1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Ortiz MMO, Andrechek ER. Molecular Characterization and Landscape of Breast cancer Models from a multi-omics Perspective. J Mammary Gland Biol Neoplasia 2023; 28:12. [PMID: 37269418 DOI: 10.1007/s10911-023-09540-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is well-known to be a highly heterogenous disease. This facet of cancer makes finding a research model that mirrors the disparate intrinsic features challenging. With advances in multi-omics technologies, establishing parallels between the various models and human tumors is increasingly intricate. Here we review the various model systems and their relation to primary breast tumors using available omics data platforms. Among the research models reviewed here, breast cancer cell lines have the least resemblance to human tumors since they have accumulated many mutations and copy number alterations during their long use. Moreover, individual proteomic and metabolomic profiles do not overlap with the molecular landscape of breast cancer. Interestingly, omics analysis revealed that the initial subtype classification of some breast cancer cell lines was inappropriate. In cell lines the major subtypes are all well represented and share some features with primary tumors. In contrast, patient-derived xenografts (PDX) and patient-derived organoids (PDO) are superior in mirroring human breast cancers at many levels, making them suitable models for drug screening and molecular analysis. While patient derived organoids are spread across luminal, basal- and normal-like subtypes, the PDX samples were initially largely basal but other subtypes have been increasingly described. Murine models offer heterogenous tumor landscapes, inter and intra-model heterogeneity, and give rise to tumors of different phenotypes and histology. Murine models have a reduced mutational burden compared to human breast cancer but share some transcriptomic resemblance, and representation of many breast cancer subtypes can be found among the variety subtypes. To date, while mammospheres and three- dimensional cultures lack comprehensive omics data, these are excellent models for the study of stem cells, cell fate decision and differentiation, and have also been used for drug screening. Therefore, this review explores the molecular landscapes and characterization of breast cancer research models by comparing recent published multi-omics data and analysis.
Collapse
Affiliation(s)
- Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Bowers LW, Doerstling SS, Shamsunder MG, Lineberger CG, Rossi EL, Montgomery SA, Coleman MF, Gong W, Parker JS, Howell A, Harvie M, Hursting SD. Reversing the Genomic, Epigenetic, and Triple-Negative Breast Cancer-Enhancing Effects of Obesity. Cancer Prev Res (Phila) 2022; 15:581-594. [PMID: 35696725 PMCID: PMC9444913 DOI: 10.1158/1940-6207.capr-22-0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
The reversibility of the procancer effects of obesity was interrogated in formerly obese C57BL/6 mice that lost weight via a nonrestricted low-fat diet (LFD) or 3 distinct calorie-restricted (CR) regimens (low-fat CR, Mediterranean-style CR, or intermittent CR). These mice, along with continuously obese mice and lean control mice, were orthotopically injected with E0771 cells, a mouse model of triple-negative breast cancer. Tumor weight, systemic cytokines, and incidence of lung metastases were elevated in the continuously obese and nonrestricted LFD mice relative to the 3 CR groups. Gene expression differed between the obese and all CR groups, but not the nonrestricted LFD group, for numerous tumoral genes associated with epithelial-to-mesenchymal transition as well as several genes in the normal mammary tissue associated with hypoxia, reactive oxygen species production, and p53 signaling. A high degree of concordance existed between differentially expressed mammary tissue genes from obese versus all CR mice and a microarray dataset from overweight/obese women randomized to either no intervention or a CR diet. Assessment of differentially methylated regions in mouse mammary tissues revealed that obesity, relative to the 4 weight loss groups, was associated with significant DNA hypermethylation. However, the anticancer effects of the CR interventions were independent of their ability to reverse obesity-associated mammary epigenetic reprogramming. Taken together, these preclinical data showing that the procancer effects of obesity are reversible by various forms of CR diets strongly support translational exploration of restricted dietary patterns for reducing the burden of obesity-associated cancers. PREVENTION RELEVANCE Obesity is an established risk and progression factor for triple-negative breast cancer (TNBC). Given rising global rates of obesity and TNBC, strategies to reduce the burden of obesity-driven TNBC are urgently needed. We report the genomic, epigenetic, and procancer effects of obesity are reversible by various calorie restriction regimens.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | - Emily L. Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Anthony Howell
- Prevent Breast Cancer Research Unit, The Nightingale Centre, Manchester University NHS Foundation Trust, Manchester, England,Division of Cancer Sciences, The University of Manchester, Manchester, England
| | - Michelle Harvie
- Prevent Breast Cancer Research Unit, The Nightingale Centre, Manchester University NHS Foundation Trust, Manchester, England,Division of Cancer Sciences, The University of Manchester, Manchester, England
