1
|
Lin Y, Wang S, Zhang Y, She J, Zhang Y, Zhao R, Qi Z, Yang R, Zhang L, Yang Q. Drug repurposing opportunities for breast cancer and seven common subtypes. J Steroid Biochem Mol Biol 2025; 246:106652. [PMID: 39622444 DOI: 10.1016/j.jsbmb.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Breast cancer is a substantial global health problem, and drug repurposing provides novel opportunities to address the urgent need for therapeutics. According to significant Mendelian randomization (MR) results, we identified 26 genes for overall breast cancer, 25 genes for ER+ breast cancer and 4 genes (CASP8, KCNN4, MYLK4, TNNT3) for ER- breast cancer. In order to explore the differences between 5 intrinsic subtypes, we found 29 actionable druggable genes for Luminal A breast cancer, 2 genes (IGF2 and TNNT3) for Luminal B breast cancer, 1 gene (FAAH) for Luminal B HER2 negative breast cancer, and 3 genes (CASP8, KCNN4, and TP53) for triple-negative breast cancer. After colocalization analysis, we determined OPRL1 as a prioritized target in both overall and Luminal A breast cancer. Additionally, FES and FAAH were considered prioritized targets for ER+ breast cancer. Through molecular docking, crizotinib stand out as a prioritized FES target drug repurposing opportunity with the lowest binding energy (-10.13 kJ·mol-1) and CCK-8 assay showed ER+ cell groups were more sensitive to crizotinib than ER- cell groups. In conclusion, OPRL1 was identified as a prioritized target for both overall and Luminal A breast cancer. Moreover, FES and FAAH were recognized as prioritized targets for ER+ breast cancer.
Collapse
Affiliation(s)
- Yilong Lin
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China.
| | - Songsong Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yun Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Medical college, Guangxi University, Nanning, China
| | - Jing She
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China
| | - Yue Zhang
- Department of Hematology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruidan Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongquan Qi
- Medical college, Guangxi University, Nanning, China; Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Ruiqin Yang
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liyi Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Qingmo Yang
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Abou Kors T, Meier M, Mühlenbruch L, Betzler AC, Oliveri F, Bens M, Thomas J, Kraus JM, Doescher J, von Witzleben A, Hofmann L, Ezic J, Huber D, Benckendorff J, Barth TFE, Greve J, Schuler PJ, Brunner C, Blackburn JM, Hoffmann TK, Ottensmeier C, Kestler HA, Rammensee HG, Walz JS, Laban S. Multi-omics analysis of overexpressed tumor-associated proteins: gene expression, immunopeptide presentation, and antibody response in oropharyngeal squamous cell carcinoma, with a focus on cancer-testis antigens. Front Immunol 2024; 15:1408173. [PMID: 39136024 PMCID: PMC11317303 DOI: 10.3389/fimmu.2024.1408173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The human leukocyte antigen complex (HLA) is essential for inducing specific immune responses to cancer by presenting tumor-associated peptides (TAP) to T cells. Overexpressed tumor associated antigens, mainly cancer-testis antigens (CTA), are outlined as essential targets for immunotherapy in oropharyngeal squamous cell carcinoma (OPSCC). This study assessed the degree to which presentation, gene expression, and antibody response (AR) of TAP, mainly CTA, are correlated in OPSCC patients to evaluate their potential as immunotherapy targets. Materials and methods Snap-frozen tumor (NLigand/RNA=40), healthy mucosa (NRNA=6), and healthy tonsils (NLigand=5) samples were obtained. RNA-Seq was performed using Illumina HiSeq 2500/NovaSeq 6000 and whole exome sequencing (WES) utilizing NextSeq500. HLA ligands were isolated from tumor tissue using immunoaffinity purification, UHPLC, and analyzed by tandem MS. Antibodies were measured in serum (NAb=27) utilizing the KREX™ CT262 protein array. Data analysis focused on 312 proteins (KREX™ CT262 panel + overexpressed self-proteins). Results 183 and 94 of HLA class I and II TAP were identified by comparative profiling with healthy tonsils. Genes from 26 TAP were overexpressed in tumors compared to healthy mucosa (LFC>1; FDR<0.05). Low concordance (r=0.25; p<0.0001) was found between upregulated mRNA and class I TAP. The specific mode of correlation of TAP was found to be dependent on clinical parameters. A lack of correlation was observed both between mRNA and class II TAP, as well as between class II tumor-unique TAP (TAP-U) presentation and antibody response (AR) levels. Discussion This study demonstrates that focusing exclusively on gene transcript levels fails to capture the full extent of TAP presentation in OPSCC. Furthermore, our findings reveal that although CTA are presented at relatively low levels, a few CTA TAP-U show potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Tsima Abou Kors
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Matthias Meier
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Franziska Oliveri
