1
|
Zhou Y, Dong C, Shen X, Wang P, Chen T, Li W, Sun X, Li P, Xu C, Duan K, Li D, Zhou J. Targeting PTBP3-Mediated Alternative Splicing of COX11 Induces Cuproptosis for Inhibiting Gastric Cancer Peritoneal Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415983. [PMID: 40270362 DOI: 10.1002/advs.202415983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/25/2025]
Abstract
Numerous aberrant splicing events are implicated in tumor progression, yet comprehensive reports on splicing factors and events associated with peritoneal metastasis in gastric cancer (GCPM) are lacking. In this study, PTBP3 is found to be significantly overexpressed in peritoneal metastatic tissues of gastric cancer compared to primary tumor tissues, and higher PTBP3 expression correlates with poorer prognosis. Using gastric cancer cells and patient-derived organoids (PDO), the role of PTBP3 in promoting tumor invasion and proliferation is investigated. Mechanistically, through full-length transcriptome sequencing, PTBP3 mediates exon 4 skipping in its target gene COX11, leading to shorter transcripts that impair COX11 protein function, reducing mitochondrial copper content and enabling tumor cells to evade cuproptosis. Antisense oligonucleotide (ASO) drugs targeting the short COX11 transcripts effectively degrade mRNA, disrupting copper homeostasis. In PDO-based xenograft models, exogenous copper ionophores combined with ASO drugs induce excessive copper accumulation in mitochondria, triggering proteotoxic stress and cuproptosis. Overall, PTBP3-mediated exon 4 skipping in COX11 pre-mRNA is critical for tumor cell survival and progression in GCPM, offering potential therapeutic strategies targeting copper metabolism.
Collapse
Affiliation(s)
- Yajing Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Chao Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Xiaochun Shen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Pengbo Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Tao Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Weikang Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Xiaotong Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Peiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Chengxiang Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Kaipeng Duan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Dongbao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215031, China
| |
Collapse
|
2
|
Doodmani SM, Safari MH, Akbari M, Farahani N, Alimohammadi M, Aref AR, Tajik F, Maghsoodlou A, Daneshi S, Tabari T, Taheriazam A, Entezari M, Nabavi N, Hashemi M. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol Res Pract 2025; 267:155838. [PMID: 39954369 DOI: 10.1016/j.prp.2025.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Breast cancer remains one of the leading causes of mortality worldwide. While advancements in chemotherapy, immunotherapy, radiotherapy, and targeted therapies have significantly improved breast cancer treatment, many patients are diagnosed at advanced stages, where tumor cells exhibit aggressive behavior and therapy resistance. Understanding the mechanisms driving breast cancer progression is therefore critical. Metastasis is a major factor that drastically reduces patient prognosis and survival, accounting for most breast cancer-related deaths. ZEB proteins have emerged as key regulators of cancer metastasis. Beyond their role in metastasis, ZEB proteins also influence drug resistance. This review focuses on the role of ZEB1 and ZEB2 in regulating breast cancer metastasis. These proteins interact with components of the tumor microenvironment (TME) to drive cancer progression and metastasis. Additionally, ZEB proteins regulate angiogenesis through interactions with VEGF. Targeting ZEB proteins offers potential therapeutic benefits, particularly for aggressive breast cancer subtypes such as triple-negative breast cancer (TNBC), which often show poor therapeutic response. ZEB proteins also influence the sensitivity of breast cancer cells to chemotherapy, making them promising targets for enhancing treatment efficacy. Given their upregulation in breast cancer, ZEB proteins can serve as valuable diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Fatemeh Tajik
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Cao M, Shao Z, Qian X, Chen M, Deng C, Chen X, Tang T, Zhang K, Chu S, Zheng J, Bai J, Li Z. TRIM21-mediated PRMT1 degradation attenuates colorectal cancer malignant progression. Cell Death Dis 2025; 16:56. [PMID: 39890802 PMCID: PMC11785787 DOI: 10.1038/s41419-025-07383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Tripartite motif-containing 21 (TRIM21) plays a crucial role in antiviral responses and autoimmune diseases. While the impact of TRIM21 on cancer has been studied in various tumors, its role in colorectal cancer (CRC) remains unclear. In this study, we found that TRIM21 expression is reduced in primary CRC tissues. Low levels of TRIM21 in CRC are associated with unfavorable clinicopathological characteristics and shorter survival. Furthermore, we demonstrate that TRIM21 suppresses the proliferation, tumorigenesis, migration, and metastasis of CRC cells by promoting the ubiquitination-mediated degradation of PRMT1. These findings suggest that TRIM21 holds potential as a valuable predictive biomarker for assessing the prognosis of CRC patients.
