1
|
Yadav M, Sharma A, Patne K, Tabasum S, Suryavanshi J, Rawat L, Machaalani M, Eid M, Singh RP, Choueiri TK, Pal S, Sabarwal A. AXL signaling in cancer: from molecular insights to targeted therapies. Signal Transduct Target Ther 2025; 10:37. [PMID: 39924521 PMCID: PMC11808115 DOI: 10.1038/s41392-024-02121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/02/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
AXL, a member of the TAM receptor family, has emerged as a potential target for advanced-stage human malignancies. It is frequently overexpressed in different cancers and plays a significant role in various tumor-promoting pathways, including cancer cell proliferation, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, DNA damage response, acquired therapeutic resistance, immunosuppression, and inflammatory responses. Beyond oncology, AXL also facilitates viral infections, including SARS-CoV-2 and Zika highlighting its importance in both cancer and virology. In preclinical models, small-molecule kinase inhibitors targeting AXL have shown promising anti-tumorigenic potential. This review primarily focuses on the induction, regulation and biological functions of AXL in mediating these tumor-promoting pathways. We discuss a range of therapeutic strategies, including recently developed small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and antibody-drug conjugates (ADCs), anti-AXL-CAR, and combination therapies. These interventions are being examined in both preclinical and clinical studies, offering the potential for improved drug sensitivity and therapeutic efficacy. We further discuss the mechanisms of acquired therapeutic resistance, particularly the crosstalk between AXL and other critical receptor tyrosine kinases (RTKs) such as c-MET, EGFR, HER2/HER3, VEGFR, PDGFR, and FLT3. Finally, we highlight key research areas that require further exploration to enhance AXL-mediated therapeutic approaches for improved clinical outcomes.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- Laboratory of Nanotechnology and Chemical Biology, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Akansha Sharma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ketki Patne
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyoti Suryavanshi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Laxminarayan Rawat
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Marc Machaalani
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marc Eid
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| | - Akash Sabarwal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Wan X, Li Z, Zhou L. c-MET is an important marker for acid-driven metastasis and anti-immune in colorectal cancer. Int Immunopharmacol 2024; 142:113153. [PMID: 39278060 DOI: 10.1016/j.intimp.2024.113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND The tumor microenvironment plays an important role in cancer progression, especially acidic microenvironment which distinguish cancer from normal tissues and immune microenvironment. This study was the first to investigate whether acidic microenvironment affects colorectal metastasis through MET and the relationship between MET and immune microenvironment. METHODS We used TCGA and GEO databases to predict MET expression, its relationship with clinical features, and biological function it mediated, and validated its expression with clinical data, as well as to verify that MET mediates acidic microenvironment-induced colorectal cancer metastasis by inducing EMT at the cellular and animal levels. The TCGA database was also used to analyze the relationship between MET and immune cells, immune checkpoints and TMB in colorectal cancer, and to predict its value in prognosis and immunological treatment and targeted therapy in pan-cancer. RESULTS MET is highly expressed in colorectal cancer and is associated with metastasis and prognosis. Its biological function is mainly related to adhesion, cell cycle and fatty acid metabolism, and it can mediate acidic microenvironment to induce EMT and promote metastasis. According to immunoinfiltration analysis, MET expression is correlated with CD8 + T cells, DC, macrophages, Tregs, and TMB in CRC and were associated with the prognosis, immune checkpoint, and TMB of ACC, PRAD, LUAD respectively, in pan-cancer. CONCLUSIONS MET is an important contributor to acid-driven colorectal cancer metastasis and participates in immune escape of colorectal cancer. It is of great significance for the prognosis and immunotherapy of colorectal cancer and some other cancers.
Collapse
Affiliation(s)
- Xing Wan
- Department of Pharmacology, Sichuan University West China School of Basic Medical Sciences & Forensic Medicine, Chengdu 610041, China; Department of Pharmacology, Hubei Minzu University Health Science Center, Enshi 445000, China
| | - Zhigui Li
- Department of General Surgery, Colorectal Cancer Center, Sichuan University West China Hospital, Chengdu 610041,China
| | - Liming Zhou
- Department of Pharmacology, Sichuan University West China School of Basic Medical Sciences & Forensic Medicine, Chengdu 610041, China.
| |
Collapse
|
3
|
O'Neill AF, Ribeiro RC, Pinto EM, Clay MR, Zambetti GP, Orr BA, Weldon CB, Rodriguez-Galindo C. Pediatric Adrenocortical Carcinoma: The Nuts and Bolts of Diagnosis and Treatment and Avenues for Future Discovery. Cancer Manag Res 2024; 16:1141-1153. [PMID: 39263332 PMCID: PMC11389717 DOI: 10.2147/cmar.s348725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Adrenocortical tumors (ACTs) are infrequent neoplasms in children and adolescents and are typically associated with clinical symptoms reflective of androgen overproduction. Pediatric ACTs typically occur in the context of a germline TP53 mutation, can be cured when diagnosed at an early stage, but are difficult to treat when advanced or associated with concurrent TP53 and ATRX alterations. Recent work has demonstrated DNA methylation patterns suggestive of prognostic significance. While current treatment standards rely heavily upon surgical resection, chemotherapy, and hormonal modulation, small cohort studies suggest promise for multi-tyrosine kinases targeting anti-angiogenic pathways or immunomodulatory therapies. Future work will focus on novel risk stratification algorithms and combination therapies intended to mitigate toxicity for patients with perceived low-risk disease while intensifying therapy or accelerating discoveries aimed at improving survival for patients with difficult-to-treat disease.
Collapse
Affiliation(s)
- Allison F O'Neill
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, Children's Hospital Colorado, Denver, CO, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Carlos Rodriguez-Galindo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Wierman ME. Mitotane: a friend or a foe before cabozantinib treatment in adrenocortical cancer? Lancet Oncol 2024; 25:534-535. [PMID: 38608692 DOI: 10.1016/s1470-2045(24)00151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Affiliation(s)
- Margaret E Wierman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Zhao Y, Fu ZY, Feng HY, Peng YH, Yin ZX, Cao JY, Pei CS. Parathyroid hormone-related protein as a potential prostate cancer biomarker: Promoting prostate cancer progression through upregulation of c-Met expression. BIOMOLECULES & BIOMEDICINE 2024; 24:374-386. [PMID: 37838928 PMCID: PMC10950337 DOI: 10.17305/bb.2023.9753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a significant role in various tumor types, including prostate cancer. However, its specific role and underlying mechanisms in prostate cancer remain unclear. This study investigates the role of PTHrP and its interaction with the c-Met in prostate cancer. PTHrP was overexpressed and knocked down in prostate cancer cell lines to determine its effect on cell functions. Xenograft tumor models were employed to assess the impact of PTHrP overexpression on tumor growth. To delve into the interaction between PTHrP and c-Met, rescue experiments were conducted. Clinical data and tissue samples from prostate cancer patients were gathered and analyzed for PTHrP and c-Met expression. PTHrP overexpression in prostate cancer cells upregulates c-Met expression and augments cell functions. In contrast, PTHrP-knockdown diminishes c-Met expression and inhibits cell functions. In vivo experiments further demonstrated that PTHrP overexpression promoted tumor growth in xenograft models.Moreover, modulating c-Met expression in rescue experiments led to concurrent alterations in prostate cancer cell functions. Immunohistochemical analysis of clinical samples displayed a significant positive correlation between PTHrP and c-Met expression. Additionally, PTHrP expression correlated with clinical parameters like prostate-specific antigen (PSA) levels, tumor stage, lymph node involvement, distant metastasis, and Gleason score. PTHrP plays a crucial role in prostate cancer progression by upregulating c-Met expression. These insights point to PTHrP as a promising potential biomarker for prostate cancer.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Zhen-Yu Fu
- Department of Urology, Changshu No. 2 People’s Hospital, Changshu, China
| | - Han-Yong Feng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu-Hao Peng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Xiang Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing-Yi Cao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Chang-Song Pei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Zago E, Galluzzo A, Pradella S, Antonuzzo L, Maggi M, Petrone L, Sparano C. Cabozantinib for different endocrine tumours: killing two birds with one stone. A systematic review of the literature. Endocrine 2024; 83:26-40. [PMID: 37851242 PMCID: PMC10805963 DOI: 10.1007/s12020-023-03526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Cabozantinib is an oral multi-tyrosine kinase inhibitor (TKI) that has been approved in Europe for advanced renal cell carcinoma, hepatocellular carcinoma, locally advanced and metastatic medullary thyroid carcinoma (MTC) and radioiodine-refractory differentiated thyroid cancer. Merkel cell carcinoma (MCC) is a rare and highly aggressive cutaneous malignant neuroendocrine tumour that usually presents in sun-exposed skin areas of immunosuppressed patients. Conflicting data exist about cabozantinib for MCC and this TKI is currently under investigation in several onco-endocrine frameworks. METHODS We herein report a case of an 83-year-old man who was diagnosed with MCC during the treatment of an advanced metastatic MTC. The diagnosis of MCC was established based on clinical, histopathologic evaluation and immunohistochemistry. A systematic review of the literature on cabozantinib use for advanced endocrine and neuroendocrine tumours has been performed. RESULTS The patient was initially treated with surgery and adjuvant radiotherapy. Cabozantinib was therefore started to control both MTC and MCC. After 24 months, no sign of local or metastatic MCC relapse was evidenced. CONCLUSION Promising data on cabozantinib treatment for endocrine and neuroendocrine neoplasms is recently emerging in the literature. In our clinical case, we reported that, besides the good response for the MTC, cabozantinib also seems to effectively control metastatic MCC, along with efficient surgery and adjuvant radiotherapy. Further investigations are needed to determine the efficacy and safety of cabozantinib in MCC patients and in off-label endocrine tumours.