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina, Kannapolis, NC, USA
| |
Collapse
|
4
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Bowers LW, Glenny EM, Punjala A, Lanman NA, Goldbaum A, Himbert C, Montgomery SA, Yang P, Roper J, Ulrich CM, Dannenberg AJ, Coleman MF, Hursting SD. Weight Loss and/or Sulindac Mitigate Obesity-associated Transcriptome, Microbiome, and Protumor Effects in a Murine Model of Colon Cancer. Cancer Prev Res (Phila) 2022; 15:481-495. [PMID: 35653548 PMCID: PMC9357192 DOI: 10.1158/1940-6207.capr-21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arunima Punjala
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nadia A. Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Audrey Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline Himbert
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jatin Roper
- Department of Medicine, Duke University, Durham, NC, USA
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
6
|
Abstract
Obesity is epidemiologically linked to 13 forms of cancer. The local and systemic obese environment is complex and likely affect tumors through multiple avenues. This includes modulation of cancer cell phenotypes and the composition of the tumor microenvironment. A molecular understanding of how obesity links to cancer holds promise for identifying candidate genes for targeted therapy for obese cancer patient. Herein, we review both the cell-autonomous and non-cell-autonomous mechanisms linking obesity and cancer as well as provide an overview of the mouse model systems applied to study this.
Collapse
Affiliation(s)
- Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Line Pedersen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
7
|
Cozzo AJ, Coleman MF, Pearce JB, Pfeil AJ, Etigunta SK, Hursting SD. Dietary Energy Modulation and Autophagy: Exploiting Metabolic Vulnerabilities to Starve Cancer. Front Cell Dev Biol 2020; 8:590192. [PMID: 33224954 PMCID: PMC7674637 DOI: 10.3389/fcell.2020.590192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells experience unique and dynamic shifts in their metabolic function in order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor microenvironment. Therefore, identification of pharmacological agents with potential to reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy. Cancer cells also often exhibit an increased dependence on the process known as autophagy, both for baseline survival and as a response to stressors such as chemotherapy or a decline in nutrient availability. There is evidence to suggest that this increased dependence on autophagy in cancer cells may be exploitable clinically by combining autophagy modulators with existing chemotherapies. In light of the increased metabolic rate in cancer cells, interest is growing in approaches aimed at "starving" cancer through dietary and pharmacologic interventions that reduce availability of nutrients and pro-growth hormonal signals known to promote cancer progression. Several dietary approaches, including chronic calorie restriction and multiple forms of fasting, have been investigated for their potential anti-cancer benefits, yielding promising results in animal models. Induction of autophagy in response to dietary energy restriction may underlie some of the observed benefit. However, while interventions based on dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains regarding translation to humans as well as feasibility of achieving compliance due to the potential discomfort and weight loss that accompanies dietary restriction. Further induction of autophagy through dietary or pharmacologic metabolic reprogramming interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic agents aimed at autophagy induction, autophagy inhibition, or both are a viable therapeutic strategy for improving cancer outcomes. This review discusses the literature available for the therapeutic potential of these approaches.
Collapse
Affiliation(s)
- Alyssa J Cozzo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Duke University School of Medicine, Durham, NC, United States
| | - Michael F Coleman
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jane B Pearce
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander J Pfeil
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suhas K Etigunta
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D Hursting
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
8
|
Abstract
Despite great advances in treatment, cancer remains a leading cause of death worldwide. Diet can greatly impact health, while caloric restriction and fasting have putative benefits for disease prevention and longevity. Strong epidemiological associations exist between obesity and cancer, whereas healthy diets can reduce cancer risk. However, less is known about how diet might impact cancer once it has been diagnosed and particularly how diet can impact cancer treatment. In the present review, we discuss the links between obesity, diet, and cancer. We explore potential mechanisms by which diet can improve cancer outcomes, including through hormonal, metabolic, and immune/inflammatory effects, and present the limited clinical research that has been published in this arena. Though data are sparse, diet intervention may reduce toxicity, improve chemotherapy efficacy, and lower the risk of long-term complications in cancer patients. Thus, it is important that we understand and expand the science of this important but complex adjunctive cancer treatment strategy.