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Department of Otolaryngology, Augsburg University Hospital, Augsburg, Germany
| | - Adrian von Witzleben
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezic
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Diana Huber
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | | | | | - Jens Greve
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Christian Ottensmeier
- Institute of Systems, Molecular and Integrative Biology, Liverpool Head and Neck Center, University of Liverpool, Faculty of Medicine, Liverpool, United Kingdom
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| |
Collapse
|
4
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
5
|
Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers. Commun Biol 2022; 5:594. [PMID: 35710732 PMCID: PMC9203749 DOI: 10.1038/s42003-022-03540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant DNA methylation has emerged as a hallmark in several cancers and contributes to risk, oncogenesis, progression, and prognosis. In this study, we performed imputation-based and conventional methylome-wide association analyses for breast cancer (BrCa) and prostate cancer (PrCa). The imputation-based approach identified DNA methylation at cytosine-phosphate-guanine sites (CpGs) associated with BrCa and PrCa risk utilising genome-wide association summary statistics (NBrCa = 228,951, NPrCa = 140,254) and prebuilt methylation prediction models, while the conventional approach identified CpG associations utilising TCGA and GEO experimental methylation data (NBrCa = 621, NPrCa = 241). Enrichment analysis of the association results implicated 77 and 81 genetically influenced CpGs for BrCa and PrCa, respectively. Furthermore, analysis of differential gene expression around these CpGs suggests a genome-epigenome-transcriptome mechanistic relationship. Conditional analyses identified multiple independent secondary SNP associations (Pcond < 0.05) around 28 BrCa and 22 PrCa CpGs. Cross-cancer analysis identified eight common CpGs, including a strong therapeutic target in SREBF1 (17p11.2)—a key player in lipid metabolism. These findings highlight the utility of integrative analysis of multi-omic cancer data to identify robust biomarkers and understand their regulatory effects on cancer risk. Methylome-wide association studies identify genetically-influenced CpGs associated with breast and prostate cancer risk and (epi)genome-transcriptome mechanistic relationships, with lipid metabolism genes implicated as potential therapeutic targets.
Collapse
|
6
|
Behring M, Ye Y, Elkholy A, Bajpai P, Agarwal S, Kim H, Ojesina AI, Wiener HW, Manne U, Shrestha S, Vazquez AI. Immunophenotype-associated gene signature in ductal breast tumors varies by receptor subtype, but the expression of individual signature genes remains consistent. Cancer Med 2021; 10:5712-5720. [PMID: 34189853 PMCID: PMC8366080 DOI: 10.1002/cam4.4095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In silico deconvolution of invasive immune cell infiltration in bulk breast tumors helps characterize immunophenotype, expands treatment options, and influences survival endpoints. In this study, we identify the differential expression (DE) of the LM22 signature to classify immune-rich and -poor breast tumors and evaluate immune infiltration by receptor subtype and lymph node metastasis. METHODS Using publicly available data, we applied the CIBERSORT algorithm to estimate immune cells infiltrating the tumor into immune-rich and immune-poor groups. We then tested the association of receptor subtype and nodal status with immune-rich/poor phenotype. We used DE to test individual signature genes and over-representation analysis for related pathways. RESULTS CCL19 and CXCL9 expression differed between rich/poor signature groups regardless of subtype. Overexpression of CHI3L2 and FES was observed in triple negative breast cancers (TNBCs) relative to other subtypes in immune-rich tumors. Non-signature genes, LYZ, C1QB, CORO1A, EVI2B, GBP1, PSMB9, and CD52 were consistently overexpressed in immune-rich tumors, and SCUBE2 and GRIA2 were associated with immune-poor tumors. Immune-rich tumors had significant upregulation of genes/pathways while none were identified in immune-poor tumors. CONCLUSIONS Overall, the proportion of immune-rich/poor tumors differed by subtype; however, a subset of 10 LM22 genes that marked immune-rich status remained the same across subtype. Non-LM22 genes differentially expressed between the phenotypes suggest that the biologic processes responsible for immune-poor phenotype are not yet well characterized.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Datasets as Topic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Michael Behring
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Yuanfan Ye
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Amr Elkholy
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Prachi Bajpai
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Sumit Agarwal
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Akinyemi I. Ojesina
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Howard W Wiener
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Upender Manne