Collapse
Affiliation(s)
- Elena Zago
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Antonio Galluzzo
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Luisa Petrone
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy.
| | - Clotilde Sparano
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
7
|
Mikuteit M, Zschäbitz S, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Duensing S, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos F, Walter B, Otto W, Burger M, Erlmeier M, Schrader AJ, Hartmann A, Erlmeier F, Steffens S. Evaluation of Gas 6 as a Prognostic Marker in Papillary Renal Cell Carcinoma. Urol Int 2023; 107:713-722. [PMID: 37348477 PMCID: PMC10413799 DOI: 10.1159/000529898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/06/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Growth arrest-specific protein 6 (Gas 6) is a ligand that plays a role in proliferation and migration of cells. For several tumor entities, high levels of Gas 6 are associated with poorer survival. We examined the prognostic role of Gas 6 in renal cell carcinoma (RCC), especially in papillary RCC (pRCC), which is still unclear. METHODS The patients' sample collection is a joint collaboration of the PANZAR consortium. Patients' medical history and tumor specimens were collected from n = 240 and n = 128 patients with type 1 and 2 pRCC, respectively. Expression of Gas 6 was determined by immunohistochemistry. RESULTS In total, Gas 6 staining was evaluable in 180 of 240 type 1 and 110 of 128 type 2 pRCC cases. Kaplan-Meier analysis disclosed no significant difference in 5-year overall survival for all pRCC nor either subtype. Also, Gas+ and Gas- groups did not significantly differ in any tumor or patient characteristics. CONCLUSION Gas 6 was not found to be an independent prognostic marker in pRCC. Future studies are warranted to determine if Gas 6 plays a role as prognostic marker or therapeutic target in pRCC.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
| | - Christian Wülfing
- Institute of Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, Marburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Mainz, Mainz, Germany
| | | | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Walburgis Brenner
- Clinic for Obstretics and Woman's Health and Department of Urology, University Medical Center, Mainz, Germany
- Department of Urology, University of Mainz, Mainz, Germany
| | - Frederik Roos
- Department of Urology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, Regensburg, Germany
| | | | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
| | - German Network of Kidney Cancer
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
- Department of Urology, University Hospital Muenster, Muenster, Germany
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
- Department of Pathology, University Hospital Göttingen, Göttingen, Germany
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
- Institute of Pathology, University Hospital Göttingen, Göttingen, Germany
- Department of Urology, University of Marburg, Marburg, Germany
- Department of Urology, University Hospital Munich, Munich, Germany
- Department of Urology, University Hospital Mainz, Mainz, Germany
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Mainz, Mainz, Germany
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
- Clinic for Obstretics and Woman's Health and Department of Urology, University Medical Center, Mainz, Germany
- Department of Urology, University of Mainz, Mainz, Germany
- Department of Urology, University Hospital Frankfurt, Frankfurt/Main, Germany
- Department of Urology, University of Regensburg, Regensburg, Germany
- Department of Urology, München Klinik Bogenhausen, Munich, Germany
| |
Collapse
|
8
|
Erlmeier M, Mikuteit M, Zschäbitz S, Autenrieth M, Weichert W, Hartmann A, Steffens S, Erlmeier F. Immunohistochemical expression of the hepatocyte growth factor in chromophobe renal cell carcinoma. BMC Urol 2023; 23:90. [PMID: 37170275 PMCID: PMC10176764 DOI: 10.1186/s12894-023-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The prognostic value of Hepatocyte growth factor (HGF) in non-clear cell renal cell carcinoma (RCC) is still unclear. The aim of this study is to evaluate the prognostic impact of HGF expression in a large cohort of chromophobe RCC (chRCC). METHODS Patients who underwent renal surgery due to chRCC were recruited. Clinical data was retrospectively evaluated. Tumor specimen were analyzed for HGF expression by immunohistochemistry. RESULTS 81 chRCC patients were eligible for analysis, thereof 37 (45.7%) patients were positive for HGF. No significant associations were found for HGF expression and clinical attributes in patients with chRCC. Kaplan-Meier analysis revealed no differences in 5-year overall survival (OS) for patients with HGF- compared to HGF+ tumors (95.0% versus 90.9%; p = 0.410). CONCLUSIONS In chRCC HGF expression is not associated with parameters of aggressiveness or survival.
Collapse
Affiliation(s)
| | - Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Stefanie Zschäbitz
- Dept. of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum Rechts der Isar, München, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Erlmeier F, Zschäbitz S, Mikuteit M, Autenrieth M, Weichert W, Hartmann A, Steffens S. The role of claudin-6 in chromophobe renal cell carcinoma. Histol Histopathol 2023; 38:403-407. [PMID: 36128931 DOI: 10.14670/hh-18-520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND The prognostic value of Claudin-6 (CLDN6) in non clear cell renal cell carcinoma (RCC) is still unclear. AIM To evaluate the prognostic impact of CLDN6 expression in a large cohort of chromophobe RCC (chRCC). MATERIAL AND METHODS Patients who underwent renal surgery due to chRCC were recruited. Clinical data were retrospectively evaluated. Tumor specimens were analyzed for CLDN6 expression by immunohistochemistry. RESULTS 81 chRCC patients were eligible for analysis, thereof 10 (12.3%) patients were positive for CLDN6. No significant associations were found for CLDN6 expression and clinical attributes in patients with chRCC. Kaplan-Meier analysis revealed no differences in overall survival (OS) for patients with CLDN6⁻ compared to CLDN6⁺ tumors (87.0% versus 62.5%; p=0.174). CONCLUSION In chRCC CLDN6 expression is not associated with parameters of aggressiveness or survival. Due to the rare incidence of chRCC further studies with larger cohorts are warranted.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany.
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
- Member of the German Cancer Consortium (DKTK), Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| |
Collapse
|
10
|
Zschäbitz S, Mikuteit M, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Duensing S, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos FC, Walter B, Otto W, Burger M, Schrader AJ, Hartmann A, Erlmeier F, Steffens S. Expression of nectin-4 in papillary renal cell carcinoma. Discov Oncol 2022; 13:90. [PMID: 36136143 PMCID: PMC9500133 DOI: 10.1007/s12672-022-00558-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nectin-4 contributes to tumor proliferation, lymphangiogenesis and angiogenesis in malignant tumors and is an emerging target in tumor therapy. In renal cell carcinoma (RCC) VEGF-directed tyrosine kinase inhibitors and checkpoint inhibitors are currently treatments of choice. Enfortumab vedotin-ejf (EV) is an antibody drug conjugate that targets Nectin-4. The aim of our study was to investigate the expression of Nectin-4 in a large cohort of papillary RCC specimens. PATIENTS AND METHODS Specimens were derived from the PANZAR consortium (Erlangen, Heidelberg, Herne, Homburg, Mainz, Mannheim, Marburg, Muenster, LMU Munich, TU Munich, and Regensburg). Clinical data and tissue samples from n = 190 and n = 107 patients with type 1 and 2 pRCC, respectively, were available. Expression of Nectin-4 was determined by immunohistochemistry (IHC). RESULTS In total, Nectin-4 staining was moderately or strongly positive in of 92 (48.4%) of type 1 and 39 (36.4%) type 2 of pRCC cases. No associations between Nectin-4 expression and age at diagnosis, gender, grading, and TNM stage was found. 5 year overall survival rate was not statistically different in patients with Nectin-4 negative versus Nectin-4 positive tumors for the overall cohort and the pRCC type 2 subgroup, but higher in patient with Nectin-4 positive pRCC type 1 tumors compared to Nectin-4 negative tumors (81.3% vs. 67.8%, p = 0.042). CONCLUSION Nectin-4 could not be confirmed as a prognostic marker in pRCC in general. Due to its high abundance on pRCC specimens Nectin-4 is an interesting target for therapeutical approaches e.g. with EV. Clinical trials are warranted to elucidate its role in the pRCC treatment landscape.
