potentially associated to urinary albumin excretion (UAE) were analyzed. Serum metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54 ± 19, 50.6% men, ACR>30 mg/g in 81 subjects) with high genotyping call rate were analysed. A characteristic metabolomic profile, which included products from mitochondrial and extra mitochondrial metabolism as well as branched amino acids and their derivative signals, were observed in microalbuminuric as compare to normoalbuminuric subjects. The comparison of the metabolomic profile between subjects with different UAE status for each of the genotypes associated to microalbuminuria revealed two SNPs, the rs10492025_TT of RPH3A gene and the rs4359_CC of ACE gene, with minimal or no statistically significant differences. Subjects with and without microalbuminuria, who shared the same genotype and metabolomic profile, differed in age. Microalbuminurics with the CC genotype of the rs4359 polymorphism and with the TT genotype of the rs10492025 polymorphism were seven years older and seventeen years younger, respectively as compared to the whole microalbuminuric subjects. With the same metabolomic environment, characteristic of subjects with microalbuminuria, the TT genotype of the rs10492025 polymorphism seems to increase and the CC genotype of the rs4359 polymorphism seems to reduce risk to develop microalbuminuria.
Collapse
Affiliation(s)
- Vannina G. Marrachelli
- Metabolomic and Molecular Image Lab, Health Research Institute, INCLIVA, Valencia, Spain
| | - Daniel Monleon
- Metabolomic and Molecular Image Lab, Health Research Institute, INCLIVA, Valencia, Spain
| | - Pilar Rentero
- Genotyping and Genetic Diagnosis Unit, Health Research Institute, INCLIVA, Valencia, Spain
| | - María L. Mansego
- Department of Nutrition, Food Science and Physiology. University of Navarra, Pamplona, Spain
- CIBERObn, Health Institute Carlos III, Madrid, Spain
| | - Jose Manuel Morales
- Metabolomic and Molecular Image Lab, Health Research Institute, INCLIVA, Valencia, Spain
| | - Inma Galan
- Genotyping and Genetic Diagnosis Unit, Health Research Institute, INCLIVA, Valencia, Spain
| | - Remedios Segura
- Metabolomic and Molecular Image Lab, Health Research Institute, INCLIVA, Valencia, Spain
| | - Fernando Martinez
- CIBERObn, Health Institute Carlos III, Madrid, Spain
- Hypertension Unit, Internal Medicine, Hospital Clinico, Valencia, University of Valencia, Spain
| | | | - Laisa Briongos
- Hypertension Unit, Internal Medicine, Hospital Clinico, Valencia, University of Valencia, Spain
| | - Pablo Marin
- Genotyping and Genetic Diagnosis Unit, Health Research Institute, INCLIVA, Valencia, Spain
| | - Gloria Lliso
- CIBERObn, Health Institute Carlos III, Madrid, Spain
| | - Felipe Javier Chaves
- Genotyping and Genetic Diagnosis Unit, Health Research Institute, INCLIVA, Valencia, Spain
- CIBERDem, Health Institute Carlos III, Madrid, Spain
| | - Josep Redon
- CIBERObn, Health Institute Carlos III, Madrid, Spain
- Hypertension Unit, Internal Medicine, Hospital Clinico, Valencia, University of Valencia, Spain
| |
Collapse
|
28
|
Anaplastic meningioma with rapid growth after omental flap transposition: a case report and experimental study. Brain Tumor Pathol 2014; 32:137-44. [DOI: 10.1007/s10014-014-0190-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/18/2014] [Indexed: 12/27/2022]
|
29
|
Serna E, Morales JM, Mata M, Gonzalez-Darder J, San Miguel T, Gil-Benso R, Lopez-Gines C, Cerda-Nicolas M, Monleon D. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma. PLoS One 2013; 8:e67291. [PMID: 23840654 PMCID: PMC3696107 DOI: 10.1371/journal.pone.0067291] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022] Open
Abstract
Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.
