1
|
Thapa MJ, Chan K. The mutagenic properties of formaldehyde and acetaldehyde: Reflections on half a century of progress. Mutat Res 2024; 830:111886. [PMID: 39549522 DOI: 10.1016/j.mrfmmm.2024.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Formaldehyde and acetaldehyde are reactive, small compounds that humans are exposed to routinely, variously from endogenous and exogenous sources. Both small aldehydes are classified as human carcinogens. Investigation of the DNA damaging properties of these two compounds began some 50 years ago. In this review, we summarize progress in this field since its inception over half a century ago, distilling insights gained by the collective efforts of many research groups while highlighting areas for future directions. Over the decades, general consensus about aspects of the mutagenicity of formaldehyde and acetaldehyde has been reached. But other characteristics of formaldehyde and acetaldehyde remain incompletely understood and require additional investigation. These include crucial details about the mutational signature(s) induced and possible mechanistic role(s) during carcinogenesis.
Collapse
Affiliation(s)
- Mahanish Jung Thapa
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Gao T, Xiang C, Ding X, Xie M. Dual-locked fluorescent probes for precise diagnosis and targeted treatment of tumors. Heliyon 2024; 10:e38174. [PMID: 39381214 PMCID: PMC11458960 DOI: 10.1016/j.heliyon.2024.e38174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer continues to pose a significant threat to global health, with its high mortality rates largely attributable to delayed diagnosis and non-specific treatments. Early and accurate diagnosis is crucial, yet it remains challenging due to the subtle and often undetectable early molecular changes. Traditional single-target fluorescent probes often fail to accurately identify cancer cells, relying solely on single biomarkers and consequently leading to high rates of false positives and inadequate specificity. In contrast, dual-locked fluorescent probes represent a breakthrough, designed to enhance diagnostic precision. By requiring the simultaneous presence of two specific tumor-associated biomarkers or microenvironmental conditions, these probes significantly reduce non-specific activations typical of conventional single-analyte probes. This review discusses the structural designs, response mechanisms, and biological applications of dual-locked probes, highlighting their potential in tumor imaging and treatment. Importantly, the review addresses the challenges, and perspectives in this field, offering a comprehensive look at the current state and future potential of dual-locked fluorescent probes in oncology.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Can Xiang
- Department of Scientific Management, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xintao Ding
- Department of Biomedical Informatics, Columbia University Graduate School of Arts and Sciences, New York, NY, United States
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Blouin T, Saini N. Aldehyde-induced DNA-protein crosslinks- DNA damage, repair and mutagenesis. Front Oncol 2024; 14:1478373. [PMID: 39328207 PMCID: PMC11424613 DOI: 10.3389/fonc.2024.1478373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Aldehyde exposure has been shown to lead to the formation of DNA damage comprising of DNA-protein crosslinks (DPCs), base adducts and interstrand or intrastrand crosslinks. DPCs have recently drawn more attention because of recent advances in detection and quantification of these adducts. DPCs are highly deleterious to genome stability and have been shown to block replication forks, leading to wide-spread mutagenesis. Cellular mechanisms to prevent DPC-induced damage include excision repair pathways, homologous recombination, and specialized proteases involved in cleaving the covalently bound proteins from DNA. These pathways were first discovered in formaldehyde-treated cells, however, since then, various other aldehydes have been shown to induce formation of DPCs in cells. Defects in DPC repair or aldehyde clearance mechanisms lead to various diseases including Ruijs-Aalfs syndrome and AMeD syndrome in humans. Here, we discuss recent developments in understanding how aldehydes form DPCs, how they are repaired, and the consequences of defects in these repair pathways.
Collapse
Affiliation(s)
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South
Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
5
|
Kamalinia A, Seifaei A, Moein SA, Namazi H. Unveiling a foreign body masquerading as periarticular calcification: a case report. J Med Case Rep 2024; 18:251. [PMID: 38741133 PMCID: PMC11092150 DOI: 10.1186/s13256-024-04475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Evaluating isolated extremity discomfort can be challenging when initial imaging and exams provide limited information. Though subtle patient history hints often underlie occult pathologies, benign symptoms are frequently miscategorized as idiopathic. CASE PRESENTATION We present a case of retained glass obscuring as acute calcific periarthritis on imaging. A 48-year-old White male with vague fifth metacarpophalangeal joint pain had unrevealing exams, but radiographs showed periarticular calcification concerning inflammation. Surgical exploration unexpectedly revealed an encapsulated glass fragment eroding bone. Further history uncovered a forgotten glass laceration decade prior. The foreign body was removed, resolving symptoms. DISCUSSION This case reveals two imperative diagnostic principles for nonspecific extremity pain: (1) advanced imaging lacks specificity to differentiate inflammatory arthropathies from alternate intra-articular processes such as foreign bodies, and (2) obscure patient history questions unearth causal subtleties that direct accurate diagnosis. Though initial scans suggested acute calcific periarthritis, exhaustive revisiting of the patient's subtle decade-old glass cut proved pivotal in illuminating the underlying driver of symptoms. CONCLUSION Our findings underscore the critical limitations of imaging and the vital role that meticulous history-taking plays in clarifying ambiguous chronic limb presentations. They spotlight the imperative of probing even distant trauma when symptoms seem disconnected from causative events. This case reinforces the comprehensive evaluation of all subtle patient clues as key in illuminating elusive extremity pain etiologies.
Collapse
Affiliation(s)
- Amirhossein Kamalinia
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asal Seifaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Arman Moein
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hamid Namazi
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Torrecilla I, Ruggiano A, Kiianitsa K, Aljarbou F, Lascaux P, Hoslett G, Song W, Maizels N, Ramadan K. Isolation and detection of DNA-protein crosslinks in mammalian cells. Nucleic Acids Res 2024; 52:525-547. [PMID: 38084926 PMCID: PMC10810220 DOI: 10.1093/nar/gkad1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Nancy Maizels
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
7
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
8
|
Hu CW, Chang YJ, Chang WH, Cooke MS, Chen YR, Chao MR. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:75-89. [PMID: 38153287 PMCID: PMC11915021 DOI: 10.1021/acs.est.3c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
9
|
Yousuf S, Tyagi A, Singh R. Probiotic Supplementation as an Emerging Alternative to Chemical Therapeutics in Finfish Aquaculture: a Review. Probiotics Antimicrob Proteins 2023; 15:1151-1168. [PMID: 35904730 DOI: 10.1007/s12602-022-09971-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/26/2022]
Abstract
Aquaculture is a promising food sector to fulfil nutritional requirements of growing human population. Live weight aquaculture production reached up to 114.5 million tonnes in 2018 and it is further expected to grow by 32% by year 2030. Among total aquaculture production, major product harvested is finfish and its contribution has reached 46% in recent years. Frequent outbreaks of infectious diseases create obstacle in finfish production, result in economic losses to the farmers and threaten the sustainability of aquaculture industry itself. In spite of following the best management practices, the use of antibiotics, chemotherapeutics and phytochemicals often become the method of choice in finfish culture. Among these, phytochemicals have shown lesser effect in animal welfare while antibiotics and other chemotherapeutics have led to negative consequences like emergence of drug-resistant bacteria, and accumulation of residues in host and culture system, resulting in quality degradation of aqua products. Making use of probiotics as viable alternative has paved a way for sustainable aquaculture and minimise the use of antibiotics and other chemotherapeutics that pose adverse effect on host and culture system. This review paper elucidates the knowledge about antibiotics and other chemicals, compilation of probiotics and their effects on health status of finfish as well as overall culture environment. Besides, concoction of probiotics and prebiotics for simultaneous application has also been discussed briefly.