Collapse
Affiliation(s)
- Stefanie Zschäbitz
- Dept. of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marie Mikuteit
- Department of Rheumatology and Immunology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Dean’s Office – Curriculum Development, Hanover Medical School, 30625 Hannover, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
- Present Address: Institute of Urology, Prosper-Hospital GmbH, 45659 Recklinghausen, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421 Homburg, Germany
- Present Address: Urological Group and Clinic Derouet/Pönicke/Becker, Boxberg Centre, 66538 Neunkirchen, Germany
| | - Christian Wülfing
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
- Present Address: Department of Urology, Asklepios Clinics Altona, 22763 Hamburg, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, 35037 Marburg, Germany
- Present Address: Institute of Pathology/Gerhard-Domagk Institute, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421 Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Mainz, 55131 Mainz, Germany
- Present Address: Department of Urology and Pediatric Urology, University Hospital Mainz, 55131 Mainz, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, 44625 Herne, Germany
| | - Walburgis Brenner
- Department of Urology, University Hospital Mainz, 55131 Mainz, Germany
- Present Address: Department of Gynecology, University of Mainz, 55131 Mainz, Germany
| | - Frederik C. Roos
- Department of Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Present Address: Department of Urology, Kreiskliniken Altötting-Burghausen, 84489 Burghausen, Germany
| | - Wolfgang Otto
- Department of Urology, Caritas St. Josef and University, 93053 Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas St. Josef and University, 93053 Regensburg, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
- Present Address: Department of Rheumatology and Immunology, Medical School Hannover, 30625 Hannover, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Dean’s Office – Curriculum Development, Hanover Medical School, 30625 Hannover, Germany
- Present Address: Department of Rheumatology and Immunology, Hanover Medical School, 30625 Hannover, Germany
| |
Collapse
|
11
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
12
|
Mikuteit M, Zschäbitz S, Erlmeier M, Autenrieth M, Weichert W, Hartmann A, Steffens S, Erlmeier F. Growth Arrest-Specific 6 in Chromophobe Renal Cell Carcinoma. Oncology 2022; 100:536-541. [PMID: 35760058 PMCID: PMC9677856 DOI: 10.1159/000525601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Overexpression of tumor-associated growth arrest-specific protein 6 (Gas6) is found in many tumor entities. The prognostic value of Gas6 in renal cell carcinoma (RCC), especially in non-clear cell RCC, is still unclear. AIM The aim of the study was to evaluate the prognostic impact of Gas6 expression in a large cohort of patients with chromophobe RCC (chRCC). MATERIAL AND METHODS Patients who underwent renal surgery due to chRCC were retrospectively evaluated. Tumor specimens were analyzed for Gas6 expression by immunohistochemistry. RESULTS Eighty-one chRCC patients were eligible for analysis; of these, 24 (29.6%) patients were positive for Gas6. No significant associations were found for Gas6 expression and clinical attributes in patients with chRCC. The Kaplan-Meier analysis revealed no differences in 5-year overall survival for Gas6- compared to Gas6+ (89.6% vs. 100.0%; p = 0.288) tumors. CONCLUSION In chRCC, Gas6 expression is not associated with survival and other parameters of aggressiveness. Due to the rare incidence of chRCC, further studies with larger cohorts are warranted.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean's Office − Curriculum Development, Hannover Medical School, Hannover, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
- Member of the German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean's Office − Curriculum Development, Hannover Medical School, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Mikuteit M, Zschäbitz S, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos FC, Walter B, Otto W, Burger M, Schrader AJ, Hartmann A, Steffens S, Erlmeier F. The prognostic impact of Claudin 6 in papillary renal cell carcinoma. Pathol Res Pract 2022; 231:153802. [DOI: 10.1016/j.prp.2022.153802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
|
14
|
Xu X, Jiang W, Han P, Zhang J, Tong L, Sun X. MicroRNA-128-3p Mediates Lenvatinib Resistance of Hepatocellular Carcinoma Cells by Downregulating c-Met. J Hepatocell Carcinoma 2022; 9:113-126. [PMID: 35252056 PMCID: PMC8894104 DOI: 10.2147/jhc.s349369] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/12/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Lenvatinib is a first-line multikinase inhibitor for advanced hepatocellular carcinoma (HCC), but resistance to the drug remains a major hurdle for its long-term anti-cancer activity. This resistance is thought to be due to overexpression of c-Met. This study aims to identify potential upstream microRNAs (miRNAs) that regulate c-Met, investigate the underlying mechanisms, and seek potential strategies that may reverse such resistance. Methods Lenvatinib-resistant HCC (LR-HCC) cells were established from human HCC Huh7 and SMMC-7721 cells. Assays of cell proliferation, cell cycle distribution, apoptosis, RT-qPCR, Western blot analysis and immunohistochemistry were employed. Potential miRNAs were screened by miRNA-target prediction tools and their regulatory effects were evaluated by luciferase reporter assays. Xenograft tumor models were used to evaluate the therapeutic effects. Results LR-HCC cells were refractory to lenvatinib-induced growth inhibition and apoptosis in vitro and in vivo. Sustained exposure of cells to lenvatinib resulted in increased expression and phosphorylation of c-Met, and c-Met inhibition enhanced the effects of lenvatinib in suppressing LR-HCC cells. Among eleven miRNA candidates, miR-128-3p displayed the most vigorous activity to negatively regulate c-Met and was downregulated in LR-HCC cells. MiR-128-3p mimics inhibited proliferation and induced apoptosis of LR-HCC cells, and enhanced the effects of lenvatinib in cell culture and animal models. MiR-128-3p and c-Met participate in the mechanisms underlying lenvatinib resistance through regulating Akt that mediates the apoptotic pathway and ERK (extracellular-signal-regulated kinase) modulating cell cycle progression. Conclusion The present results indicate that the miR-128-3p/c-Met axis may be potential therapeutic targets for circumventing lenvatinib resistance in HCC and warrant further investigation.
Collapse
Affiliation(s)
- Xin Xu
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Department of General Surgery, Daqing Oil Field General Hospital, Daqing, 163000, People’s Republic of China
| | - Wenjing Jiang
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Peng Han
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Jingyan Zhang
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, People’s Republic of China
| | - Liquan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, People’s Republic of China
- Liquan Tong, Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, People’s Republic of China, Email
| | - Xueying Sun
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Correspondence: Xueying Sun, Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China, Email
| |
Collapse
|
15
|
Navrazhina K, Garcet S, Frew JW, Zheng X, Coats I, Guttman-Yassky E, Krueger JG. The inflammatory proteome of hidradenitis suppurativa skin is more expansive than that of psoriasis vulgaris. J Am Acad Dermatol 2022; 86:322-330. [PMID: 34339761 PMCID: PMC8800946 DOI: 10.1016/j.jaad.2021.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although hidradenitis suppurativa (HS) shares some transcriptomic and cellular infiltrate features with psoriasis, their skin proteome remains unknown. OBJECTIVE To define and compare inflammatory protein biomarkers of HS and psoriasis skin. METHODS We assessed 92 inflammatory biomarkers in HS (n = 13), psoriasis (n = 11), and control skin (n = 11) using Olink high-throughput proteomics. We also correlated HS skin and blood biomarkers using proteomics and RNA sequencing. RESULTS We identified 57 differentially expressed proteins (DEPs) in lesional psoriasis and 64 DEPs in lesional HS skin, compared to healthy controls. Both HS and psoriasis lesional skin demonstrated a significant upregulation of T helper 1 and T helper 17 proteins. Healthy-appearing perilesional HS skin had 63 DEPs compared to healthy controls. Nonlesional HS and psoriasis skin had 24 and 7 DEPs, respectively, compared to healthy controls. Tumor necrosis factor and 8 other proteins were significantly correlated with clinical severity in perilesional HS skin (2 cm from a nodule). LIMITATIONS Inclusion of only moderate-to-severe patients and the cohort size. CONCLUSION HS has a greater inflammatory profile and is more diffusely distributed compared with psoriasis. Proteins correlated with disease severity are potential disease mediators. Perilesional skin is comparably inflamed to lesional skin, suggesting the need to treat beyond skin nodules.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - John W Frew
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Israel Coats
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York.