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
- Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Sadeep Shrestha
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Ana I. Vazquez
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMIUSA
- Institute for Quantitative Health Science & EngineeringEast LansingMIUSA
| |
Collapse
|
7
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Zhang C, Ge S, Wang J, Jing X, Li H, Mei S, Zhang J, Liang K, Xu H, Zhang X, Zhang C. Epigenomic profiling of DNA methylation for hepatocellular carcinoma diagnosis and prognosis prediction. J Gastroenterol Hepatol 2019; 34:1869-1877. [PMID: 31038805 DOI: 10.1111/jgh.14694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM DNA hypermethylation has emerged as a novel molecular biomarker for the diagnosis and prognosis prediction of many cancers. We aimed to identify clinically useful biomarkers regulated by DNA methylation in hepatocellular carcinoma (HCC). METHODS Genome-wide methylation analysis in HCCs and paired noncancerous tissues was performed using an Illumina Infinium HumanMethylation 450K BeadChip array. Methylation-specific polymerase chain reaction and pyrosequencing were used to validate the methylation status of selected genes in 100 paired HCCs and noncancerous samples. RESULTS A total of 97 027 (20.0%) out of 485 577 CpG sites significantly were differed between HCC and noncancerous tissues. Among all the significant CpG sites, 48.8% are hypermethylated and 51.2% are hypomethylated in HCCs. Multiple signaling pathways (AMP-activated protein kinase, estrogen, and adipocytokine) involved in gene methylation were identified in HCC. FES was selected for further analysis based on its high level of methylation confirmed by polymerase chain reaction and pyrosequencing. The result showed that FES hypermethylation was correlated with tumor size (0.001), serum alpha fetoprotein (0.023), and tumor differentiation (0.006). FES protein was significantly downregulated in 51/100 (51%) HCCs, and 94.12% (48/51) of them were due to promoter hypermethylation. Both FES hypermethylation and protein downregulation were associated with the progression-free survival and overall survival of HCC patients. Overexpressed and knockdown of FES confirmed its inhibitory effect on the proliferation and migration of HCC cells. CONCLUSIONS We identified many new differentially methylated CpGs in HCCs and demonstrate that FES functions as a tumor suppressor gene in HCC and its methylation status could be used as an indicator for prognosis of HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Shuang Ge
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Jun Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Xiaotong Jing
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | | | - Shuyu Mei
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Juan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Ke Liang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Hui Xu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Xiaoying Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
9
|
Kim BH, Kim YJ, Kim MH, Na YR, Jung D, Seok SH, Kim J, Kim HJ. Identification of FES as a Novel Radiosensitizing Target in Human Cancers. Clin Cancer Res 2019; 26:265-273. [PMID: 31573955 DOI: 10.1158/1078-0432.ccr-19-0610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The identification of novel targets for developing synergistic drug-radiation combinations would pave the way to overcome tumor radioresistance. We conducted cell-based screening of a human kinome siRNA library to identify a radiation-specific kinase that has a synergistic toxic effect with radiation upon inhibition and is not essential for cell survival in the absence of radiation. EXPERIMENTAL DESIGN Unbiased RNAi screening was performed by transfecting A549 cells with a human kinome siRNA library followed by irradiation. Radiosensitizing effects of a target gene and involved mechanisms were examined. RESULTS We identified the nonreceptor protein tyrosine kinase FES (FEline Sarcoma oncogene) as a radiosensitizing target. The expression of FES was increased in response to irradiation. Cell viability and clonogenic survival after irradiation were significantly decreased by FES knockdown in lung and pancreatic cancer cell lines. In contrast, FES depletion alone did not significantly affect cell proliferation without irradiation. An inducible RNAi mouse xenograft model verified in vivo radiosensitizing effects. FES-depleted cells showed increased apoptosis, DNA damage, G2-M phase arrest, and mitotic catastrophe after irradiation. FES depletion promoted radiation-induced reactive oxygen species formation, which resulted in phosphorylation of S6K and MDM2. The radiosensitizing effect of FES knockdown was partially reversed by inhibition of S6K activity. Consistent with the increase in phosphorylated MDM2, an increase in nuclear p53 levels was observed, which appears to contribute increased radiosensitivity of FES-depleted cells. CONCLUSIONS We uncovered that inhibition of FES could be a potential strategy for inducing radiosensitization in cancer. Our results provide the basis for developing novel radiosensitizers.