Collapse
Affiliation(s)
- Steven D Mittelman
- Division of Pediatric Endocrinology, University of California, Los Angeles (UCLA), Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA;
| |
Collapse
|
9
|
Donovan MG, Wren SN, Cenker M, Selmin OI, Romagnolo DF. Dietary fat and obesity as modulators of breast cancer risk: Focus on DNA methylation. Br J Pharmacol 2020; 177:1331-1350. [PMID: 31691272 DOI: 10.1111/bph.14891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and second leading cause of cancer mortality in women worldwide. Validated biomarkers enhance efforts for early detection and treatment, which reduce the risk of mortality. Epigenetic signatures have been suggested as good biomarkers for early detection, prognosis and targeted therapy of BC. Here, we highlight studies documenting the modifying effects of dietary fatty acids and obesity on BC biomarkers associated with DNA methylation. We focus our analysis on changes elicited in writers of DNA methylation (i.e., DNA methyltransferases), global DNA methylation and gene-specific DNA methylation. To provide context, we precede this discussion with a review of the available evidence for an association between BC incidence and both dietary fat consumption and obesity. We also include a review of well-vetted BC biomarkers related to cytosine-guanine dinucleotides methylation and how they influence BC risk, prognosis, tumour characteristics and response to treatment. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Micah G Donovan
- Interdisciplinary Cancer Biology Graduate Program, University of Arizona, Tucson, Arizona
| | - Spencer N Wren
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Mikia Cenker
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
10
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
11
|
Yong-Quan Ng G, Fann DYW, Jo DG, Sobey CG, Arumugam TV. Epigenetic Regulation by Dietary Restriction: Part II. CONDITIONING MEDICINE 2019; 2:300-310. [PMID: 32039346 PMCID: PMC7007178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the first part of our review, we extensively discuss the different variants of dietary restriction (DR) regimens, as well as its corresponding mechanism(s) and subsequent effects. We also provide a detailed analysis of the different epigenetic mechanisms based on current knowledge. We postulate that DR may represent an environmental intervention that can modulate the epigenomic profile of an individual. It is highly plausible that epigenetic regulation by DR may help explain the asymmetric manifestation of DR effects in different individuals. Additionally, epigenetic modifications via DR may lead to epigenetic programming, providing protection against age-associated diseases, which in turn could lead to reduced morbidity and increased lifespan. In the second part of the review, we summarize recent findings that highlight the epigenomic axis of DR, which provides a better understanding of the mechanisms by which its numerous health benefits are achieved.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr 2019; 10:520-536. [PMID: 30915465 PMCID: PMC6520046 DOI: 10.1093/advances/nmy129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic caloric restriction (CR) without malnutrition is known to affect different cellular processes such as stem cell function, cell senescence, inflammation, and metabolism. Despite the differences in the implementation of CR, the reduction of calories produces a widespread beneficial effect in noncommunicable chronic diseases, which can be explained by improvements in immuno-metabolic adaptation. Cellular adaptation that occurs in response to dietary patterns can be explained by alterations in epigenetic mechanisms such as DNA methylation, histone modifications, and microRNA. In this review, we define these modifications and systematically summarize the current evidence related to CR and the epigenome. We then explain the significance of genome-wide epigenetic modifications in the context of disease development. Although substantial evidence exists for the widespread effect of CR on longevity, there is no consensus regarding the epigenetic regulations of the underlying cellular mechanisms that lead to improved health. We provide compelling evidence that CR produces long-lasting epigenetic effects that mediate expression of genes related to immuno-metabolic processes. Epigenetic reprogramming of the underlying chronic low-grade inflammation by CR can lead to immuno-metabolic adaptations that enhance quality of life, extend lifespan, and delay chronic disease onset.