| |
Collapse
|
16
|
Erlmeier F, Bruecher B, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos FC, Walter B, Otto W, Burger M, Schrader AJ, Hartmann A, Mondorf Y, Ivanyi P, Mikuteit M, Steffens S. cMET - a prognostic marker in papillary renal cell carcinoma? Hum Pathol 2022; 121:1-10. [PMID: 34998840 DOI: 10.1016/j.humpath.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The tyrosine-protein kinase c-Met plays a decisive role in numerous cellular processes, as a proto-oncogene that supports aggressive tumor behavior. It is still unknown whether c-Met could be relevant for prognosis of papillary RCC (pRCC). PATIENTS AND METHODS Specimen collection were a collaboration of the PANZAR consortium. Patients' medical history and tumor specimens were collected from n=197 and n=110 patients with type 1 and 2 pRCC, respectively. Expression of cMET was determined by immunohistochemistry (IHC). RESULTS In total, cMET staining was evaluable in of 97/197 type 1 and 63/110 type 2 of pRCC cases. Five-years overall survival reviled no significant difference in dependence of cMET positivity (cMET- vs. cMET+: pRCC type 1: 84.8 % vs. 80.3 %, respectively (p=0.303, log-rank); type 2: 71.4 % vs. 64.4 % respectively (p= 0.239, log-rank)). Interestingly, the subgroup analyses showed a significant difference for cMET expression in T stage and metastases of the pRCC type 2 (p=0.014, p=0.022, chi-square). The cMET positive type 2 collective developed more metastases compared to the cMET negative cohort (pRCC Typ 2 M+: cMET-: 2 (4.3%) vs. cMET+: 12 (19%)). CONCLUSION CMET expression did not qualify as a prognostic marker in pRCC for overall survival.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
.
| | - Benedict Bruecher
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421
Homburg, Germany
| | - Christian Wülfing
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, 35037 Marburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421
Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich
Alexander University (FAU), 91058 Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, 44625 Herne, Germany
| | | | - Frederik C Roos
- Department of Urology, University Hospital Frankfurt, 60590 Frankfurt/Main, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich
Alexander University (FAU), 91058 Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Yvonne Mondorf
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Marie Mikuteit
- Hannover Medical School: Medizinische Hochschule Hannover, Hannover, Germany
| | - Sandra Steffens
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | | |
Collapse
|
17
|
Zimmermann S, Kurlbaum M, Mayer S, Fassnacht M, Kroiss M, Scherf-Clavel O. Simulation-Based Interpretation of Therapeutically Monitored Cabozantinib Plasma Concentration in Advanced Adrenocortical Carcinoma with Hemodialysis. Ther Drug Monit 2021; 43:706-711. [PMID: 34001696 DOI: 10.1097/ftd.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adrenocortical carcinoma is an orphan but aggressive malignancy with limited treatment options. Cabozantinib (CAB), a tyrosine kinase inhibitor, has emerged as a new potential treatment. However, no data are available on whether and how CAB can be administered to patients undergoing hemodialysis. METHODS An liquid chromatography with tandem mass spectrometry detection method was developed and validated according to the European Medicines Agency and United States Food and Drug Administration guidelines for bioanalytical method validation. The samples were prepared using protein precipitation and online solid-phase extraction. The method was applied to clinical samples of an adrenocortical carcinoma patient receiving CAB treatment (80 mg daily). During the 10 days of observation, the patient received periodic hemodialysis on 7 days. Pharmacokinetic (PK) simulations were performed using Bayesian forecasting according to an existing population PK model for CAB. RESULTS Based on the PK simulation, a mean plasma trough concentration of 1375 ng/mL [90% prediction interval (PI), 601-2602 ng/mL] in the steady state at a daily dose of 80 mg was expected for CAB. However, an individual simulation involving the measured plasma levels of the patient resulted in a mean trough concentration of 348 ng/mL (90% PI, 278-430 ng/mL). The model based on individual PK parameters estimated accessible plasma levels of 521, 625, and 834 ng/mL by dose adjustment to 100, 120, and 160 mg, respectively. CONCLUSIONS After establishing an liquid chromatography with tandem mass spectrometry detection method for therapeutic drug monitoring of CAB, our analyses involving a single patient undergoing hemodialysis indicated that higher than expected doses of CAB were required to achieve reasonable plasma concentrations. Our study demonstrates the usefulness of therapeutic drug monitoring for the evaluation of "new" drugs in patients with renal impairment.
Collapse
Affiliation(s)
- Sebastian Zimmermann
- Department of Clinical Pharmacy Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology/Diabetology, University Hospital, University of Würzburg, Würzburg, Germany . Dr. Kroiss is now with the Department of Medicine IV, University Hospital Munich, Ludwig- Maximilians-Universität München, Munich, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital, University of Würzburg, Würzburg, Germany
| | - Stefanie Mayer
- Department of Internal Medicine I, Division of Nephrology, University Hospital, University of Würzburg, Würzburg, Germany; and
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology/Diabetology, University Hospital, University of Würzburg, Würzburg, Germany . Dr. Kroiss is now with the Department of Medicine IV, University Hospital Munich, Ludwig- Maximilians-Universität München, Munich, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology/Diabetology, University Hospital, University of Würzburg, Würzburg, Germany . Dr. Kroiss is now with the Department of Medicine IV, University Hospital Munich, Ludwig- Maximilians-Universität München, Munich, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Oliver Scherf-Clavel
- Department of Clinical Pharmacy Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Bedrose S, Miller KC, Altameemi L, Ali MS, Nassar S, Garg N, Daher M, Eaton KD, Yorio JT, Daniel DB, Campbell M, Bible KC, Ryder M, Chintakuntlawar AV, Habra MA. Combined lenvatinib and pembrolizumab as salvage therapy in advanced adrenal cortical carcinoma. J Immunother Cancer 2021; 8:jitc-2020-001009. [PMID: 32737143 PMCID: PMC7394183 DOI: 10.1136/jitc-2020-001009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background There is no effective systemic therapy for metastatic adrenal cortical carcinoma (ACC) after failure of platinum-based chemotherapy. The efficacies of single-agent oral multikinase inhibitors (MKIs) or salvage immune checkpoint inhibitors (CPIs) have been very limited. It is unknown whether combining CPIs, such as pembrolizumab (PEM), with other therapies, such as MKIs, could yield higher response rates in ACC, yet this combination has shown promise in other cancers. Herein, we describe the first case series using PEM in combination with the MKI lenvatinib (LEN) in patients with progressive, metastatic ACC. Methods A retrospective case series describing the use of LEN/PEM as salvage therapy in patients with progressive/metastatic ACC. Results Eight patients were treated with the LEN/PEM combination therapy. Half were female, and the median age at time of diagnosis was 38 years (range 21–49). Three (37.5%) patients had hormonally active ACC. The median number of prior lines of systemic therapy was 4 (range 2–9). Six (75%) patients had had disease progression on prior CPIs and five (62.5%) patients had progressed on prior MKI therapy. The median progression-free survival was 5.5 months (95% CI 1.8–not reached) and median duration of therapy was 8.5 months (range 2–22). Two (25%) patients had a partial response, one (12.5%) patient had stable disease, and five (62.5%) patients had progressive disease. None of the eight patients stopped therapy because of adverse events. Conclusions In our small cohort of heavily pretreated patients with ACC, the combination of LEN/PEM was associated with objective responses in a subset of patients without significant toxicity. This combination should be formally investigated in phase II clinical trial with robust correlative studies to identify predictors for response.