Collapse
Affiliation(s)
- Menghan Cao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xingyou Qian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miaolei Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, Lishui City People's Hospital, Lishui, Zhejiang, China
| | - Chuyin Deng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xintian Chen
- Department of Gastroenterology, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tingting Tang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kaixu Zhang
- Laboratory of Epigenetic Regulation in Molecular Medicine, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Laboratory of Epigenetic Regulation in Molecular Medicine, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
4
|
Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through WNT/β-catenin signaling pathway in tumor cells. Pathol Res Pract 2024; 263:155683. [PMID: 39471528 DOI: 10.1016/j.prp.2024.155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Tumor cell invasion is considered as one of the main therapeutic challenges in cancer patients, which leads to distant metastasis and reduced prognosis. Therefore, investigation of the factors involved in tumor cell invasion improves the therapeutic methods to reduce tumor metastasis. Epithelial-mesenchymal transition (EMT) process has a pivotal role in tumor cell invasion and metastasis, during which tumor cells gain the invasive ability by losing epithelial characteristics and acquiring mesenchymal characteristics. WNT/β-catenin signaling pathway has a key role in tumor cell invasion by regulation of EMT process. Long non-coding RNAs (lncRNAs) have also an important role in EMT process through the regulation of WNT/β-catenin pathway. Deregulation of lncRNAs is associated with tumor metastasis in different tumor types. Therefore, in the present review, we investigated the role of lncRNAs in EMT process and tumor cell invasion through the regulation of WNT/β-catenin pathway. It has been reported that lncRNAs mainly induced the EMT process and tumor cell invasion through the activation of WNT/β-catenin pathway. LncRNAs that regulate the WNT/β-catenin mediated EMT process can be introduced as the prognostic markers as well as suitable therapeutic targets to reduce the tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Ciullo A, Li L, Li C, Tsi K, Farrell C, Pellegrini M, Marbán E, Ibrahim AGE. Non-coding RNA yREX3 from human extracellular vesicles exerts macrophage-mediated cardioprotection via a novel gene-methylating mechanism. Eur Heart J 2024; 45:2660-2673. [PMID: 38865332 PMCID: PMC11297535 DOI: 10.1093/eurheartj/ehae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND AND AIMS Extracellular vesicles (EVs) secreted by cardiosphere-derived cells exert immunomodulatory effects through the transmission of small non-coding RNAs. METHODS The mechanism and role of yREX3, a small Y RNA abundant in EVs in myocardial injury, was investigated. RESULTS yREX3 attenuates cardiac ischaemic injury by selective DNA methylation. Synthetic yREX3 encapsulated in lipid nanoparticles triggers broad transcriptomic changes in macrophages, localizes to the nucleus, and mediates epigenetic silencing of protein interacting with C kinase-1 (Pick1) through methylation of upstream CpG sites. Moreover, yREX3 interacts with polypyrimidine tract binding protein 3 (PTBP3) to methylate the Pick1 gene locus in a DNA methyltransferase-dependent manner. Suppression of Pick1 in macrophages potentiates Smad3 signalling and enhances efferocytosis, minimizing heart necrosis in rats with myocardial infarction. Adoptive transfer of Pick1-deficient macrophages recapitulates the cardioprotective effects of yREX3 in vivo. CONCLUSIONS These findings highlight the role of a small Y RNA mined from EVs with a novel gene-methylating mechanism.
Collapse
Affiliation(s)
- Alessandra Ciullo
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Liang Li
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Chang Li
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Kara Tsi
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Colin Farrell
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Ahmed G E Ibrahim
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Shao ZY, Yang WD, Qiu H, He ZH, Lu MR, Shen Q, Ding J, Zheng JN, Bai J. The role of USP7-YY1 interaction in promoting colorectal cancer growth and metastasis. Cell Death Dis 2024; 15:347. [PMID: 38769122 PMCID: PMC11106261 DOI: 10.1038/s41419-024-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health issue with high incidence and mortality. Yin Yang 1 (YY1) is a powerful transcription factor that acts dual roles in gene activation and repression. High expression level of YY1 has been reported in CRC, indicating the existence of stable factors of YY1 in CRC cells. We aimed to identify the key molecules and underlying mechanisms responsible for stabilizing YY1 expression in CRC. Mass spectrometry analysis was utilized to identify USP7 as a potential molecule that interacted with YY1. Mechanically, USP7 stabilizes YY1 expression at the protein level by interfering its K63 linkage ubiquitination. YY1 exerts its oncogenic function through transcriptionally activating TRIAP1 but suppressing LC3B. In addition, at the pathological level, there is a positive correlation between the expression of YY1 and the budding of CRC. This study has revealed the intricate interplay between YY1 and USP7 in CRC, suggesting that they could serve as novel therapeutic targets or predictive biomarkers for CRC patients.