Collapse
Affiliation(s)
| | | | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hong Chen
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL,Address correspondence to Y-XP (e-mail: )
| |
Collapse
|
13
|
Ma Z, Parris AB, Howard EW, Shi Y, Yang S, Jiang Y, Kong L, Yang X. Caloric restriction inhibits mammary tumorigenesis in MMTV-ErbB2 transgenic mice through the suppression of ER and ErbB2 pathways and inhibition of epithelial cell stemness in premalignant mammary tissues. Carcinogenesis 2019; 39:1264-1273. [PMID: 30107476 DOI: 10.1093/carcin/bgy096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric intake influences the onset of many diseases, including cancer. In particular, caloric restriction (CR) has been reported to suppress mammary tumorigenesis in various models. However, the underlying cancer preventive mechanisms have not been fully explored. To this end, we aimed to characterize the anticancer mechanisms of CR using MMTV-ErbB2 transgenic mice, a well-established spontaneous ErbB2-overexpressing mammary tumor model, by focusing on cellular and molecular changes in premalignant tissues. In MMTV-ErbB2 mice with 30% CR beginning at 8 weeks of age, mammary tumor development was dramatically inhibited, as exhibited by reduced tumor incidence and increased tumor latency. Morphogenic mammary gland analyses in 15- and 20-week-old mice indicated that CR significantly decreased mammary epithelial cell (MEC) density and proliferative index. To understand the underlying mechanisms, we analyzed the effects of CR on mammary stem/progenitor cells. Results from fluorescence-activated cell sorting analyses showed that CR modified mammary tissue hierarchy dynamics, as evidenced by decreased luminal cells (CD24highCD49flow), putative mammary reconstituting unit subpopulation (CD24highCD49fhigh) and luminal progenitor cells (CD61highCD49fhigh). Mammosphere and colony-forming cell assays demonstrated that CR significantly inhibited mammary stem cell self-renewal and progenitor cell numbers. Molecular analyses indicated that CR concurrently inhibited estrogen receptor (ER) and ErbB2 signaling. These molecular changes were accompanied by decreased mRNA levels of ER-targeted genes and epidermal growth factor receptor/ErbB2 family members and ligands, suggesting ER-ErbB2 signaling cross-talk. Collectively, our data demonstrate that CR significantly impacts ER and ErbB2 signaling, which induces profound changes in MEC reprogramming, and mammary stem/progenitor cell inhibition is a critical mechanism of CR-mediated breast cancer prevention.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Yujie Shi
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lingfei Kong
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA.,Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Ecker BL, Lee JY, Sterner CJ, Solomon AC, Pant DK, Shen F, Peraza J, Vaught L, Mahendra S, Belka GK, Pan TC, Schmitz KH, Chodosh LA. Impact of obesity on breast cancer recurrence and minimal residual disease. Breast Cancer Res 2019; 21:41. [PMID: 30867005 PMCID: PMC6416940 DOI: 10.1186/s13058-018-1087-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity is associated with an increased risk of breast cancer recurrence and cancer death. Recurrent cancers arise from the pool of residual tumor cells, or minimal residual disease (MRD), that survives primary treatment and persists in the host. Whether the association of obesity with recurrence risk is causal is unknown, and the impact of obesity on MRD and breast cancer recurrence has not been reported in humans or in animal models. METHODS Doxycycline-inducible primary mammary tumors were generated in intact MMTV-rtTA;TetO-HER2/neu (MTB/TAN) mice or orthotopic recipients fed a high-fat diet (HFD; 60% kcal from fat) or a control low-fat diet (LFD; 10% kcal from fat). Following oncogene downregulation and tumor regression, mice were followed for clinical recurrence. Body weight was measured twice weekly and used to segregate HFD mice into obese (i.e., responders) and lean (i.e., nonresponders) study arms, and obesity was correlated with body fat percentage, glucose tolerance (measured using intraperitoneal glucose tolerance tests), serum biomarkers (measured by enzyme-linked immunosorbent assay), and tissue transcriptomics (assessed by RNA sequencing). MRD was quantified by droplet digital PCR. RESULTS HFD-Obese mice weighed significantly more than HFD-Lean and LFD control mice (p < 0.001) and had increased body fat percentage (p < 0.001). Obese mice exhibited fasting hyperglycemia, hyperinsulinemia, and impaired glucose tolerance, as well as decreased serum levels of adiponectin and increased levels of leptin, resistin, and insulin-like growth factor 1. Tumor recurrence was accelerated in HFD-Obese mice compared with HFD-Lean and LFD control mice (median relapse-free survival 53.0 days vs. 87.0 days vs. 80.0 days, log-rank p < 0.001; HFD-Obese compared with HFD-Lean HR 2.52, 95% CI 1.52-4.16; HFD-Obese compared with LFD HR 2.27, 95% CI 1.42-3.63). HFD-Obese mice harbored a significantly greater number of residual tumor cells than HFD-Lean and LFD mice (12,550 ± 991 vs. 7339 ± 2182 vs. 4793 ± 1618 cells, p < 0.001). CONCLUSION These studies provide a genetically engineered mouse model for study of the association of diet-induced obesity with breast cancer recurrence. They demonstrate that this model recapitulates physiological changes characteristic of obese patients, establish that the association between obesity and recurrence risk is causal in nature, and suggest that obesity is associated with the increased survival and persistence of residual tumor cells.