Collapse
Affiliation(s)
- Sufiara Yousuf
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Rahul Singh
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India.
| |
Collapse
|
10
|
Jokipii Krueger CC, Moran E, Tessier KM, Tretyakova NY. Isotope Labeling Mass Spectrometry to Quantify Endogenous and Exogenous DNA Adducts and Metabolites of 1,3-Butadiene In Vivo. Chem Res Toxicol 2023; 36:1409-1418. [PMID: 37477250 PMCID: PMC11009968 DOI: 10.1021/acs.chemrestox.3c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Human exposure to known carcinogen 1,3-butadiene (BD) is common due to its high concentrations in automobile exhaust, cigarette smoke, and forest fires, as well as its widespread use in the polymer industry. The adverse health effects of BD are mediated by epoxide metabolites such as 3,4-epoxy-1-butene (EB), which reacts with DNA to form 1-hydroxyl-3-buten-1-yl adducts on DNA nucleobases. EB-derived mercapturic acids (1- and 2-(N-acetyl-l-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine (DHBMA)) and urinary N7-(1-hydroxyl-3-buten-1-yl) guanine DNA adducts (EB-GII) have been used as biomarkers of BD exposure and cancer risk in smokers and occupationally exposed workers. However, low but significant levels of MHBMA, DHBMA, and EB-GII have been reported in unexposed cultured cells, animals, and humans, suggesting that these metabolites and adducts may form endogenously and complicate risk assessment of butadiene exposure. In the present work, stable isotope labeling in combination with high-resolution mass spectrometry was employed to accurately quantify endogenous and exogenous butadiene metabolites and DNA adducts in vivo. Laboratory rats were exposed to 0.3, 0.5, or 3 ppm of BD-d6 by inhalation, and the amounts of endogenous (d0) and exogenous (d6) DNA adducts and metabolites were quantified in tissues and urine by isotope dilution capillary liquid chromatography/high resolution electrospray ionization tandem mass spectrometry (capLC-ESI-HRMS/MS). Our results reveal that EB-GII adducts and MHBMA originate exclusively from exogenous exposure to BD, while substantial amounts of DHBMA are formed endogenously. Urinary EB-GII concentrations were associated with genomic EB-GII levels in tissues of the same animals. Our findings confirm that EB-GII and MHBMA are specific biomarkers of exposure to BD, while endogenous DHBMA predominates at sub-ppm exposures to BD.
Collapse
Affiliation(s)
- Caitlin C. Jokipii Krueger
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Erik Moran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Katelyn M. Tessier
- Masonic Cancer Center, Biostatistics Core, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Natalia Y. Tretyakova
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
11
|
Wang J, Li J, Xu L, Tan D, Guo R, Lin W. A robust activatable two-photon fluorescent probe for endogenous formaldehyde biomarker visualization diagnosis and evaluation of diabetes mellitus. Anal Chim Acta 2023; 1266:341371. [PMID: 37244658 DOI: 10.1016/j.aca.2023.341371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Diabetes mellitus and its complications are one of the largest healthcare burdens in the world and are increasing every year. However, the lack of effective biomarkers and non-invasive real-time monitoring tools remains a great challenge for the early diagnosis of diabetes mellitus. Endogenous formaldehyde (FA) represents a key reactive carbonyl species in biological systems, and altered metabolism and functions of FA have been closely related to the pathogenesis and maintenance of diabetes. Among various noninvasive biomedical imaging techniques, the identification-responsive fluorescence (FL) imaging could greatly benefit the comprehensive multi-scale assessment of some diseases such as diabetes. Herein, we have designed a robust activatable two-photon probe DM-FA for the first highly selective monitoring of fluctuations in FA levels during diabetes mellitus. Through the density functional theory (DFT) theoretical calculations, we elucidated the rationality of the activatable fluorescent probe DM-FA turning on the FL before and after the reaction with FA. In addition, DM-FA has excellent high selectivity, high growth factor and good photostability in the process of recognizing FA. Due to the brilliant two-photon and one-photon FL imaging capabilities of DM-FA, it has been successfully used to visualize of exogenous and endogenous FA in cells and mice. Remarkably, as a powerful FL imaging visualization tool, DM-FA was introduced for the first time to visually diagnose and explore diabetes through the fluctuation of FA content. The successful application of DM-FA in two-photon and one-photon FL imaging experiments found elevated FA levels in high glucose-stimulated diabetic cell models. We successfully visualized upregulation of FA levels in diabetic mice and decreased of FA levels in diabetic mice scavenged by NaHSO3 from multiple perspectives using multiple imaging modalities. This work may provide a novel strategy for the initial diagnosis of diabetes mellitus and the evaluation of the efficacy of drug therapy for treating diabetes mellitus, which will likely have a positive impact on clinical medicine.
Collapse
Affiliation(s)
- Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Dan Tan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Rui Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
12
|
Li B, Liu C, Zhang W, Ren J, Song B, Yuan J. Ratiometric Lysosome-targeting Luminescent Probe Based on a Coumarin-Ruthenium(II) Complex for Formaldehyde Detection and Imaging in Living Cells and Mouse Brain Tissues. Methods 2023:S1046-2023(23)00100-7. [PMID: 37348825 DOI: 10.1016/j.ymeth.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Ratiometric luminescence probes have attracted widespread attention because of their self-calibration capability. However, some defects, such as small emission shift, severe spectral overlap and poor water solubility, limit their application in the field of biological imaging. In this study, a unique luminescence probe, Ru-COU, has been developed by combining tris(bipyridine)ruthenium(II) complex with coumarin derivative through a formaldehyde-responsive linker. The probe exhibited a large emission shift (Δλ>100 nm) and good water solubility, achieving ratiometric emission responses at 505 nm and 610 nm toward formaldehyde under acidic conditions. Besides, ratiometric luminescence imaging of formaldehyde in living cells and Alzheimer disease mouse's brain slices demonstrates the potential value of Ru-COU for the diagnosis and treatment of formaldehyde related diseases.