Collapse
Affiliation(s)
- Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yong Joon Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Daun Jung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Hiller NDJ, Silva NAAE, Faria RX, Souza ALA, Resende JALC, Borges Farias A, Correia Romeiro N, de Luna Martins D. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. ChemMedChem 2018; 13:1395-1404. [PMID: 29856519 DOI: 10.1002/cmdc.201800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.
Collapse
Affiliation(s)
- Noemi de J Hiller
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Nayane A A E Silva
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Robson X Faria
- Laboratory of Toxoplasmosis and other Protozoan Diseases, Oswaldo Cruz Institute (Fiocruz), Brasil
| | - André Luís A Souza
- Laboratory of Biochemistry of Peptides, Oswaldo Cruz Institute (Fiocruz), Brazil
| | - Jackson A L C Resende
- Laboratory of Solid-State Chemistry, Universidade Federal do Mato Grosso, Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Barra do Garças, MT, 78600-000, Brazil
| | - André Borges Farias
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Nelilma Correia Romeiro
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
11
|
Du X, Li W, Du G, Cho H, Yu M, Fang Q, Lee LP, Fang J. Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay. Anal Chem 2018; 90:3253-3261. [DOI: 10.1021/acs.analchem.7b04772] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaohui Du
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guansheng Du
- Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hansang Cho
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Qun Fang
- Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Luke P. Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Asai A, Miyata Y, Takehara K, Kanda S, Watanabe SI, Greer PA, Sakai H. Pathological significance and prognostic significance of FES expression in bladder cancer vary according to tumor grade. J Cancer Res Clin Oncol 2017; 144:21-31. [PMID: 28952025 PMCID: PMC5756570 DOI: 10.1007/s00432-017-2524-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022]
Abstract
Purpose The feline sarcoma oncogene protein (FES) is a non-receptor tyrosine kinase implicated in both oncogenesis and tumor suppression. Here, cancer cell lines and human tissues were employed to clarify the pathological and prognostic significance of FES in bladder cancer. Methods The relationship between FES expression and cancer aggressiveness was investigated using 3 cell lines (T24: corresponding to grade 3, 5637: corresponding to grade 2, and RT4: corresponding to grade 1) and 203 tissues derived from human bladder malignancies. Proliferation, invasion, and migration of cancer cells were assessed following the knockdown (KD) of FES expression by the siRNA method. Relationships between FES expression and pathological features, aggressiveness, and outcome were investigated. Results FES-KD inhibited the proliferation, migration, and invasion of T24 cells but not of RT4 cells and 5637 cells. Considering all patients, FES expression demonstrated a negative relationship with grade but no association with muscle invasion or cancer cell proliferation. However, it was positively correlated with pT stage and cell proliferation in high-grade tumors (p = 0.002); no such association was found for low-grade tumors. In addition, elevated FES expression was a negative prognostic indicator of metastasis after radical surgery for patients with high-grade tumors (p = 0.021) but not for those with low-grade malignancies. Conclusions FES appeared to act as a suppressor of carcinogenesis, being associated with low tumor grade in the overall patient group. However, its expression correlated with cancer aggressiveness and poor outcome in high-grade bladder cancer. FES, therefore, represents a potential therapeutic target and useful prognostic factor for such patients.