Collapse
MESH Headings
- Animals
- Body Mass Index
- Body Weight
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Cell Line, Tumor/transplantation
- Datasets as Topic
- Diet, High-Fat/adverse effects
- Disease-Free Survival
- Female
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/mortality
- Mammary Neoplasms, Experimental/pathology
- Mice, Obese
- Mice, Transgenic
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual
- Obesity/etiology
- Obesity/pathology
- Receptor, ErbB-2/genetics
- Survival Analysis
Collapse
Affiliation(s)
- Brett L. Ecker
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Jun Y. Lee
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Christopher J. Sterner
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Aaron C. Solomon
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Dhruv K. Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Fei Shen
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Javier Peraza
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Lauren Vaught
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Samyukta Mahendra
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - George K. Belka
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Tien-chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| | - Kathryn H. Schmitz
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- 2-PREVENT Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA USA
- The Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6160 USA
| |
Collapse
|
15
|
Lope V, Martín M, Castelló A, Ruiz A, Casas AM, Baena-Cañada JM, Antolín S, Ramos-Vázquez M, García-Sáenz JÁ, Muñoz M, Lluch A, de Juan-Ferré A, Jara C, Sánchez-Rovira P, Antón A, Chacón JI, Arcusa A, Jimeno MA, Bezares S, Vioque J, Carrasco E, Pérez-Gómez B, Pollán M. Overeating, caloric restriction and breast cancer risk by pathologic subtype: the EPIGEICAM study. Sci Rep 2019; 9:3904. [PMID: 30846706 PMCID: PMC6405854 DOI: 10.1038/s41598-019-39346-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
This study analyzes the association of excessive energy intake and caloric restriction with breast cancer (BC) risk taking into account the individual energy needs of Spanish women. We conducted a multicenter matched case-control study where 973 pairs completed lifestyle and food frequency questionnaires. Expected caloric intake was predicted from a linear regression model in controls, including calories consumed as dependent variable, basal metabolic rate as an offset and physical activity as explanatory. Overeating and caloric restriction were defined taking into account the 99% confidence interval of the predicted value. The association with BC risk, overall and by pathologic subtype, was evaluated using conditional and multinomial logistic regression models. While premenopausal women that consumed few calories (>20% below predicted) had lower BC risk (OR = 0.36; 95% CI = 0.21-0.63), postmenopausal women with an excessive intake (≥40% above predicted) showed an increased risk (OR = 2.81; 95% CI = 1.65-4.79). For every 20% increase in relative (observed/predicted) caloric intake the risk of hormone receptor positive (p-trend < 0.001) and HER2+ (p-trend = 0.015) tumours increased 13%, being this figure 7% for triple negative tumours. While high energy intake increases BC risk, caloric restriction could be protective. Moderate caloric restriction, in combination with regular physical activity, could be a good strategy for BC prevention.