Collapse
Affiliation(s)
- Bingyi Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Junyu Ren
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Lin NJ, Wu H, Peng J, Yang SH, Tan R, Peng Y, Wang YW. A ratiometric fluorescent probe for fast detection and bioimaging of formaldehyde. Org Biomol Chem 2023; 21:2167-2171. [PMID: 36799709 DOI: 10.1039/d2ob02314h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A novel ratiometric probe (SWJT-10) based on isophorone derivatives has been designed and synthesized for the detection of formaldehyde (FA). This probe displayed an obvious ratiometric fluorescence response to FA with a blue shift from the NIR (680 nm) to the yellow light region (600 nm) in aqueous solution. And it showed good selectivity, high sensitivity and a fast response to FA (less than 5 s) due to a new recognition mechanism. Moreover, SWJT-10 has been applied to monitor FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Nai-Jie Lin
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Huan Wu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jing Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Shu-Han Yang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
14
|
Li M, Cai Z, Li M, Chen L, Zeng W, Yuan H, Liu C. The dual detection of formaldehydes and sulfenic acids with a reactivity fluorescent probe in cells and in plants. Anal Chim Acta 2023; 1239:340734. [PMID: 36628774 DOI: 10.1016/j.aca.2022.340734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In order to reveal the inter-relationship between protein sulfenic acid (RSOH) and formaldehyde (FA) in different physiological processes, development of tools that are capable of respective and continuous detection for both species is highly valuable. Herein, we reported an "off-on" sensor NA-SF for dual detection of RSOH and FA in cells and plant tissues. Importantly, the highly desirable attribute of the probe NA-SF combined with TCEP, makes it possible to monitor endogenous both RSOH and FA in living cells and plants tissues. NA-SF has been applied successfully in detecting RSOH and FA at physiological concentrations in HeLa, HepG2, A549 cells. Furthermore, the application of NA-SF in evaluating the RSOH and FA level in Arabidopsis thaliana roots of different growth stages are performed. The results show that the level of RSOH and FA in Arabidopsis thaliana roots correlates well with their growth stages, which suggests that both RSOH and FA might play important roles in promoting plant growth and roots elongation. And it also implied a potential application for the biological and pathological research of RSOH and FA, especially in plant physiology. Therefore, we expect NA-SF could provide a convenient and robust tool for better understanding the physiological and pathological roles of RSOH and FA.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhiyi Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
15
|
Yu MY, Xu LH, Zhang Z, Qiao Z, Su P, Wang P, Xie TZ. An Imidazole-Based Triangular Macrocycle for Visual Detection of Formaldehyde. Inorg Chem 2022; 61:20200-20205. [DOI: 10.1021/acs.inorgchem.2c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Min-Ya Yu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Liang-Huan Xu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Zhike Zhang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Peiyang Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
16
|
Dator RP, Murray KJ, Luedtke MW, Jacobs FC, Kassie F, Nguyen HD, Villalta PW, Balbo S. Identification of Formaldehyde-Induced DNA-RNA Cross-Links in the A/J Mouse Lung Tumorigenesis Model. Chem Res Toxicol 2022; 35:2025-2036. [PMID: 36356054 PMCID: PMC10336729 DOI: 10.1021/acs.chemrestox.2c00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco products, and exposure to it is likely one of the factors contributing to the development of lung cancer in cigarette smokers. To exert its carcinogenic effects, NNK must be metabolically activated into highly reactive species generating a wide spectrum of DNA damage. We have identified a new class of DNA adducts, DNA-RNA cross-links found for the first time in NNK-treated mice lung DNA using our improved high-resolution accurate mass segmented full scan data-dependent neutral loss MS3 screening strategy. The levels of these DNA-RNA cross-links were found to be significantly higher in NNK-treated mice compared to the corresponding controls, which is consistent with higher levels of formaldehyde due to NNK metabolism as compared to endogenous levels. We hypothesize that this DNA-RNA cross-linking occurs through reaction with NNK-generated formaldehyde and speculate that this phenomenon has broad implications for NNK-induced carcinogenesis. The structures of these cross-links were characterized using high-resolution LC-MS2 and LC-MS3 accurate mass spectral analysis and comparison to a newly synthesized standard. Taken together, our data demonstrate a previously unknown link between DNA-RNA cross-link adducts and NNK and provide a unique opportunity to further investigate how these novel NNK-derived DNA-RNA cross-links contribute to carcinogenesis in the future.
Collapse
Affiliation(s)
- Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Kevin J. Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN 55108
| | | | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Pharmacology, College of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
17
|
Conolly RB, Campbell JL, Clewell HJ, Schroeter J, Kimbell JS, Gentry PR. Relative contributions of endogenous and exogenous formaldehyde to formation of deoxyguanosine monoadducts and DNA-protein crosslink adducts of DNA in rat nasal mucosa. Toxicol Sci 2022; 191:15-24. [PMID: 36409013 PMCID: PMC9887723 DOI: 10.1093/toxsci/kfac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding the dose-response for formaldehyde-induced nasal cancer in rats is complicated by (1) the uneven distribution of inhaled formaldehyde across the interior surface of the nasal cavity and, (2) the presence of endogenous formaldehyde (endoF) in the nasal mucosa. In this work, we used computational fluid dynamics (CFD) modeling to predict flux of inhaled (exogenous) formaldehyde (exogF) from air into tissue at the specific locations where DNA adducts were measured. Experimental work has identified DNA-protein crosslink (DPX) adducts due to exogF and deoxyguanosine (DG) adducts due to both exogF and endoF. These adducts can be considered biomarkers of exposure for effects of endoF and exogF on DNA that may be part of the mechanism of tumor formation. We describe a computational model linking CFD-predicted flux of formaldehyde from air into tissue, and the intracellular production of endoF, with the formation of DPX and DG adducts. We assumed that, like exogF, endoF can produce DPX. The model accurately reproduces exogDPX, exogDG, and endoDG data after inhalation from 0.7 to 15 ppm. The dose-dependent concentrations of exogDPX and exogDG are predicted to exceed the concentrations of their endogenous counterparts at about 2 and 6 ppm exogF, respectively. At all concentrations examined, the concentrations of endoDPX and exogDPX were predicted to be at least 10-fold higher than that of their DG counterparts. The modeled dose-dependent concentrations of these adducts are suitable to be used together with data on the dose-dependence of cell proliferation to conduct quantitative modeling of formaldehyde-induced rat nasal carcinogenicity.
Collapse
Affiliation(s)
- Rory B Conolly
- To whom correspondence should be addressed at Ramboll US Consulting, Inc., 3107 Armand Street, Monroe, LA 71201, USA. E-mail:
| | | | | | - Jeffry Schroeter
- Applied Research Associates, Inc., Raleigh, North Carolina 27615, USA
| | | | | |
Collapse
|
18
|
Zheng B, Yu L, Dong H, Zhu J, Yang L, Yuan X. Photo-Responsive Micelles with Controllable and Co-Release of Carbon Monoxide, Formaldehyde and Doxorubicin. Polymers (Basel) 2022; 14:polym14122416. [PMID: 35745992 PMCID: PMC9230906 DOI: 10.3390/polym14122416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
Endogenous gases have attracted much attention due to their potent applications in disease therapies. The combined therapy, including gaseous molecules and other medicines that can create synergistic effects, is a new way for future treatment. However, due to the gaseous state, gas utilization in medical service is still limited. To pave the way for future usage, in this work, an amphiphilic block copolymer containing nitrobenzyl ether, 3-hydroxyflavone (3-HF) derivatives and ether linker was constructed. The nitrobenzyl ether group endows the polymer with a photo-responsive character. Upon light illumination, 3-HF derivatives can be triggered for carbon monoxide (CO) release. The ether linker can also be released emitting formaldehyde (FA). The self-assembly induced micelle can encompass medicine, e.g., doxorubicin (DOX), into it and a controlled release of DOX can be realized upon light illumination. As far as we know, there is no report on the combination donor of CO and DOX and this is the first attempt on the co-release of CO, FA and DOX.