Collapse
Affiliation(s)
- Sara Bedrose
- Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lina Altameemi
- Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mohamed S Ali
- Section of Endocrinology, Diabetes and Metabolism, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sameh Nassar
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Garg
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marilyne Daher
- Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith D Eaton
- Department of Medical Oncology, University of Washington, Seattle, Washington, USA
| | | | | | - Matthew Campbell
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mabel Ryder
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Viëtor CL, Creemers SG, van Kemenade FJ, van Ginhoven TM, Hofland LJ, Feelders RA. How to Differentiate Benign from Malignant Adrenocortical Tumors? Cancers (Basel) 2021; 13:cancers13174383. [PMID: 34503194 PMCID: PMC8431066 DOI: 10.3390/cancers13174383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Adrenocortical carcinoma is a rare cancer with a poor prognosis. Adrenal tumors are, however, commonly identified in clinical practice. Discrimination between benign and malignant adrenal tumors is of great importance to determine the appropriate treatment and follow-up strategy. This review summarizes the current diagnostic strategies and challenges to distinguish benign from malignant adrenal lesions. We will focus both on radiological and biochemical assessments, enabling diagnosis of the adrenal lesion preoperatively, and on histopathological and a wide variety of molecular assessments that can be done after surgical removal of the adrenal lesion. Furthermore, new non-invasive strategies such as liquid biopsies, in which blood samples are used to study circulating tumor cells, tumor DNA and microRNA, will be addressed in this review. Abstract Adrenocortical carcinoma (ACC) is a rare cancer with a poor prognosis. Adrenal incidentalomas are, however, commonly identified in clinical practice. Discrimination between benign and malignant adrenal tumors is of great importance considering the large differences in clinical behavior requiring different strategies. Diagnosis of ACC starts with a thorough physical examination, biochemical evaluation, and imaging. Computed tomography is the first-level imaging modality in adrenal tumors, with tumor size and Hounsfield units being important features for determining malignancy. New developments include the use of urine metabolomics, also enabling discrimination of ACC from adenomas preoperatively. Postoperatively, the Weiss score is used for diagnosis of ACC, consisting of nine histopathological criteria. Due to known limitations as interobserver variability and lack of accuracy in borderline cases, much effort has been put into new tools to diagnose ACC. Novel developments vary from immunohistochemical markers and pathological scores, to markers at the level of DNA, methylome, chromosome, or microRNA. Molecular studies have provided insights into the most promising and most frequent alterations in ACC. The use of liquid biopsies for diagnosis of ACC is studied, although in a small number of patients, requiring further investigation. In this review, current diagnostic modalities and challenges in ACC will be addressed.
Collapse
Affiliation(s)
- Charlotte L. Viëtor
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, 3015GD Rotterdam, The Netherlands; (C.L.V.); (T.M.v.G.)
| | - Sara G. Creemers
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, 3015GD Rotterdam, The Netherlands; (S.G.C.); (L.J.H.)
| | - Folkert J. van Kemenade
- Department of Pathology, Erasmus MC University Medical Center, 3015GD Rotterdam, The Netherlands;
| | - Tessa M. van Ginhoven
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, 3015GD Rotterdam, The Netherlands; (C.L.V.); (T.M.v.G.)
| | - Leo J. Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, 3015GD Rotterdam, The Netherlands; (S.G.C.); (L.J.H.)
| | - Richard A. Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, 3015GD Rotterdam, The Netherlands; (S.G.C.); (L.J.H.)
- Correspondence:
| |
Collapse
|
20
|
Sukrithan V, Husain M, Kirschner L, Shah MH, Konda B. Emerging drugs for the treatment of adrenocortical carcinoma. Expert Opin Emerg Drugs 2021; 26:165-178. [PMID: 33896321 DOI: 10.1080/14728214.2021.1920922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Adrenocortical cancer (ACC) is a rare and aggressive disease with a median survival of 14-17 months and 5-year survival of around 20% for advanced disease. Emerging evidence of sub-groups of ACC with specific molecular drivers indicate ACC may be amenable to inhibition of receptor tyrosine kinases involved in growth and angiogenic signaling. A significant subset of patients may also be responsive to immune strategies.Areas covered: This review outlines approaches of targeting upregulated growth pathways including Insulin-like Growth Factor, Vascular Endothelial Growth Factor, Fibroblast Growth Factor and Epidermal Growth Factor Receptor in ACC. Data of immune checkpoint blockade with nivolumab, ipilimumab, pembrolizumab and avelumab is explored in detail. Genomic studies indicate that up to 40% of ACC are driven by dysregulated WNT and glucocorticoid signaling, special focus is placed on emerging drugs in these pathways.Expert opinion: Progress in the treatment of ACC has faced challenges stemming from the rarity of the disease. Given recent advances in the understanding of the molecular pathogenesis of ACC, a window of opportunity has now opened to make significant progress in developing therapeutic options that target key pathways such as excessive glucocorticoid signaling, WNT signaling, cell cycle and immune checkpoints.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Marium Husain
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Lawrence Kirschner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
21
|
Gao L, Yang T, Zhang S, Liang Y, Shi P, Ren H, Hou P, Chen M. EHF enhances malignancy by modulating AKT and MAPK/ERK signaling in non‑small cell lung cancer cells. Oncol Rep 2021; 45:102. [PMID: 33907840 PMCID: PMC8072815 DOI: 10.3892/or.2021.8053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/18/2020] [Indexed: 11/06/2022] Open
Abstract
Overexpression of ETS‑homologous factor (EHF) in non‑small cell lung cancer (NSCLC) is associated with poor patient prognosis. To explore the mechanism of the effect of EHF in NSCLC, EHF expression was examined in NSCLC and its role in cell proliferation, invasion, cell cycle, and apoptosis of NSCLC cells was evaluated by overexpressing EHF and/or knocking down EHF expression in NSCLC cells in vitro and in cancer cell grafted mice in vivo. The results revealed that the knockdown of EHF expression in NSCLC with siRNA significantly inhibited cell proliferation and invasion, arrested the cell cycle at the G0/G1 phase, and induced apoptosis, whereas overexpression of EHF in NSCLC promoted cell proliferation, tumor growth, and cancer cell migration in vitro. The in vivo experiments demonstrated that siRNA‑mediated downregulation of EHF expression in NSCLC cells significantly suppressed tumor growth in xenografted nude mice as compared to cancer progression in the mice grafted with NSCLC cells transfected with non‑specific control siRNA. The biochemical analyses revealed that EHF promoted NSCLC growth by regulating the transcription of Erb‑B2 receptor tyrosine kinase 2/3 (ERBB2, ERBB3) and mesenchymal‑epithelial transition (MET) factor tyrosine kinase receptors and modulating the AKT and ERK signaling pathways in the NSCLC cells. The present findings indicated that EHF could be used as a prognostic marker for NSCLC, and tyrosine kinase receptors of ERBB2, ERBB3 and MET could be drug targets for NSCLC treatment.