Collapse
Affiliation(s)
- Virginia Lope
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
| | - Miguel Martín
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Adela Castelló
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
| | - Amparo Ruiz
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Instituto Valenciano de Oncología, Valencia, Spain
| | - Ana Mª Casas
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Hospital Virgen del Rocío, Sevilla, Spain
| | | | - Silvia Antolín
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Manuel Ramos-Vázquez
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Centro Oncológico de Galicia, A Coruña, Spain
| | | | - Montserrat Muñoz
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Hospital Clinic i Provincial, Barcelona, Spain
| | - Ana Lluch
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
- Hospital Clínico de Valencia, Valencia, Spain
| | - Ana de Juan-Ferré
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Hospital Marqués de Valdecilla, Santander, Spain
| | - Carlos Jara
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Fundación Hospital de Alcorcón, Madrid, Spain
| | - Pedro Sánchez-Rovira
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Complejo Hospitalario de Jaén, Jaén, Spain
| | - Antonio Antón
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - José Ignacio Chacón
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Hospital Virgen de la Salud, Toledo, Spain
| | - Angels Arcusa
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Consorci Sanitari de Terrassa, Barcelona, Spain
| | | | | | - Jesús Vioque
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
- Universidad Miguel Hernández, ISABIAL, Alicante, Spain
| | - Eva Carrasco
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
| | - Beatriz Pérez-Gómez
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
| | - Marina Pollán
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain.
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.
| |
Collapse
|
16
|
Association of Bariatric Surgery Status with Reduced HER2+ Breast Cancers: a Retrospective Cohort Study. Obes Surg 2019; 29:1092-1098. [DOI: 10.1007/s11695-018-03701-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Fallone F, Deudon R, Muller C, Vaysse C. [Breast cancer, obesity and adipose tissue: a high-risk combination]. Med Sci (Paris) 2019; 34:1079-1086. [PMID: 30623763 DOI: 10.1051/medsci/2018298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity increases the occurrence of post-menopausal breast cancer and negatively affects prognosis independently of menopausal status. After summarizing the available epidemiological data concerning these associations, we will show that a deleterious crosstalk is established during tumor progression between cancer cells and the surrounding mammary adipose tissue (MAT). In obesity, the chronic sub-inflammatory state of MAT could amplify the negative effect of this crosstalk although other mechanisms also warrant further study. Finally, we will discuss the efficiency of weight loss in both primary prevention and recurrence, a strategy that could be more complex that initially thought.
Collapse
Affiliation(s)
- Frédérique Fallone
- Institut de pharmacologie et de biologie structurale, CNRS/université de Toulouse UMR 5089, 205, route de Narbonne, BP 64182, F-31077 Toulouse, France
| | - Rémi Deudon
- Institut de pharmacologie et de biologie structurale, CNRS/université de Toulouse UMR 5089, 205, route de Narbonne, BP 64182, F-31077 Toulouse, France - Département de chirurgie, CHU-Toulouse, Institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène Joliot-Curie, 31059 Toulouse Cedex 9, France
| | - Catherine Muller
- Institut de pharmacologie et de biologie structurale, CNRS/université de Toulouse UMR 5089, 205, route de Narbonne, BP 64182, F-31077 Toulouse, France
| | - Charlotte Vaysse
- Institut de pharmacologie et de biologie structurale, CNRS/université de Toulouse UMR 5089, 205, route de Narbonne, BP 64182, F-31077 Toulouse, France - Département de chirurgie, CHU-Toulouse, Institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène Joliot-Curie, 31059 Toulouse Cedex 9, France
| |
Collapse
|
18
|
Abstract
The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