Collapse
Affiliation(s)
- Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
- Correspondence: ; Tel.: +86-551-6375-8370
| | - Lulu Yu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Huaze Dong
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| | - Liang Yang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| | - Xinsong Yuan
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| |
Collapse
|
19
|
Liu J, Li K, Xue P, Xu J. Cell-permeable fluorescent indicator for imaging formaldehyde activity in living systems. Anal Biochem 2022; 652:114749. [PMID: 35636460 DOI: 10.1016/j.ab.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Formaldehyde (FA), as a reactive signaling molecule, plays an important role in living systems through a diverse array of cellular pathways. However, no systematic investigation for detection and imaging of FA by rendering cells transiently permeable has been reported yet. Specifically, we developed a new cell-permeable fluorescence probe functionality that was enhanced cellular entry efficiency and well retained intracellularly after activation for visualizing endogenous FA changes. Moreover, a smart "multi-lock system -key-and-lock" strategy,which have provoked a starting point for the use of probe and related biochemical tools to monitor FA in lysosomes. The versatile "latent" fluorophore that can undergo a subsequent self-immolative spacer for interrogating the roles and functions of FA in living systems as well as related biomedical applications.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China.
| | - Kaipeng Li
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| | - Peng Xue
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| | - Jinyi Xu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| |
Collapse
|
20
|
Wei YB, Luo D, Xiong X, Huang YL, Xie M, Lu W, Li D. Biomimetic mimicry of formaldehyde-induced DNA-protein crosslinks in the confined space of a metal-organic framework. Chem Sci 2022; 13:4813-4820. [PMID: 35655868 PMCID: PMC9067591 DOI: 10.1039/d2sc00188h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions induced by crosslinking agents such as formaldehyde (HCHO). Building artificial models to simulate the crosslinking process would advance our understanding of the underlying mechanisms and therefore develop coping strategies accordingly. Herein we report the design and synthesis of a Zn-based metal-organic framework with mixed ligands of 2,6-diaminopurine and amine-functionalized dicarboxylate, representing DNA and protein residues, respectively. Combined characterization techniques allow us to demonstrate the unusual efficiency of HCHO-crosslinking within the confined space of the titled MOF. Particularly, in situ single-crystal X-ray diffraction studies reveal a sequential methylene-knitting process upon HCHO addition, along with strong fluorescence that was not interfered with by other metabolites, glycine, and Tris. This work has successfully constructed a purine-based metal-organic framework with unoccupied Watson-Crick sites, serving as a crystalline model for HCHO-induced DPCs by mimicking the confinement effect of protein/DNA interactions.
Collapse
Affiliation(s)
- Yu-Bai Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Xiao Xiong
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
21
|
Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, Nils H, Christine K, Angela M, Gloria P, Daniel R, Natalie T, Gerhard E. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 2022; 96:1297-1352. [PMID: 35249149 PMCID: PMC9013691 DOI: 10.1007/s00204-022-03242-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The "totality" of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds, N-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arand Michael
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | | - Hartwig Andrea
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Hinrichsen Nils
- Food Oils and Fats Research, ADM Hamburg AG, Research, Seehafenstraße 24, 21079, Hamburg, Germany
| | - Kalisch Christine
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Mally Angela
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Pellegrino Gloria
- Scientific Affairs and Research, Luigi Lavazza SpA, Strada Settimo, 410, 10156, Turin, Italy
| | - Ribera Daniel
- Regulatory and Scientific Affairs EMEA, Cargill R&D, Havenstraat 84, 1800, Vivoorde, Belgium
| | - Thatcher Natalie
- Food Safety, Mondelez International, Bournville Lane, Birmingham, B30 2LU, UK
| | - Eisenbrand Gerhard
- Department of Toxicology and Food Chemistry, University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| |
Collapse
|
22
|
Wang M, Dingler FA, Patel KJ. Genotoxic aldehydes in the hematopoietic system. Blood 2022; 139:2119-2129. [PMID: 35148375 DOI: 10.1182/blood.2019004316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive aldehydes are potent genotoxins that threaten the integrity of hematopoietic stem cells and blood production. To protect against aldehydes, mammals have evolved a family of enzymes to detoxify aldehydes, and the Fanconi anemia DNA repair pathway to process aldehyde-induced DNA damage. Loss of either protection mechanisms in humans results in defective hematopoiesis and predisposition to leukemia. This review will focus on the impact of genotoxic aldehydes on hematopoiesis, the sources of endogenous aldehydes, and potential novel protective pathways.
Collapse
Affiliation(s)
- Meng Wang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Haematology and
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom; and
| | - Felix A Dingler
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - K J Patel
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
23
|
Tao R, Liao M, Wang Y, Wang H, Tan Y, Qin S, Wei W, Tang C, Liang X, Han Y, Li X. In Situ Imaging of Formaldehyde in Live Mice with High Spatiotemporal Resolution Reveals Aldehyde Dehydrogenase-2 as a Potential Target for Alzheimer's Disease Treatment. Anal Chem 2021; 94:1308-1317. [PMID: 34962779 DOI: 10.1021/acs.analchem.1c04520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alterations in formaldehyde (FA) homeostasis are associated with the pathology of Alzheimer's disease (AD). In vivo tracking of FA flux is important for understanding the underlying molecular mechanisms, but is challenging due to the lack of sensitive probes favoring a selective, rapid, and reversible response toward FA. In this study, we re-engineered the promiscuous and irreversible phenylhydrazines to make them selective and reversible toward FA by tuning their nucleophilicity. This effort resulted in PFM309, a selective (selectivity coefficient KFA,methylglyoxal = 0.06), rapid (t1/2 = 32 s at [FA] = 200 μM), and reversible fluorogenic probe (K = 6.24 mM-1) that tracks the FA flux in both live cells and live mice. In vivo tracking of the FA flux was realized by PFM309 imaging, which revealed the gradual accumulation of FA in the live mice brain during normal aging and its further increase in AD mice. We further identified the age-dependent loss of catabolism enzymes ALDH2 and ADH5 as the primary mechanism responsible for formaldehyde excess. Activating ALDH2 with the small molecular activator Alda1 significantly protected neurovascular cells from formaldehyde overload and consequently from impairment during AD progress both in vitro and in vivo. These findings revealed PFM309 as a robust tool to study AD pathology and highlight ALDH2 as a potential target for AD drug development.