Collapse
Affiliation(s)
- Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Kosuke Takehara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeru Kanda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shin-Ichi Watanabe
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's Cancer Research Institute, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
13
|
Interleukin-4 Expressed By Neoplastic Cells Provokes an Anti-Metastatic Myeloid Immune Response. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6:1-9. [PMID: 27563494 PMCID: PMC4995104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Interleukin-4 (IL-4) can induce macrophages to undergo alternative activation and polarize toward an M2-like or wound healing phenotype. Tumor associated macrophages (TAMs) are thought to assume M2-like properties, and it has been suggested they promote tumor growth and metastasis through effects on the tumor stroma, including extracelluar matrix remodeling and angiogenesis. IL-4 also promotes macrophage survival and formation of multinucleated giant cells, which have enhanced phagocytic behavior. This study was designed to explore the effect of cancer cell derived IL-4 on the tumor immune stroma and metastasis. METHODS The metastatic mouse mammary carcinoma cell line AC2M2 was transduced with control or IL-4 encoding retroviruses and employed in orthotopic engraftment models. Tumor growth and metastasis were assessed. The cellular composition and biomarker expression of tumors were examined by immunohistochemical staining and flow cytometry; the transcriptome of the immune stroma was analyzed by nanoString based transcript quantitation; and in vivo and in vitro interactions between cancer cells and macrophages were assessed by flow cytometry and co-culture with video-time lapse microscopy, respectively. RESULTS Unexpectedly, tumors from IL-4 expressing AC2M2 engrafted cells grew at reduced rates, and most surprising, they lost all metastatic potential relative to tumors from control AC2M2 cells. Myeloid cell numbers were not increased in IL-4 expressing tumors, but their expression of the M2 marker arginase I was elevated. Transcriptome analysis revealed an immune signature consistent with IL-4 induced M2 polarization of the tumor microenvironment and a generalized increase in myeloid involvement in the tumor stroma. Flow cytometry analysis indicated enhanced cancer cell phagocytosis by TAMs from IL-4 expressing tumors, and co-culture studies showed that IL-4 expressing cancer cells supported the survival and promoted the in vitro phagocytic behavior of macrophages. CONCLUSIONS Although M2-like TAMs have been linked to enhanced tumorigenesis, this study shows that IL-4 production by cancer cells is associated with suppressed tumor growth and loss of metastatic potential as well as enhanced phagocytic behavior of TAMs.
Collapse
|
14
|
Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH, Chung CW, Dittmann A, Drewes G, Drewry DH, Gordon L, Grandi P, Leveridge M, Lindon M, Michon AM, Molnar J, Robson SC, Tomkinson NCO, Kouzarides T, Prinjha RK, Humphreys PG. Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. J Med Chem 2015; 59:1425-39. [PMID: 25856009 DOI: 10.1021/acs.jmedchem.5b00256] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.
Collapse
Affiliation(s)
- Natalie H Theodoulou
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Paul Bamborough
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew J Bannister
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Isabelle Becher
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rino A Bit
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ka Hing Che
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Chun-wa Chung
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Antje Dittmann
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline , Research Triangle Park, North Carolina 27709, United States
| | - Laurie Gordon
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Melanie Leveridge
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew Lindon
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anne-Marie Michon
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Judit Molnar
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Samuel C Robson
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Tony Kouzarides
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Rab K Prinjha
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Philip G Humphreys
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
15
|
Fink LS, Beatty A, Devarajan K, Peri S, Peterson JR. Pharmacological profiling of kinase dependency in cell lines across triple-negative breast cancer subtypes. Mol Cancer Ther 2014; 14:298-306. [PMID: 25344583 DOI: 10.1158/1535-7163.mct-14-0529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers (TNBC), negative for estrogen receptor, progesterone receptor, and ERBB2 amplification, are resistant to standard targeted therapies and exhibit a poor prognosis. Furthermore, they are highly heterogeneous with respect to genomic alterations, and common therapeutic targets are lacking though substantial evidence implicates dysregulated kinase signaling. Recently, six subtypes of TNBC were identified based on gene expression and were proposed to predict sensitivity to a variety of therapeutic agents including kinase inhibitors. To test this hypothesis, we screened a large collection of well-characterized, small molecule kinase inhibitors for growth inhibition in a panel of TNBC cell lines representing all six subtypes. Sensitivity to kinase inhibition correlated poorly with TNBC subtype. Instead, unsupervised clustering segregated TNBC cell lines according to clinically relevant features including dependence on epidermal growth factor signaling and mutation of the PTEN tumor suppressor. We further report the discovery of kinase inhibitors with selective toxicity to these groups. Overall, however, TNBC cell lines exhibited diverse sensitivity to kinase inhibition consistent with the lack of common driver mutations in this disease. Although our findings support specific kinase dependencies in subsets of TNBC, they are not associated with gene expression-based subtypes. Instead, we find that mutation status can be an effective predictor of sensitivity to inhibition of particular kinase pathways for subsets of TNBC.