Collapse
Affiliation(s)
- Lei Gao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tian Yang
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Shuo Zhang
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Yiqian Liang
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Puyu Shi
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Hui Ren
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingwei Chen
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
Kiseljak-Vassiliades K, Bancos I, Hamrahian A, Habra M, Vaidya A, Levine AC, Else T. American Association of Clinical Endocrinology Disease State Clinical Review on the Evaluation and Management of Adrenocortical Carcinoma in an Adult: a Practical Approach. Endocr Pract 2020; 26:1366-1383. [PMID: 33875173 DOI: 10.4158/dscr-2020-0567] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/28/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this Disease State Clinical Review is to provide a practical approach to patients with newly diagnosed adrenocortical carcinoma, as well as to follow-up and management of patients with persistent or recurrent disease. METHODS This is a case-based clinical review. The provided recommendations are based on evidence available from randomized prospective clinical studies, cohort studies, cross-sectional and case-based studies, and expert opinions. RESULTS Adrenocortical carcinoma is a rare malignancy, often with poor outcomes. For any patient with an adrenal mass suspicious for adrenocortical carcinoma, the approach should include prompt evaluation with detailed history and physical exam, imaging, and biochemical adrenal hormone assessment. In addition to adrenal-focused imaging, patients should be evaluated with chest-abdomen-pelvis cross-sectional imaging to define the initial therapy plan. Patients with potentially resectable disease limited to the adrenal gland should undergo en bloc open surgery by an expert surgeon. For patients presenting with advanced or recurrent disease, a multidisciplinary approach considering curative repeat surgery, local control with surgery, radiation therapy or radiofrequency ablation, or systemic therapy with mitotane and/or cytotoxic chemotherapy is recommended. CONCLUSION As most health care providers will rarely encounter a patient with adrenocortical carcinoma, we recommend that patients with suspected adrenocortical carcinoma be evaluated by an expert multidisciplinary team which includes clinicians with expertise in adrenal tumors, including endocrinologists, oncologists, surgeons, radiation oncologists, pathologists, geneticists, and radiologists. We recommend that patients in remote locations be followed by the local health care provider in collaboration with a multidisciplinary team at an expert adrenal tumor program. ABBREVIATIONS ACC = adrenocortical carcinoma; ACTH = adrenocorticotropic hormone; BRACC = borderline resectable adrenocortical carcinoma; CT = computed tomography; DHEAS = dehydroepiandrosterone sulfate; EDP = etoposide, doxorubicin, cisplatin; FDG = 18F-fluorodeoxyglucose; FNA = fine-needle aspiration; HU = Hounsfield units; IVC = inferior vena cava; LFS = Li-Fraumeni syndrome; MEN1 = multiple endocrine neoplasia type 1; MRI = magnetic resonance imaging; OAC = oncocytic adrenocortical carcinoma; PC = palliative care; PET = positron emission tomography.
Collapse
Affiliation(s)
- Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Irina Bancos
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota
| | - Amir Hamrahian
- Division of Endocrinology, Johns Hopkins Hospital, Baltimore, Maryland
| | - MouhammedAmir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alice C Levine
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tobias Else
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
23
|
McCullough D, Atofanei C, Knight E, Trim SA, Trim CM. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon 2020; 185:129-146. [PMID: 32682827 DOI: 10.1016/j.toxicon.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action. Receptor tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members, dually identifying new activities and unexplored avenues for future cancer and venom research. Six whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast cancer cell line MDA-MB-468 was treated with optimised venom doses, pre-determined by SDS PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab 5.2.1 analysis software (BioRad). Inhibition of EGFR phosphorylation occurred with treatment of venom from Acanthoscurria geniculata (Theraphosidae), Heterometrus swammerdami (Scorpionidae), Crotalus durissus vegrandis (Crotalidae) and Naja naja (Elapidae). Western green mamba Dendroaspis viridis venom increased EGFR phosphorylation. Eph, HGFR and HER were the most affected receptor families by venoms. Whilst the importance of these changes in terms of effect on MDA-MB-468 cells' long-term viability and functionality are still unclear, the findings present exciting opportunities for further investigation as potential drug targets in cancer and as tools to understand better how these pathways interact.
Collapse
Affiliation(s)
- Danielle McCullough
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cristina Atofanei
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Emily Knight
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; Life Sciences Industry Liaison laboratory, Canterbury Christ Church University, Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Steven A Trim
- Venomtech Ltd., Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Carol M Trim
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
24
|
Correlative serum biomarker analyses in the phase 2 trial of lenvatinib-plus-everolimus in patients with metastatic renal cell carcinoma. Br J Cancer 2020; 124:237-246. [PMID: 33024271 PMCID: PMC7782770 DOI: 10.1038/s41416-020-01092-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background No biomarkers have been established to predict treatment efficacy in renal cell carcinoma (RCC). In an exploratory retrospective analysis of a Phase 2 study, we constructed composite biomarker scores (CBSs) to predict progression-free survival (PFS) and overall survival (OS) in patients with metastatic RCC randomised to receive lenvatinib-plus-everolimus. Methods Of 40 biomarkers tested, the 5 most strongly associated with PFS (HGF, MIG, IL-18BP, IL-18, ANG-2) or OS (TIMP-1, M-CSF, IL-18BP, ANG-2, VEGF) were used to make a 5-factor PFS-CBS or OS-CBS, respectively. A 2-factor CBS was generated with biomarkers common to PFS-CBS and OS-CBS. Patients were divided into groups accordingly (5-factor-CBS high: 3−5, CBS-low: 0–2; 2-factor-CBS high: 1–2, CBS-low: 0). Results PFS/OS with lenvatinib-plus-everolimus were significantly longer in the 5-factor CBS-high group versus the CBS-low group (P = 0.0022/P < 0.0001, respectively). In the CBS-high group, PFS/OS were significantly longer with lenvatinib-plus-everolimus versus everolimus (P < 0.001/P = 0.0079, respectively); PFS was also significantly longer with lenvatinib-plus-everolimus versus lenvatinib (P = 0.0046). The 5-factor-CBS had a predictive role in PFS and OS after multivariate analysis. Similar trends were observed with the 2-factor-CBS for PFS (i.e., lenvatinib-plus-everolimus versus everolimus). Conclusions The 5-factor CBS may identify patients with metastatic RCC who would benefit from lenvatinib-plus-everolimus versus everolimus; additional validation is required. Clinical trial registration The clinical trial registration number is NCT01136733.
Collapse
|
25
|
Kroiss M, Megerle F, Kurlbaum M, Zimmermann S, Wendler J, Jimenez C, Lapa C, Quinkler M, Scherf-Clavel O, Habra MA, Fassnacht M. Objective Response and Prolonged Disease Control of Advanced Adrenocortical Carcinoma with Cabozantinib. J Clin Endocrinol Metab 2020; 105:5695965. [PMID: 31900481 PMCID: PMC8204945 DOI: 10.1210/clinem/dgz318] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Objective response of advanced adrenocortical carcinoma (ACC) to mitotane and cytotoxic chemotherapy regimen is only ~20% and early tumor progression is frequent. Previous clinical trials with oral multikinase inhibitors were negative, which has been attributed in part to inadvertent drug interaction with mitotane. Cabozantinib (CABO) is an inhibitor of c-MET, vascular endothelial growth factor receptor 2, AXL, and RET and approved for advanced kidney cancer, liver carcinoma after previous sorafenib, and medullary thyroid carcinoma. OBJECTIVE To investigate the clinical efficacy and safety of CABO monotherapy in ACC patients. DESIGN Retrospective cohort study. SETTING Three referral centers for ACC (Germany, United States). RESULTS Sixteen patients (13 female) with progressive ACC received CABO after previous mitotane in 15/16 and 3 (median, range 0-8) further systemic treatments. Prior CABO therapy, mitotane was discontinued in all patients. Mitotane plasma concentration was <2 mg/L in 7/16 patients and discontinued >12 months in 6 additional patients before CABO use. In 4/5 cases with available plasma samples, CABO concentration was in the expected steady-state range. Adverse events of grade 1/2 and 3 were observed in 13 and 3 patients, respectively, and consistent with the known safety profile of CABO. Best response was partial response in 3, stable disease in 5, and progressive disease in 8 patients. Median progression-free and overall survival was 16 and 58 weeks, respectively. CONCLUSION CABO monotherapy appears to be safe and effective as a monotherapy in advanced ACC after failing prior treatments. Therefore, prospective investigation of CABO in ACC patients is warranted.