Collapse
Affiliation(s)
- Rongrong Tao
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Meihua Liao
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Yuxiang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Huan Wang
- College of Life Science and Technology, Dalian University, Dalian 116622 Liaoning, China
| | - Yuhang Tan
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Siyao Qin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Wenjing Wei
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Xingguang Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
24
|
Lu K, Hsiao YC, Liu CW, Schoeny R, Gentry R, Starr TB. A Review of Stable Isotope Labeling and Mass Spectrometry Methods to Distinguish Exogenous from Endogenous DNA Adducts and Improve Dose-Response Assessments. Chem Res Toxicol 2021; 35:7-29. [PMID: 34910474 DOI: 10.1021/acs.chemrestox.1c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer remains the second most frequent cause of death in human populations worldwide, which has been reflected in the emphasis placed on management of risk from environmental chemicals considered to be potential human carcinogens. The formation of DNA adducts has been considered as one of the key events of cancer, and persistence and/or failure of repair of these adducts may lead to mutation, thus initiating cancer. Some chemical carcinogens can produce DNA adducts, and DNA adducts have been used as biomarkers of exposure. However, DNA adducts of various types are also produced endogenously in the course of normal metabolism. Since both endogenous physiological processes and exogenous exposure to xenobiotics can cause DNA adducts, the differentiation of the sources of DNA adducts can be highly informative for cancer risk assessment. This review summarizes a highly applicable methodology, termed stable isotope labeling and mass spectrometry (SILMS), that is superior to previous methods, as it not only provides absolute quantitation of DNA adducts but also differentiates the exogenous and endogenous origins of DNA adducts. SILMS uses stable isotope-labeled substances for exposure, followed by DNA adduct measurement with highly sensitive mass spectrometry. Herein, the utilities and advantage of SILMS have been demonstrated by the rich data sets generated over the last two decades in improving the risk assessment of chemicals with DNA adducts being induced by both endogenous and exogenous sources, such as formaldehyde, vinyl acetate, vinyl chloride, and ethylene oxide.
Collapse
Affiliation(s)
- Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rita Schoeny
- Rita Schoeny LLC, 726 Fifth Street NE, Washington, D.C. 20002, United States
| | - Robinan Gentry
- Ramboll US Consulting, Inc., Monroe, Louisiana 71201, United States
| | - Thomas B Starr
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,TBS Associates, 7500 Rainwater Road, Raleigh, North Carolina 27615, United States
| |
Collapse
|
25
|
Pujari SS, Tretyakova N. Synthesis and polymerase bypass studies of DNA-peptide and DNA-protein conjugates. Methods Enzymol 2021; 661:363-405. [PMID: 34776221 PMCID: PMC10159213 DOI: 10.1016/bs.mie.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA-peptide (DpCs) and DNA-protein cross-links (DPCs) are DNA lesions formed when polypeptides and nuclear proteins become covalently trapped on DNA strands. DNA-protein cross-links are of enormous size and hence pose challenges to cell survival by blocking DNA replication, transcription, and repair. However, DPCs can undergo proteolytic degradation via various pathways to give shorter polypeptide chains (DpCs). The resulting DpC lesions are efficiently bypassed by translesion synthesis (TLS) DNA polymerases like κ, η, δ, etc., although polymerase bypass efficiency as well as correct base insertion depends heavily on size, sequence context, and position of peptides in DpCs. This chapter explores various synthetic methods to generate these lesions including detailed experimental procedures for the construction of DpCs and DPCs via reductive amination and oxime ligation. Further we describe biochemical experiments to investigate the effects of these lesions on DNA polymerase activity and fidelity.
Collapse
Affiliation(s)
- Suresh S Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
26
|
Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol 2021; 50:919-952. [PMID: 33599198 DOI: 10.1080/10408444.2020.1854679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde is a reactive aldehyde naturally present in all plant and animal tissues and a critical component of the one-carbon metabolism pathway. It is also a high production volume chemical used in the manufacture of numerous products. Formaldehyde is also one of the most well-studied chemicals with respect to environmental fate, biology, and toxicology-including carcinogenic potential, and mode of action (MOA). In 2006, a published MOA for formaldehyde-induced nasal tumors in rats concluded that nasal tumors were most likely driven by cytotoxicity and regenerative cell proliferation, with possible contributions from direct genotoxicity. In the past 15 years, new research has better informed the MOA with the publication of in vivo genotoxicity assays, toxicogenomic analyses, and development of ultra-sensitive methods to measure endogenous and exogenous formaldehyde-induced DNA adducts. Herein, we review and update the MOA for nasal tumors, with particular emphasis on the numerous studies published since 2006. These new studies further underscore the involvement of cytotoxicity and regenerative cell proliferation, and further inform the genotoxic potential of inhaled formaldehyde. The data lend additional support for the use of mechanistic data for the derivation of toxicity criteria and/or scientifically supported approaches for low-dose extrapolation for the risk assessment of formaldehyde.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
27
|
Kang DS, Kim HS, Jung JH, Lee CM, Ahn YS, Seo YR. Formaldehyde exposure and leukemia risk: a comprehensive review and network-based toxicogenomic approach. Genes Environ 2021; 43:13. [PMID: 33845901 PMCID: PMC8042688 DOI: 10.1186/s41021-021-00183-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Formaldehyde is a widely used but highly reactive and toxic chemical. The International Agency for Research on Cancer classifies formaldehyde as a Group 1 carcinogen, based on nasopharyngeal cancer and leukemia studies. However, the correlation between formaldehyde exposure and leukemia incidence is a controversial issue. To understand the association between formaldehyde exposure and leukemia, we explored biological networks based on formaldehyde-related genes retrieved from public and commercial databases. Through the literature-based network approach, we summarized qualitative associations between formaldehyde exposure and leukemia. Our results indicate that oxidative stress-mediated genetic changes induced by formaldehyde could disturb the hematopoietic system, possibly leading to leukemia. Furthermore, we suggested major genes that are thought to be affected by formaldehyde exposure and associated with leukemia development. Our suggestions can be used to complement experimental data for understanding and identifying the leukemogenic mechanism of formaldehyde.