The flaxseed lignan secoisolariciresinol diglucoside decreases local inflammation, suppresses NFκB signaling, and inhibits mammary tumor growth. Breast Cancer Res Treat 2018; 173:545-557. [PMID: 30367332 PMCID: PMC6394576 DOI: 10.1007/s10549-018-5021-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/20/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Exposure to the polyphenolic plant lignan secoisolariciresinol diglucoside (SDG) and its metabolite enterolactone (ENL) has been associated with reduced breast cancer progression, particularly for estrogen receptor alpha (ERα)-negative disease, and decreased preclinical mammary tumor growth. However, while preclinical studies have established that SDG and ENL affect measures of progression in models of triple-negative breast cancer (TNBC, a subset of ERα-negative disease), the molecular mechanisms underlying these effects remain unclear. METHODS C57BL/6 mice were fed a control diet (control, 10% kcal from fat) or control diet + SDG (SDG, 100 mg/kg diet) for 8 weeks, then orthotopically injected with syngeneic E0771 mammary tumor cells (a model of TNBC); tumor growth was monitored for 3 weeks. The role of reduced NF-κB signaling in SDG's anti-tumor effects was explored in vitro via treatment with the bioactive SDG metabolite ENL. In addition to the murine E0771 cells, the in vitro studies utilized MDA-MB-231 and MCF-7 cells, two human cell lines which model the triple-negative and luminal A breast cancer subtypes, respectively. RESULTS SDG supplementation in the mice significantly reduced tumor volume and expression of phospho-p65 and NF-κB target genes (P < 0.05). Markers of macrophage infiltration were decreased in the distal-to-tumor mammary fat pad of mice supplemented with SDG relative to control mice (P < 0.05). In vitro, ENL treatment inhibited viability, survival, and NF-κB activity and target gene expression in E0771, MDA-MB-231, and MCF-7 cells (P < 0.05). Overexpression of Rela attenuated ENL's inhibition of E0771 cell viability and survival. CONCLUSIONS SDG reduces tumor growth in the E0771 model of TNBC, likely via a mechanism involving inhibition of NF-κB activity. SDG could serve as a practical and effective adjuvant treatment to reduce recurrence, but greater understanding of its effects is needed to inform the development of more targeted recommendations for its use.
Collapse
|
20
|
Bultman SJ. A Reversible Epigenetic Link between Obesity and Cancer Risk. Trends Endocrinol Metab 2018; 29:529-531. [PMID: 29884327 DOI: 10.1016/j.tem.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
In a recent Cell Reports article, Li et al. report that obesity is associated with altered fatty acid metabolism and DNA methylation in the colonic epithelium, which precede a tumor-prone gene-expression profile. Interestingly, obesity-associated methylation and transcriptome changes were reversed by weight loss, and the duration of weight loss correlated with the extent of restored gene expression. These findings have implications that are encouraging for weight loss and cancer prevention.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Bowers LW, Rossi EL, McDonell SB, Doerstling SS, Khatib SA, Lineberger CG, Albright JE, Tang X, deGraffenried LA, Hursting SD. Leptin Signaling Mediates Obesity-Associated CSC Enrichment and EMT in Preclinical TNBC Models. Mol Cancer Res 2018; 16:869-879. [PMID: 29453319 PMCID: PMC5967653 DOI: 10.1158/1541-7786.mcr-17-0508] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/13/2017] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
Obesity is associated with poor prognosis in triple-negative breast cancer (TNBC). Preclinical models of TNBC were used to test the hypothesis that increased leptin signaling drives obesity-associated TNBC development by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). MMTV-Wnt-1 transgenic mice, which develop spontaneous basal-like, triple-negative mammary tumors, received either a control diet (10% kcal from fat) or a diet-induced obesity regimen (DIO, 60% kcal from fat) for up to 42 weeks (n = 15/group). Mice were monitored for tumor development and euthanized when tumor diameter reached 1.5 cm. Tumoral gene expression was assessed via RNA sequencing (RNA-seq). DIO mice had greater body weight and percent body fat at termination than controls. DIO mice, versus controls, demonstrated reduced survival, increased systemic metabolic and inflammatory perturbations, upregulated tumoral CSC/EMT gene signature, elevated tumoral aldehyde dehydrogenase activity (a CSC marker), and greater leptin signaling. In cell culture experiments using TNBC cells (murine: E-Wnt and M-Wnt; human: MDA-MB-231), leptin enhanced mammosphere formation, and media supplemented with serum from DIO versus control mice increased cell viability, migration, invasion, and CSC- and EMT-related gene expression, including Foxc2, Twist2, Vim, Akt3, and Sox2 In E-Wnt cells, knockdown of leptin receptor ablated these procancer effects induced by DIO mouse serum. These findings indicate that increased leptin signaling is causally linked to obesity-associated TNBC development by promoting CSC enrichment and EMT.Implications: Leptin-associated signals impacting CSC and EMT may provide new targets and intervention strategies for decreasing TNBC burden in obese women. Mol Cancer Res; 16(5); 869-79. ©2018 AACR.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Emily L Rossi