Collapse
Affiliation(s)
- Matthias Kroiss
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, University of Würzburg, Germany
- Correspondence and Reprint Requests: Matthias Kroiss, MD, PhD, University Hospital of Würzburg, Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, Oberdürrbacher Str. 6, 97080 Würzburg, Germany. E-mail:
| | - Felix Megerle
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
| | - Max Kurlbaum
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, University of Würzburg, Germany
| | - Sebastian Zimmermann
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, University of Würzburg, Germany
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany
| | - Julia Wendler
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
| | - Camilo Jimenez
- The University of Texas MD Anderson Cancer Center, Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, Houston, Texas, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, University of Würzburg, Germany
| | - Marcus Quinkler
- Charité University Medicine and Endokrinologie in Charlottenburg, Berlin, Germany
| | | | - Mouhammed Amir Habra
- The University of Texas MD Anderson Cancer Center, Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, Houston, Texas, USA
| | - Martin Fassnacht
- Dept. of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Germany
| |
Collapse
|
26
|
Altieri B, Ronchi CL, Kroiss M, Fassnacht M. Next-generation therapies for adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab 2020; 34:101434. [PMID: 32622829 DOI: 10.1016/j.beem.2020.101434] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost one decade ago, etoposide, doxorubicin, cisplatin and mitotane (EDP-M) has been established as first-line systemic therapy of metastatic adrenocortical carcinoma (ACC). Although heterogeneous, the prognosis of advanced stage ACC is still poor and novel treatments are urgently needed. This article provides a short summary of current systemic ACC treatment and provides a comprehensive overview of new therapeutic approaches that have been investigated in the past years, including drugs targeting the IGF pathway, tyrosine kinase inhibitors, radionuclide treatment, and immunotherapy. The results of most of these trials were disappointing and we will discuss possible reasons why these drugs failed (e.g. drug interactions with mitotane, disease heterogeneity with exceptional responses in very few patients, and resistance mechanisms to immunotherapy). We then will present potential new drug targets that have emerged from many molecular studies (e.g. wnt/β-catenin, cyclin-dependent kinases, PARP1) that may be the foundation of next-generation therapies of ACC.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Ahmed AA, Thomas AJ, Ganeshan DM, Blair KJ, Lall C, Lee JT, Morshid AI, Habra MA, Elsayes KM. Adrenal cortical carcinoma: pathology, genomics, prognosis, imaging features, and mimics with impact on management. Abdom Radiol (NY) 2020; 45:945-963. [PMID: 31894378 DOI: 10.1007/s00261-019-02371-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare tumor with a poor prognosis. Most tumors are either metastatic or locally invasive at the time of diagnosis. Differentiation between ACC and other adrenal masses depends on clinical, biochemical, and imaging factors. This review will discuss the genetics, pathological, and imaging feature of ACC.
Collapse
Affiliation(s)
- Ayahallah A Ahmed
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Aaron J Thomas
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Dhakshina Moorthy Ganeshan
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Katherine J Blair
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - James T Lee
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Ali I Morshid
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Mouhammed A Habra
- Departments of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Fuentes-Mattei E, Bayraktar R, Manshouri T, Silva AM, Ivan C, Gulei D, Fabris L, Soares do Amaral N, Mur P, Perez C, Torres-Claudio E, Dragomir MP, Badillo-Perez A, Knutsen E, Narayanan P, Golfman L, Shimizu M, Zhang X, Zhao W, Ho WT, Estecio MR, Bartholomeusz G, Tomuleasa C, Berindan-Neagoe I, Zweidler-McKay PA, Estrov Z, Zhao ZJ, Verstovsek S, Calin GA, Redis RS. miR-543 regulates the epigenetic landscape of myelofibrosis by targeting TET1 and TET2. JCI Insight 2020; 5:121781. [PMID: 31941838 PMCID: PMC7030823 DOI: 10.1172/jci.insight.121781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by cytopenia and extramedullary hematopoiesis, resulting in splenomegaly. Multiple pathological mechanisms (e.g., circulating cytokines and genetic alterations, such as JAKV617F mutation) have been implicated in the etiology of MF, but the molecular mechanism causing resistance to JAK2V617F inhibitor therapy remains unknown. Among MF patients who were treated with the JAK inhibitor ruxolitinib, we compared noncoding RNA profiles of ruxolitinib therapy responders versus nonresponders and found miR-543 was significantly upregulated in nonresponders. We validated these findings by reverse transcription-quantitative PCR. in this same cohort, in 2 additional independent MF patient cohorts from the United States and Romania, and in a JAK2V617F mouse model of MF. Both in vitro and in vivo models were used to determine the underlying molecular mechanism of miR-543 in MF. Here, we demonstrate that miR-543 targets the dioxygenases ten-eleven translocation 1 (TET1) and 2 (TET2) in patients and in vitro, causing increased levels of global 5-methylcytosine, while decreasing the acetylation of histone 3, STAT3, and tumor protein p53. Mechanistically, we found that activation of STAT3 by JAKs epigenetically controls miR-543 expression via binding the promoter region of miR-543. Furthermore, miR-543 upregulation promotes the expression of genes related to drug metabolism, including CYP3A4, which is involved in ruxolitinib metabolism. Our findings suggest miR-543 as a potentially novel biomarker for the prognosis of MF patients with a high risk of treatment resistance and as a potentially new target for the development of new treatment options.
Collapse
Affiliation(s)
| | | | - Taghi Manshouri
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Andreia M. Silva
- Department of Experimental Therapeutics and
- Instituto de Investigação e Inovação em Saúde (i3S)
- Instituto de Engenharia Biomédica (INEB), and
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Cristina Ivan
- Department of Experimental Therapeutics and
- Center for RNA Interference and Non-coding RNAs, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Diana Gulei
- Department of Experimental Therapeutics and
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
- Department of Functional Genomics, The Oncology Institute, Cluj-Napoca, Romania
| | | | - Nayra Soares do Amaral
- Department of Experimental Therapeutics and
- Molecular Morphology Laboratory, Department of Investigative Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Perez
- Department of Experimental Therapeutics and
- Mayagüez Campus, University of Puerto Rico, Mayagüez, Puerto Rico, USA
| | - Elizabeth Torres-Claudio
- Department of Experimental Therapeutics and
- University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics and
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
- Department of Surgery, Fundeni Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | - Leonard Golfman
- Department of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | | - Xinna Zhang
- Center for RNA Interference and Non-coding RNAs, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Wanke Zhao
- Department of Pathology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Wanting Tina Ho
- Department of Pathology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Marcos Roberto Estecio
- Department of Epigenetics and Molecular Carcinogenesis and
- Center for Cancer Epigenetics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | | - Ciprian Tomuleasa
- Department of Hematology, The Oncology Institute Ion Chiricuta, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
- Department of Functional Genomics, The Oncology Institute, Cluj-Napoca, Romania
| | | | - Zeev Estrov
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Zhizhuang J. Zhao
- Department of Pathology, Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Srdan Verstovsek
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - George A. Calin
- Department of Experimental Therapeutics and
- Center for RNA Interference and Non-coding RNAs, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Adrenocortical carcinoma (ACC) is a rare endocrine malignancy typically with poor prognosis. This review aims to summarize the current knowledge regarding the clinical management of ACC. RECENT FINDINGS Surgery remains the cornerstone for localized ACC management. In more advanced cases, debulking surgery when feasible can help with hormonal control and may allow the initiation of systemic therapy. Over the last few years, our understanding of ACC molecular pathogenesis has expanded with no significant change in treatment options. Platinum-based chemotherapy is the gold standard in metastatic ACC despite suboptimal efficacy. Tyrosine kinase inhibitor use did not result in meaningful benefit in ACC patients. Multiple clinical trials are currently exploring the role of immunotherapy in ACC. Despite the remarkable improvement in our understanding of the molecular signature and pathways in ACC, this knowledge did not yield a major breakthrough in management of advanced ACC. Multi-institutional and international collaborations are needed to identify promising treatments and new therapeutic targets to improve the care of ACC patients.
Collapse
Affiliation(s)
- Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, in St. Louis, School of Medicine, 660 S. Euclid Ave., Campus Box 8127, St. Louis, MO, 63110, USA
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1461, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Ding X, Ji J, Jiang J, Cai Q, Wang C, Shi M, Yu Y, Zhu Z, Zhang J. HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis 2018; 9:867. [PMID: 30158543 PMCID: PMC6115420 DOI: 10.1038/s41419-018-0922-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are important components of tumor stroma and play a key role in tumor progression. CAFs involve in crosstalk with tumor cells through various kinds of cytokines. In the present study, we screened hepatocyte growth factor (HGF) as a cytokine predominantly originating from CAFs. CAFs-derived HGF was found to promote MET-unamplified gastric cancer (GC) proliferation, migration, and invasion through the activation of HGF/c-Met/STAT3/twist1 pathway. It also activated interleukin (IL)-6/IL-6R/JAK2/STAT3/twist1 pathway by up-regulating IL-6R expression. As IL-6 was also found to upregulate c-Met expression, we identified the cooperation of HGF and IL-6 in enhancing the characteristics of CAFs. In vivo experiments revealed that CAFs-derived HGF promoted tumorigenesis and metastasis of MET-unamplified GC. Gene set enrichment analysis (GSEA) was performed to confirm our findings. Our study found that the increased expression of HGF in CAFs induced by MET-unamplified GC contributed to the malignant phenotype of both MET-unamplified GC and CAFs in tumor microenvironment.