Collapse
Affiliation(s)
- Doo Seok Kang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jong-Hyeon Jung
- Faculty of Health Science, Daegu Haany University, Gyeongsan, Gyeongbuk, 38610, Republic of Korea
| | - Cheol Min Lee
- Department of Chemical and Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, 02173, Republic of Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine and Institute of Occupational and Environmental Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, 26426, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
28
|
Gentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, Greene T. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol 2021; 50:885-918. [PMID: 33538218 DOI: 10.1080/10408444.2020.1854678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde is one of the most comprehensively studied chemicals, with over 30 years of research focused on understanding the development of cancer following inhalation. The causal conclusions regarding the potential for leukemia are largely based on the epidemiological literature, with little consideration of cancer bioassays, dosimetry studies, and mechanistic research, which challenge the biological plausibility of the disease. Recent reanalyzes of the epidemiological literature have also raised significant questions related to the purported associations between formaldehyde and leukemia. Because of this, considerable scientific debate and uncertainty remain on whether there is a causal association between formaldehyde inhalation exposure and leukemia. Further complexity in evaluating this association is related to the endogenous production of formaldehyde. Multiple modes of action (MOA) have been postulated for the development of leukemia following formaldehyde inhalation that includes unsupported hypotheses of direct or indirect toxicity to the target cell population. Herein, the available evidence relevant to evaluating the postulated MOAs for leukemia following formaldehyde inhalation exposure is organized in the IPCS MOA Framework. The integration of all the available evidence clearly highlights the limited amount of data that support any of the postulated MOAs and demonstrates a significant amount of research supporting the null hypothesis that there is no causal association between formaldehyde inhalation exposure and leukemia. These analyses result in a lack of confidence in any of the postulated MOAs, increasing confidence in the conclusion that there is a lack of biological plausibility for a causal association between formaldehyde inhalation exposure and leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Richard Albertini
- Independent Consultant, Emeritus Professor, University of Vermont, Burlington, Vermont, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
29
|
Liu CW, Hsiao YC, Hoffman G, Lu K. LC-MS/MS Analysis of the Formation and Loss of DNA Adducts in Rats Exposed to Vinyl Acetate Monomer through Inhalation. Chem Res Toxicol 2021; 34:793-803. [PMID: 33486946 DOI: 10.1021/acs.chemrestox.0c00404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of DNA adducts is a key event during carcinogenesis. DNA adducts, if not repaired properly, can lead to mutations and cancer. DNA adducts have been frequently used as biomarkers to evaluate chemical exposure. Vinyl acetate monomer (VAM) is widely used in the manufacture of various industrial polymers. Previous studies have documented that VAM induced nasal tumors in rodents exposed to high exposure levels of VAM. VAM is metabolized by carboxylesterase to acetaldehyde (AA), which subsequently results in DNA adducts. However, AA is also an endogenous metabolite in living cells, which impedes accurate assessment of the contribution of VAM exposure under the substantial endogenous background. To address this challenge, we exposed rats to stable isotope labeled [13C2]-VAM at 50, 200, and 400 ppm through inhalation for 6 h, followed by DNA adduct analysis in nasal respiratory and olfactory epithelia with highly sensitive mass spectrometry. Our results show that exogenous N2-ethyl-dG adducts were present in all rats exposed to [13C2]-VAM, with over 2-fold higher DNA adducts in nasal respiratory epithelium than olfactory epithelium. Our data also show that N2-ethyl-dG is a more sensitive biomarker to assess VAM exposure than 1,N2-propano-dG adducts. Moreover, a very low amount of exogenous N2-ethyl-dG adducts were detected in peripheral blood mononuclear cell samples of exposed rats, suggesting that only an extremely small percentage of [13C2]-VAM or its metabolite may enter into systemic circulation to potentially damage tissues beyond nasal epithelium. Furthermore, exogenous N2-ethyl-dG DNA adducts undergo rapid repair or spontaneous loss in nasal epithelium of exposed rats. Taken together, the results presented herein provide novel quantitative data and lay the foundation for future studies to improve risk assessment of VAM.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary Hoffman
- Covance CRS, LLC, 100 Mettlers Road, Somerset, New Jersey 08873, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Kumaravel S, Wu SH, Chen GZ, Huang ST, Lin CM, Lee YC, Chen CH. Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva. Biosens Bioelectron 2021; 171:112720. [DOI: 10.1016/j.bios.2020.112720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023]
|
31
|
Kim YH, Park J. Development of a Simple and Powerful Analytical Method for Formaldehyde Detection and Quantitation in Blood Samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8810726. [PMID: 33457038 PMCID: PMC7787787 DOI: 10.1155/2020/8810726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Human beings are easily exposed to formaldehyde (FA) in a living environment. Entry of FA into the human body can have adverse effects on human health, depending on the FA concentration. Thus, a quantitative analysis of FA in blood is necessary in order to estimate its effect on the human body. In this study, a simple and rapid analytical method for the quantitation of FA in blood was developed. The total analysis time, including the pretreatment procedure, was less than 20 min. To ensure a stable analysis, blood samples were stabilized using tripotassium ethylenediaminetetraacetic acid solution, and FA was selectively derivatized using 2,4-dinitrophenylhydrazine as pretreatment procedures. The pretreated samples were analyzed using a high-performance liquid chromatography-UV system, which is the most common choice for analyzing small-molecule aldehydes like formaldehyde. Verification of the pretreatment methods (stabilization and derivatization) using FA standards confirmed that the pretreatment methods are highly reliable in the calibration range 0.012-5.761 ng μL-1 (slope = 684,898, R 2 = 0.9998, and limit of detection = 0.251 pg·μL-1). Analysis of FA in the blood samples of a Yucatan minipig using the new method revealed an average FA concentration of 1.98 ± 0.34 ng μL-1 (n = 3). Blood samples spiked with FA standards were analyzed, and the FA concentrations were found to be similar to the theoretical concentrations (2.16 ± 0.81% difference). The method reported herein can quantitatively analyze FA in blood at a sub-nanogram level within a short period of time and is validated for application in blood analysis.
Collapse
Affiliation(s)
- Yong-Hyun Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeongsik Park
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
32
|
Ge P, Zhang X, Yang YQ, Lv MQ, Zhou DX. Long-term exposure to formaldehyde induced down-regulation of SPO11 in rats. Inhal Toxicol 2020; 33:8-17. [PMID: 33322957 DOI: 10.1080/08958378.2020.1859652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: Formaldehyde, a ubiquitous environmental contaminant, has long been suspected of causing male reproductive injury, but the underlying molecular mechanism remains largely unknown. SPO11 is a meiosis-related gene, whose absence can cause spermatogenesis arrest. Materials and methods: The present study aimed to explore the role of SPO11 in male reproductive injury induced by long-term formaldehyde exposure, so as to further understand the molecular mechanism of formaldehyde-induced male reproductive toxicity. Adult male Sprague-Dawley rats (n = 24, 245 ± 22 g) were randomly divided into four groups of six (n = 6) and were exposed to formaldehyde gas at doses of 0 (control), 0.5, 2.46 and 5 mg/m3, respectively, via inhalation for 8 consecutive weeks. Results and dissussion: The expression levels of SPO11 were detected in testicular tissues by real-time quantitative polymerase chain reaction, immunofluorescence, and Western blot. The results indicated that the expression of SPO11 was inhibited by formaldehyde exposure in a dose-dependent manner. Furthermore, the histopathological results showed that testicular seminiferous tubules were atrophied, spermatogenic cells were decreased and the lumina were oligozoospermic in the 2.46 and 5 mg/m3 formaldehyde exposure groups. Combined with the morphometric results, we found that the downregulated expression levels of SPO11 were consistent with the changes of testicular seminiferous tubule diameter and seminiferous epithelium height in testicular tissue, suggesting that SPO11 might be one of the main targets of formaldehyde reproductive toxicity. Conclusions: In conclusion, our findings indicated that SPO11 might be related to male reproductive injuries induced by long-term formaldehyde exposure.