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Shannon B McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Steven S Doerstling
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Subreen A Khatib
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Claire G Lineberger
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Jody E Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | | | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| |
Collapse
|
22
|
Berger NA, Scacheri PC. Targeting Epigenetics to Prevent Obesity Promoted Cancers. Cancer Prev Res (Phila) 2018; 11:125-128. [PMID: 29476043 DOI: 10.1158/1940-6207.capr-18-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Epigenetic changes in DNA and associated chromatin proteins are increasingly being considered as important mediators of the linkage between obesity and cancer. Although multiple agents, targeted at epigenetic changes, are being tested for therapy of established cancers, this issue of Cancer Prevention Research carries two articles demonstrating that the bromodomain inhibitor I-BET-762 can attenuate adipose tissue-promoted cancers. Although I-BET-762 significantly delayed, rather than completely prevented, the onset of adiposity-promoted transformation and malignancy, these experiments provide important proof of principle for the strategies of targeting epigenetic changes to disrupt the obesity-cancer linkage. Because bromodomain proteins represent only one of multiple epigenetic mediators, it is probable that targeting other epigenetic processes, alone or in combination, may serve to even more effectively disrupt the obesity promotion of cancer. Given the magnitude of the current obesity pandemic and its impact on cancer, preventive measures to disrupt this linkage are critically important. Cancer Prev Res; 11(3); 125-8. ©2018 AACRSee related article by Chakraborty et al., p. 129.
Collapse
Affiliation(s)
- Nathan A Berger
- Department of Medicine, Center for Science, Health & Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio. .,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics & Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter C Scacheri
- Department of Genetics & Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
23
|
Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment. Horm Mol Biol Clin Investig 2017; 32:/j/hmbci.ahead-of-print/hmbci-2017-0020/hmbci-2017-0020.xml. [PMID: 29087955 DOI: 10.1515/hmbci-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Obesity is associated with the risk of several health disorders including certain cancers. Among obesity-related cancers, postmenopausal breast carcinoma is a well-studied one. Apart from an increase in certain types of lipids in obesity, excess adipose tissue releases many hormone-like cytokines/adipokines, which are usually pro-inflammatory in nature. Leptin is one of such adipokines and significantly linked with the intracellular signaling pathways of other growth factors such as insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2). In general, HER2 is overexpressed in roughly 30% of breast carcinomas; its presence indicates aggressive tumor behavior. Conversely, HER2 has certain effects in normal conditions such as differentiation of preadipocytes, cardiovascular health and vitamin D metabolism. HER2 has no known endogenous ligand, but it may form dimers with other three members of the epidermal growth factor receptor (EGFR) family and can activate downstream signaling pathways. Furthermore, HER2 is intimately connected with several enzymes, e.g. fatty acid synthase (FASN), phosphatidylinositol 3-kinase (PI3K), AKT and mechanistic target of rapamycin (mTOR), all of which play significant regulatory roles in lipogenic pathways or lipid metabolism. In obesity-related carcinogenesis, characteristics like insulin resistance and elevated IGF-1 are commonly observed. Both IGF-1 and leptin can modulate EGFR and HER2 signaling pathways. Although clinical studies have shown mixed results, the behavior of HER2+ tumor cells including HER2 levels can be altered by several factors such as obesity, leptin and fatty acids. A precise knowledge is useful in new therapeutic approaches against HER+ tumors.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, 20 Seton Hill Drive, Greensburg, PA 15601, USA, Phone: +(724) 552-2882, Fax: +(724) 552-2865
| |
Collapse
|
24
|
Lambertz IU, Luo L, Berton TR, Schwartz SL, Hursting SD, Conti CJ, Fuchs-Young R. Early Exposure to a High Fat/High Sugar Diet Increases the Mammary Stem Cell Compartment and Mammary Tumor Risk in Female Mice. Cancer Prev Res (Phila) 2017; 10:553-562. [DOI: 10.1158/1940-6207.capr-17-0131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
|