Collapse
Affiliation(s)
- Xusheng Ding
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jun Ji
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yingyan Yu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
31
|
Costa R, Carneiro BA, Tavora F, Pai SG, Kaplan JB, Chae YK, Chandra S, Kopp PA, Giles FJ. The challenge of developmental therapeutics for adrenocortical carcinoma. Oncotarget 2018; 7:46734-46749. [PMID: 27102148 PMCID: PMC5216833 DOI: 10.18632/oncotarget.8774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare disease with an estimated incidence of only 0.7 new cases per million per year. Approximately 30-70% of the patients present with advanced disease with very poor prognosis and without effective therapeutic options. In the recent years, unprecedented progresses in cancer biology and genomics have fostered the development of numerous targeted therapies for various malignancies. Immunotherapy has also transformed the treatment landscape of malignancies such as melanoma, among others. However, these advances have not brought meaningful benefits for patients with ACC. Extensive genomic analyses of ACC have revealed numerous signal transduction pathway aberrations (e.g., insulin growth factor receptor and Wnt/β-catenin pathways) that play a central role in pathophysiology. These molecular alterations have been explored as potential therapeutic targets for drug development. This manuscript summarizes recent discoveries in ACC biology, reviews the results of early clinical studies with targeted therapies, and provides the rationale for emerging treatment strategies such as immunotherapy.
Collapse
Affiliation(s)
- Ricardo Costa
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benedito A Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabio Tavora
- Department of Pathology, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Sachin G Pai
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason B Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter A Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francis J Giles
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
32
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To present an update on the management of and future directions in adrenocortical carcinoma (ACC). RECENT FINDINGS ACC is a rare malignancy with high morbidity and mortality. Surgery remains the mainstay treatment for localized disease, but it is often not feasible in more advanced cases. There is an ongoing controversy about the routine use of adjuvant treatments after surgery. Hormonal overproduction can complicate the management and worsen the prognosis of the disease. Systemic therapy with multiple cytotoxic drugs is often combined with the adrenolytic agent mitotane. Genomic analyses of ACC revealed numerous signal transduction pathway aberrations (insulin-like growth factor 2 overexpression, TP53 mutations and Wnt/β-catenin pathway activation), but so far, there has been no clinically meaningful breakthrough in targeting these genes. Immunotherapy offers hope for altering the orthodox management of cancer, and its role in ACC is being explored in multiple ongoing trials. SUMMARY Surgery by experienced team is the key treatment for localized ACC, whereas currently used chemotherapy has limited efficacy in advanced ACC. The improved understanding of the molecular pathways involved in ACC has not been translated into effective therapy. The development of new therapies requires collaborative effort to fight this disease.
Collapse
Affiliation(s)
- Jeena Varghese
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
34
|
Han P, Li H, Jiang X, Zhai B, Tan G, Zhao D, Qiao H, Liu B, Jiang H, Sun X. Dual inhibition of Akt and c-Met as a second-line therapy following acquired resistance to sorafenib in hepatocellular carcinoma cells. Mol Oncol 2017; 11:320-334. [PMID: 28164434 PMCID: PMC5527443 DOI: 10.1002/1878-0261.12039] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
Sorafenib displays a limited efficacy for advanced hepatocellular carcinoma (HCC). Some patients with HCC initially respond to sorafenib, but eventually succumb to the disease, indicating that the acquired resistance to sorafenib reduces its beneficial effects. No alternative drugs are available after the failure of sorafenib therapy. Therefore, investigation of the mechanisms underlying the acquired resistance and development of second-line treatments for sorafenib-resistant HCC are urgently required. In this study, sorafenib-resistant HCC cells generated from sorafenib-sensitive human HCC cells were shown to overproduce hepatocyte growth factor (HGF) and overexpress c-Met kinase and its phosphorylated form, leading to the activation of Akt and ERK (extracellular signaling-regulated kinase) pathways. Use of specific c-Met inhibitors enhanced the effects of sorafenib by inhibiting the growth of sorafenib-resistant HCC cells. Akt inhibitors, a class of second-line therapeutic drugs under investigation for treating HCC in clinical trials, enhanced the effects of sorafenib, but also activated the c-Met pathway in sorafenib-resistant cells. Dual inhibition of Akt and c-Met by their respective inhibitors, MK2206 and capmatinib, additively or synergistically suppressed sorafenib-resistant HCC cells in vitro and sorafenib-resistant HCC xenografts in mice. The anticancer activities of MK2206 mainly rely on its ability to induce cell apoptosis and autophagic death, while capmatinib treatment leads to cell cycle arrest at phase G1. These results provide strong evidence for further investigation on the clinical utility of dual inhibition of Akt and c-Met, particularly MK2206 and capmatinib, as a second-line therapy for advanced HCC that has acquired resistance to sorafenib.
Collapse
Affiliation(s)
- Peng Han
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Hali Li
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Xian Jiang
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Bo Zhai
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
- Department of General Surgerythe Fourth Affiliated Hospital of Harbin Medical UniversityChina
| | - Gang Tan
- Department of General Surgerythe Fourth Affiliated Hospital of Harbin Medical UniversityChina
| | - Dali Zhao
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Haiquan Qiao
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Bing Liu
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Hongchi Jiang
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Xueying Sun
- The Hepatosplenic Surgery CenterDepartment of General Surgerythe First Affiliated Hospital of Harbin Medical UniversityChina
| |
Collapse
|
35
|
Gao S, Fang L, Phan LM, Qdaisat A, Yeung SCJ, Lee MH. COP9 signalosome subunit 6 (CSN6) regulates E6AP/UBE3A in cervical cancer. Oncotarget 2016; 6:28026-41. [PMID: 26318036 PMCID: PMC4695042 DOI: 10.18632/oncotarget.4731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/23/2015] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women. Human papillomaviruses (HPVs) are the major cause in almost 99.7% of cervical cancer. E6 oncoprotein of HPV and E6-associated protein (E6AP) are critical in causing p53 degradation and malignancy. Understanding the E6AP regulation is critical to develop treating strategy for cervical cancer patients. The COP9 signalosome subunit 6 (CSN6) is involved in ubiquitin-mediated protein degradation. We found that both CSN6 and E6AP are overexpressed in cervical cancer. We characterized that CSN6 associated with E6AP and stabilized E6AP expression by reducing E6AP poly-ubiquitination, thereby regulating p53 activity in cell proliferation and apoptosis. Mechanistic studies revealed that CSN6-E6AP axis can be regulated by EGF/Akt signaling. Furthermore, inhibition of CSN6-E6AP axis hinders cervical cancer growth in mice. Taken together, our results indicate that CSN6 is a positive regulator of E6AP and is important for cervical cancer development.
Collapse
Affiliation(s)
- Shujun Gao
- Obstetrics and Gynecology Hospital Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lekun Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Liem Minh Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aiham Qdaisat
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sai-Ching J Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.,Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
36
|
Zhang Y, Lu T, Wong M, Wang X, Stodieck L, Karouia F, Story M, Wu H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. FASEB J 2016; 30:2211-24. [PMID: 26917741 DOI: 10.1096/fj.201500121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.
Collapse
Affiliation(s)
- Ye Zhang
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA; Wyle Laboratories, Houston, Texas, USA; Kennedy Space Center, NASA, Cape Canaveral, Florida, USA
| | - Tao Lu
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA; University of Houston Clear Lake, Houston, Texas, USA
| | - Michael Wong
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA
| | - Xiaoyu Wang
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Fathi Karouia
- Ames Research Center, NASA, Moffett Field, California, USA; and University of California San Francisco, San Francisco, California, USA
| | - Michael Story
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Honglu Wu
- Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, USA;
| |
Collapse
|
37
|
5th International ACC Symposium: Future and Current Therapeutic Trials in Adrenocortical Carcinoma. Discov Oncol 2016; 7:29-35. [PMID: 26728470 DOI: 10.1007/s12672-015-0241-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and complex disease associated with a high mortality rate. Despite intensive translational and clinical research, prognosis remains poor. Over the past decade, a significant effort has been made to develop multinational, collaborative studies to better understand the pathogenesis and clinical features of this rare disease in attempt to improve the therapeutic strategies and patient outcome. The results of both standard and newer treatments are discussed in this review as well as the recent discovery of pathways involved in ACC pathogenesis that provide the rationale to introduce new molecular target therapies. Finally, remaining issues regarding how to improve available therapies in adjuvant setting are raised and addressed.
Collapse
|