Collapse
Affiliation(s)
- Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Xiang Zhang
- Department of Science and Education, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Detection of residual formaldehyde in N-butyl-2-cyanoacrylate by high-performance liquid chromatography with rhodamine B hydrazide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Hu Q, Klages-Mundt N, Wang R, Lynn E, Kuma Saha L, Zhang H, Srivastava M, Shen X, Tian Y, Kim H, Ye Y, Paull T, Takeda S, Chen J, Li L. The ARK Assay Is a Sensitive and Versatile Method for the Global Detection of DNA-Protein Crosslinks. Cell Rep 2020; 30:1235-1245.e4. [PMID: 31995761 PMCID: PMC7069250 DOI: 10.1016/j.celrep.2019.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 11/03/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are a frequent form of DNA lesion and are strongly inhibitive in diverse DNA transactions. Despite recent developments, the biochemical detection of DPCs remains a limiting factor for the in-depth mechanistic understanding of DPC repair. Here, we develop a sensitive and versatile assay, designated ARK, for the quantitative analysis of DPCs in cells. ARK uses sequential chaotropic and detergent-based isolation of DPCs and substantially enhances sample purity, resulting in a 5-fold increase in detection sensitivity and a 10-fold reduction in background reading. We validate the ARK assay with genetic mutants with established deficiencies in DPC repair and demonstrate its robustness by using common DPC-inducing reagents, including formaldehyde, camptothecin, and etoposide. In addition, we show that the Fanconi anemia pathway contributes to the repair of DPCs. Thus, ARK is expected to facilitate various studies aimed at understanding both fundamental biology and translational applications of DNA-protein crosslink repair. Hu et al. develop a protocol to analyze DNA-protein crosslinking (DPC) damage. Designated the ARK assay, this method outperforms widely used assays by allowing the detection of global DPCs with improved sensitivity and expanded readout. Defective DPC repair is detected in Fanconi anemia mutant cells by this protocol.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Naeh Klages-Mundt
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica Lynn
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Liton Kuma Saha
- Department of Radiation Genetics, Kyoto University, Kyoto, Japan
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanyan Tian
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyeung Kim
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Tanya Paull
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Kyoto, Japan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Joseph SA, Taglialatela A, Leuzzi G, Huang JW, Cuella-Martin R, Ciccia A. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst) 2020; 95:102943. [PMID: 32971328 DOI: 10.1016/j.dnarep.2020.102943] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Over the course of DNA replication, DNA lesions, transcriptional intermediates and protein-DNA complexes can impair the progression of replication forks, thus resulting in replication stress. Failure to maintain replication fork integrity in response to replication stress leads to genomic instability and predisposes to the development of cancer and other genetic disorders. Multiple DNA damage and repair pathways have evolved to allow completion of DNA replication following replication stress, thus preserving genomic integrity. One of the processes commonly induced in response to replication stress is fork reversal, which consists in the remodeling of stalled replication forks into four-way DNA junctions. In normal conditions, fork reversal slows down replication fork progression to ensure accurate repair of DNA lesions and facilitates replication fork restart once the DNA lesions have been removed. However, in certain pathological situations, such as the deficiency of DNA repair factors that protect regressed forks from nuclease-mediated degradation, fork reversal can cause genomic instability. In this review, we describe the complex molecular mechanisms regulating fork reversal, with a focus on the role of the SNF2-family fork remodelers SMARCAL1, ZRANB3 and HLTF, and highlight the implications of fork reversal for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
36
|
Kojima Y, Machida YJ. DNA-protein crosslinks from environmental exposure: Mechanisms of formation and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:716-729. [PMID: 32329115 PMCID: PMC7575214 DOI: 10.1002/em.22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Many environmental carcinogens cause DNA damage, which can result in mutations and other alterations in genomic DNA if not repaired promptly. Because of the bulkiness of the lesions, DNA-protein crosslinks (DPCs) are one of the types of toxic DNA damage with potentially deleterious consequences. Despite the importance of DPCs, how cells remove these complex DNA adducts has been incompletely understood. However, major progress in the DPC repair field over the past 5 years now supports the view that cells are equipped with multiple mechanisms to cope with DPCs. Here, we first provide an overview of environmental substances that induce DPCs, describing the sources of exposure and mechanisms of DPC formation. We then review current models of DPC repair and discuss their significance for environmental carcinogens.
Collapse
Affiliation(s)
- Yusuke Kojima
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Yuichi J. Machida
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
- Correspondence to Yuichi J. Machida.
| |
Collapse
|
37
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
38
|
Prasad R, Horton JK, Wilson SH. WITHDRAWN: Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair (Amst) 2020; 89:102824. [PMID: 32151818 DOI: 10.1016/j.dnarep.2020.102824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in DNA Repair, 90C (2020) 102850, https://doi.org/10.1016/j.dnarep.2020.102850. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
39
|
Prasad R, Horton JK, Wilson SH. Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair (Amst) 2020; 90:102850. [PMID: 32438305 DOI: 10.1016/j.dnarep.2020.102850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
40
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
41
|
Nakamura J, Nakamura M. DNA-protein crosslink formation by endogenous aldehydes and AP sites. DNA Repair (Amst) 2020; 88:102806. [PMID: 32070903 DOI: 10.1016/j.dnarep.2020.102806] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Covalent binding between proteins and a DNA strand produces DNA-protein crosslinks (DPC). DPC are one of the most deleterious types of DNA damage, leading to the blockage of DNA replication and transcription. Both DNA lesions and endogenous products with carbonyl functional groups can produce DPC in genomic DNA under normal physiological conditions. For example, formaldehyde, the most abundant endogenous human carcinogen, and apurinic/apyrimidinic (AP) sites, the most common type of endogenous DNA lesions, has been shown to crosslink proteins and/or DNA through their carbonyl functional groups. Unfortunately, compared to other types of DNA damage, DPC have been less studied and understood. However, a recent advancement has allowed researchers to determine accurate yields of various DNA lesions including formaldehyde-derived DPC with high sensitivity and specificity, paving the way for new developments in this field of research. Here, we review the current literature and remaining unanswered questions on DPC formation by endogenous formaldehyde and various aldehydic 2-deoxyribose lesions.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - Mai Nakamura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Smaga LP, Pino NW, Ibarra GE, Krishnamurthy V, Chan J. A Photoactivatable Formaldehyde Donor with Fluorescence Monitoring Reveals Threshold To Arrest Cell Migration. J Am Chem Soc 2020; 142:680-684. [PMID: 31898899 DOI: 10.1021/jacs.9b11899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlled light-mediated delivery of biological analytes can enable the investigation of highly reactivity molecules within living systems. As many biological effects are concentration dependent, it is critical to determine the location, time, and quantity of analyte donation. In this work, we have developed the first photoactivatable donor for formaldehyde (FA). Our optimized photoactivatable donor, photoFAD-3, is equipped with a fluorescence readout that enables monitoring of FA release with a concomitant 139-fold fluorescence enhancement. Tuning of photostability and cellular retention enabled quantification of intracellular FA release through cell lysate calibration. Application of photoFAD-3 uncovered the concentration range necessary for arresting wound healing in live cells. This marks the first report where a photoactivatable donor for any analyte has been used to quantify intracellular release.
Collapse
Affiliation(s)
- Lukas P Smaga
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Nicholas W Pino
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Gabriela E Ibarra
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Vishnu Krishnamurthy
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
43
|
Andersen ME, Gentry PR, Swenberg JA, Mundt KA, White KW, Thompson C, Bus J, Sherman JH, Greim H, Bolt H, Marsh GM, Checkoway H, Coggon D, Clewell HJ. Considerations for refining the risk assessment process for formaldehyde: Results from an interdisciplinary workshop. Regul Toxicol Pharmacol 2019; 106:210-223. [PMID: 31059732 DOI: 10.1016/j.yrtph.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/06/2023]
Abstract
Anticipating the need to evaluate and integrate scientific evidence to inform new risk assessments or to update existing risk assessments, the Formaldehyde Panel of the American Chemistry Council (ACC), in collaboration with the University of North Carolina, convened a workshop: "Understanding Potential Human Health Cancer Risk - From Data Integration to Risk Evaluation" in October 2017. Twenty-four (24) invited-experts participated with expertise in epidemiology, toxicology, science integration and risk evaluation. Including members of the organizing committee, there were 29 participants. The meeting included eleven presentations encompassing an introduction and three sessions: (1) "integrating the formaldehyde science on nasal/nasopharyngeal carcinogenicity and potential for causality"; (2) "integrating the formaldehyde science on lymphohematopoietic cancer and potential for causality; and, (3) "formaldehyde research-data suitable for risk assessment". Here we describe key points from the presentations on epidemiology, toxicology and mechanistic studies that should inform decisions about the potential carcinogenicity of formaldehyde in humans and the discussions about approaches for structuring an integrated, comprehensive risk assessment for formaldehyde. We also note challenges expected when attempting to reconcile divergent results observed from research conducted within and across different scientific disciplines - especially toxicology and epidemiology - and in integrating diverse, multi-disciplinary mechanistic evidence.