Collapse
Affiliation(s)
- Eva Serna
- Unidad Central de Investigación en Medicina, Universitat de Valéncia, Valencia, Spain
| | - José Manuel Morales
- Unidad Central de Investigación en Medicina, Universitat de Valéncia, Valencia, Spain
| | - Manuel Mata
- Unidad Central de Investigación en Medicina, Universitat de Valéncia, Valencia, Spain
| | - José Gonzalez-Darder
- Servicio de Neurocirugía, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | | | - Miguel Cerda-Nicolas
- Departamento de Patología, Universitat de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Madrid, Spain
| | - Daniel Monleon
- Fundación de Investigación del Hospital Clínico Universitario de Valencia/Instituto de Investigacion Sanitaria Clinico Valencia (INCLIVA), Valencia, Spain
- * E-mail:
| |
Collapse
|
30
|
Iwami K, Natsume A, Ohno M, Ikeda H, Mineno J, Nukaya I, Okamoto S, Fujiwara H, Yasukawa M, Shiku H, Wakabayashi T. Adoptive transfer of genetically modified Wilms' tumor 1-specific T cells in a novel malignant skull base meningioma model. Neuro Oncol 2013; 15:747-58. [PMID: 23460320 DOI: 10.1093/neuonc/not007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Meningiomas are the most commonly diagnosed primary intracranial neoplasms. Despite significant advances in modern therapies, the management of malignant meningioma and skull base meningioma remains a challenge. Thus, the development of new treatment modalities is urgently needed for these difficult-to-treat meningiomas. The goal of this study was to investigate the potential of build-in short interfering RNA-based Wilms' tumor protein (WT1)-targeted adoptive immunotherapy in a reproducible mouse model of malignant skull base meningioma that we recently established. METHODS We compared WT1 mRNA expression in human meningioma tissues and gliomas by quantitative real-time reverse-transcription polymerase chain reaction. Human malignant meningioma cells (IOMM-Lee cells) were labeled with green fluorescent protein (GFP) and implanted at the skull base of immunodeficient mice by using the postglenoid foramen injection (PGFi) technique. The animals were sacrificed at specific time points for analysis of tumor formation. Two groups of animals received adoptive immunotherapy with control peripheral blood mononuclear cells (PBMCs) or WT1-targeted PBMCs. RESULTS High levels of WT1 mRNA expression were observed in many meningioma tissues and all meningioma cell lines. IOMM-Lee-GFP cells were successfully implanted using the PGFi technique, and malignant skull base meningiomas were induced in all mice. The systemically delivered WT1-targeted PBMCs infiltrated skull base meningiomas and significantly delayed tumor growth and increased survival time. CONCLUSIONS We have established a reproducible mouse model of malignant skull base meningioma. WT1-targeted adoptive immunotherapy appears to be a promising approach for the treatment of difficult-to-treat meningiomas.
Collapse
Affiliation(s)
- Kenichiro Iwami
- Department of Neurosurgery, Nagoya University, Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ivorra C, García-Vicent C, Chaves FJ, Monleón D, Morales JM, Lurbe E. Metabolomic profiling in blood from umbilical cords of low birth weight newborns. J Transl Med 2012; 10:142. [PMID: 22776444 PMCID: PMC3551816 DOI: 10.1186/1479-5876-10-142] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Low birth weight has been linked to an increased risk to develop obesity, type 2 diabetes, and hypertension in adult life, although the mechanisms underlying the association are not well understood. The objective was to determine whether the metabolomic profile of plasma from umbilical cord differs between low and normal birth weight newborns. METHODS Fifty healthy pregnant women and their infants were selected. The eligibility criteria were being born at term and having a normal pregnancy. Pairs were grouped according to their birth weight: low birth weight (LBW, birth weight < 10th percentile, n = 20) and control (control, birth weight between the 75th-90th percentiles, n = 30). Nuclear Magnetic Resonance (NMR) was used to generate metabolic fingerprints of umbilical cord plasma samples. Simultaneously, the metabolomic profiles of the mothers were analysed. The resulting data were subjected to chemometric, principal component and partial least squares discriminant analyses. RESULTS Umbilical cord plasma from LBW and control newborns displayed a clearly differentiated metabolic profile. Seven metabolites were identified that discriminate the LBW from the control group. LBW newborns had lower levels of choline, proline, glutamine, alanine and glucose than did the control newborns, while plasma levels of phenylalanine and citrulline were higher in LBW newborns (p < 0.05). No significant differences were found between the two groups of mothers. CONCLUSIONS Low birth weight newborns display a differential metabolomic profile than those of normal birth weight, a finding not present in the mothers. The meaning and the potential utility of the findings as biomarkers of risk need to be addressed in future studies.
Collapse
Affiliation(s)
- Carmen Ivorra
- Cardiovascular Risk Unit, Consorcio, Hospital General, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Wirth D, Snuderl M, Sheth S, Kwon CS, Frosch MP, Curry W, Yaroslavsky AN. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:026012. [PMID: 22463044 DOI: 10.1117/1.jbo.17.2.026012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.
Collapse
Affiliation(s)
- Dennis Wirth
- University of Massachusetts, Department of Physics and Applied Physics, One University Avenue, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | |
Collapse
|