Collapse
Affiliation(s)
- Lauren S Fink
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Beatty
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Department, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Biostatistics and Bioinformatics Department, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Muhlrad PJ, Clark JN, Nasri U, Sullivan NG, LaMunyon CW. SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans. BMC Genet 2014; 15:83. [PMID: 25022984 PMCID: PMC4105102 DOI: 10.1186/1471-2156-15-83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023] Open
Abstract
Background The SPE-8 group gene products transduce the signal for spermatid activation initiated by extracellular zinc in C. elegans. Mutations in the spe-8 group genes result in hermaphrodite-derived spermatids that cannot activate to crawling spermatozoa, although spermatids from mutant males activate through a pathway induced by extracellular TRY-5 protease present in male seminal fluid. Results Here, we identify SPE-8 as a member of a large family of sperm-expressed non-receptor-like protein-tyrosine kinases. A rescuing SPE-8::GFP translational fusion reporter localizes to the plasma membrane in all spermatogenic cells from the primary spermatocyte stage through spermatids. Once spermatids become activated to spermatozoa, the reporter moves from the plasma membrane to the cytoplasm. Mutations in the spe-8 group genes spe-12, spe-19, and spe-27 disrupt localization of the reporter to the plasma membrane, while localization appears near normal in a spe-29 mutant background. Conclusions These results suggest that the SPE-8 group proteins form a functional complex localized at the plasma membrane, and that SPE-8 is correctly positioned only when all members of the SPE-8 group are present, with the possible exception of SPE-29. Further, SPE-8 is released from the membrane when the activation signal is transduced into the spermatid.
Collapse
Affiliation(s)
| | | | | | | | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, 3801 W, Temple Ave, Pomona, CA 91768, USA.
| |
Collapse
|
17
|
Akan P, Alexeyenko A, Costea PI, Hedberg L, Solnestam BW, Lundin S, Hällman J, Lundberg E, Uhlén M, Lundeberg J. Comprehensive analysis of the genome transcriptome and proteome landscapes of three tumor cell lines. Genome Med 2012; 4:86. [PMID: 23158748 PMCID: PMC3580420 DOI: 10.1186/gm387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/25/2012] [Accepted: 11/18/2012] [Indexed: 01/16/2023] Open
Abstract
We here present a comparative genome, transcriptome and functional network analysis of three human cancer cell lines (A431, U251MG and U2OS), and investigate their relation to protein expression. Gene copy numbers significantly influenced corresponding transcript levels; their effect on protein levels was less pronounced. We focused on genes with altered mRNA and/or protein levels to identify those active in tumor maintenance. We provide comprehensive information for the three genomes and demonstrate the advantage of integrative analysis for identifying tumor-related genes amidst numerous background mutations by relating genomic variation to expression/protein abundance data and use gene networks to reveal implicated pathways.
Collapse
Affiliation(s)
- Pelin Akan
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Andrey Alexeyenko
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Paul Igor Costea
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Lilia Hedberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Beata Werne Solnestam
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Sverker Lundin
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Jimmie Hällman
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Emma Lundberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Mathias Uhlén
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Joakim Lundeberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| |
Collapse
|
18
|
Kwok E, Everingham S, Zhang S, Greer PA, Allingham JS, Craig AW. FES Kinase Promotes Mast Cell Recruitment to Mammary Tumors via the Stem Cell Factor/KIT Receptor Signaling Axis. Mol Cancer Res 2012; 10:881-91. [DOI: 10.1158/1541-7786.mcr-12-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
20
|
Targeting the tumor microenvironment: focus on angiogenesis. JOURNAL OF ONCOLOGY 2011; 2012:281261. [PMID: 21876693 PMCID: PMC3163131 DOI: 10.1155/2012/281261] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a complex multistep process involving not only genetic and epigenetic changes in the tumor cell but also selective supportive conditions of the deregulated tumor microenvironment. One key compartment of the microenvironment is the vascular niche. The role of angiogenesis in solid tumors but also in hematologic malignancies is now well established. Research on angiogenesis in general, and vascular endothelial growth factor in particular, is a major focus in biomedicine and has led to the clinical approval of several antiangiogenic agents including thalidomide, bevacizumab, sorafenib, sunitinib, pazopanib, temesirolimus, and everolimus. Indeed, antiangiogenic agents have significantly changed treatment strategies in solid tumors (colorectal cancer, renal cell carcinoma, and breast cancer) and multiple myeloma. Here we illustrate important aspects in the interrelationship between tumor cells and the microenvironment leading to tumor progression, with focus on angiogenesis, and summarize derived targeted therapies.
Collapse
|