Collapse
Affiliation(s)
- Melvin E Andersen
- ScitoVation LLC, 100 Capitola Drive, Drive 106, Durham, NC, 27713, USA.
| | | | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth A Mundt
- Ramboll US Corporation, Amherst, MA (currently with Cardno Chemrisk, Boston, MA, USA
| | | | | | - James Bus
- Center for Toxicology and Mechanistic Biology, Exponent, Alexandria, VA, USA
| | | | | | - Hermann Bolt
- Leibniz Institute for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Gary M Marsh
- Department of Biostatistics, Center for Occupational Biostatistics and Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harvey Checkoway
- University of California, San Diego, Department of Family Medicine and Public Health, USA
| | - David Coggon
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
| | - Harvey J Clewell
- Ramboll US Corporation, 6 Davis Drive, Suite 13, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
44
|
Liu C, Zhang R, Zhang W, Liu J, Wang YL, Du Z, Song B, Xu ZP, Yuan J. “Dual-Key-and-Lock” Ruthenium Complex Probe for Lysosomal Formaldehyde in Cancer Cells and Tumors. J Am Chem Soc 2019; 141:8462-8472. [DOI: 10.1021/jacs.8b13898] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhongbo Du
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
Chan W, Ham YH, Jin L, Chan HW, Wong YL, Chan CK, Chung PY. Quantification of a Novel DNA–Protein Cross-Link Product Formed by Reacting Apurinic/Apyrimidinic Sites in DNA with Cysteine Residues in Protein by Liquid Chromatography-Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Anal Chem 2019; 91:4987-4994. [DOI: 10.1021/acs.analchem.8b04306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan. Cell Rep 2019; 26:3336-3346.e4. [DOI: 10.1016/j.celrep.2019.02.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
|
47
|
Evaluation of inhaled low-dose formaldehyde-induced DNA adducts and DNA-protein cross-links by liquid chromatography-tandem mass spectrometry. Arch Toxicol 2019; 93:763-773. [PMID: 30701286 DOI: 10.1007/s00204-019-02393-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
As a widespread industrial chemical, formaldehyde carcinogenicity has been highly controversial. Meanwhile, formaldehyde is an essential metabolite in all living cells. Previously, we have demonstrated exogenous formaldehyde causes DNA adducts in a nonlinear manner between 0.7 and 15.2 ppm using [13CD2]-formaldehyde for exposure coupled with the use of sensitive mass spectrometry. However, the responses from exposure to low doses of formaldehyde are still unknown. In this study, rats were exposed to 1, 30, and 300 ppb [13CD2]-formaldehyde for 28 days (6 h/day) by nose-only inhalation, followed by measuring DNA mono-adduct (N2-HOMe-dG) and DNA-protein crosslinks (dG-Me-Cys) as formaldehyde specific biomarkers. Both exogenous and endogenous DNA mono-adducts and dG-Me-Cys were examined with ultrasensitive nano-liquid chromatography-tandem mass spectrometry. Our data clearly show that endogenous adducts are present in all tissues analyzed, but exogenous adducts were not detectable in any tissue samples, including the most susceptible nasal epithelium. Moreover, formaldehyde exposure at 1, 30 and 300 ppb did not alter the levels of endogenous formaldehyde-induced DNA adducts or DNA-protein crosslinks. The novel findings from this study provide new data for risk assessment of exposure to low doses of formaldehyde.
Collapse
|
48
|
Chen W, Yang M, Luo N, Wang F, Yu RQ, Jiang JH. An intramolecular charge transfer and excited state intramolecular proton transfer based fluorescent probe for highly selective detection and imaging of formaldehyde in living cells. Analyst 2019; 144:6922-6927. [DOI: 10.1039/c9an01778j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intramolecular charge transfer and excited state intramolecular proton transfer based fluorescent probe was developed for highly selective detection of FA.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Mei Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Na Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
49
|
Prasad R, Horton JK, Dai DP, Wilson SH. Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair (Amst) 2018; 73:71-77. [PMID: 30466837 DOI: 10.1016/j.dnarep.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/03/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a regulatory enzyme involved in many different processes of DNA and RNA metabolism, including DNA repair. Previously, PARP-1 was found capable of forming a covalent DNA-protein crosslink (DPC) at the apurinic/apyrimidinic (AP) site in double-stranded DNA. The C1´ atom of the AP site participates in Schiff base formation with a lysine side chain in PARP-1, and a covalent bond is formed upon reduction of the Schiff base. The PARP-1 DPC is formed in vivo where DPC formation correlates with AP site induction by a monofunctional alkylating agent. Here, we examined repair of PARP-1 DPCs in mouse fibroblasts and found that a proteasome inhibitor, MG-132, reduces repair resulting in accumulation of PARP-1 DPCs and increased alkylating agent cytotoxicity. Using a model DNA substrate mimicking the PARP-1 DPC after proteasomal degradation, we found that repair is completed by a sub-pathway of base excision repair (BER). Tyrosyl-DNA phosphodiesterase 1 was proficient in removing the ring-open AP site sugar at the phosphodiester linkage, leaving an intermediate for processing by other BER enzymes. The results reveal proteasomal degradation of the PARP-1 DPC is active in mouse fibroblasts and that a model repair intermediate is processed by the BER machinery.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
50
|
Chen W, Han J, Wang X, Liu X, Liu F, Wang F, Yu RQ, Jiang JH. Aggregation-Induced Emission-Based Fluorescence Probe for Fast and Sensitive Imaging of Formaldehyde in Living Cells. ACS OMEGA 2018; 3:14417-14422. [PMID: 30411068 PMCID: PMC6217697 DOI: 10.1021/acsomega.8b01660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 05/16/2023]
Abstract
Formaldehyde (FA), as a reactive carbonyl species and signaling molecule, plays an important role in living systems. Here, an FA-responsive probe with fast response and great selectivity is designed based on aggregation-induced emission. The probe is prepared by functionalizing tetraphenylethene (TPE) with two amine groups. FA is detected based on the solubility differences between the amine-functionalized TPE and the corresponding Schiff bases after reaction with FA. The probe exhibits a limit of detection of 40 nM and a response time of ∼90 s. Furthermore, its ability to detect both endogenous and exogenous FA is demonstrated in living cells with high specificity. Moreover, the probe is also introduced to image endogenous FA in real time with fast response. These results suggest that our probe holds great potential for tracking FA in living systems under various physiological conditions as well as related biomedical applications.
Collapse
|