Collapse
Affiliation(s)
- Zhi-Ying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wen-Dong Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Hong He
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng-Ru Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Jun-Nian Zheng
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Dong D, Wei J, Wang W, Zhou H, Hong L, Ji G, Yang X. YTHDC1 promotes the malignant progression of gastric cancer by promoting ROD1 translocation to the nucleus. Cell Biol Toxicol 2024; 40:19. [PMID: 38573528 PMCID: PMC10995098 DOI: 10.1007/s10565-024-09859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
RNA-binding proteins (RBPs) make vital impacts on tumor progression and are important potential targets for tumor treatment. Previous studies have shown that RBP regulator of differentiation 1 (ROD1), enriched in the nucleus, is abnormally expressed and functions as a splicing factor in tumors; however, the mechanism underlying its involvement in gastric cancer (GC) is unknown. In this study, ROD1 is found to stimulate GC cell proliferation and metastasis and is related to poor patient prognosis. In vitro experiments showed that ROD1 influences GC proliferation and metastasis through modulating the imbalance of the level of the oncogenic gene OIP5 and the tumor suppressor gene GPD1L. Further studies showed that the N6-methyladenosine (m6A) "reader" protein YTHDC1 can interact with ROD1 and regulate the balance of the expression of the downstream molecules OIP5/GPD1L by promoting the nuclear enrichment of ROD1. Therefore, YTHDC1 stimulates GC development and progression through modulating nuclear enrichment of the splicing factor ROD1.
Collapse
Affiliation(s)
- Danhong Dong
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jiangpeng Wei
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Weidong Wang
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Haikun Zhou
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Liu Hong
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
| | - Gang Ji
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
| | - Xisheng Yang
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Wang Q, Chen F, He Y, Gao Y, Wang J, Chu S, Xie P, Zhong J, Shan H, Bai J, Hou P. Polypyrimidine tract-binding protein 3/insulin-like growth factor 2 mRNA-binding proteins 3/high-mobility group A1 axis promotes renal cancer growth and metastasis. iScience 2024; 27:109158. [PMID: 38405614 PMCID: PMC10884747 DOI: 10.1016/j.isci.2024.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) plays an important role in the post-transcriptional regulation of gene expression, including mRNA splicing, translation, and stability. Increasing evidence has shown that PTBP3 promotes cancer progression in several tumor types. However, the molecular mechanisms of PTBP3 in renal cell carcinoma (RCC) remain unknown. Here, tissue microarrays (TMAs) suggested that PTBP3 expression was increased in human RCC and that high PTBP3 expression was correlated with poor five-year overall survival and disease-free survival. We also showed that PTBP3 binds with HMGA1 mRNA in the 3'UTR region and let-7 miRNAs. PTBP3 interacted with IGF2BP3, and the PTBP3/IGF2BP3 axis prevented let-7 mediated HMGA1 mRNA silencing. PTBP3 promotes renal cancer cell growth and metastasis in vitro and in vivo. Taken together, our findings indicate PTBP3 serves as a regulator of HMGA1 and suggest its potential as a therapeutic agent for RCC.
Collapse
Affiliation(s)
- Qianqing Wang
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu He
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiawen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Pei Xie
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Jiateng Zhong
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Haixia Shan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Jin Bai
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
9
|
Gonzalez E, Flatt TG, Farooqi M, Johnson L, Ahmed AA. Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development. Curr Mol Med 2024; 24:1450-1460. [PMID: 37877563 DOI: 10.2174/0115665240251370231017053236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES Polypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states. METHODOLOGY Through an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule. RESULTS Besides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor. CONCLUSION The diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Terrie G Flatt
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Midhat Farooqi
- Departments of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Lisa Johnson
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| | - Atif A Ahmed
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Lu N, Min J, Peng L, Huang S, Chai X, Wang S, Wang J. MiR-297 inhibits tumour progression of liver cancer by targeting PTBP3. Cell Death Dis 2023; 14:564. [PMID: 37633911 PMCID: PMC10460384 DOI: 10.1038/s41419-023-06097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Whereas increasing evidences demonstrate that miR-297 contributes to the tumour development and progression, the role of miR-297 and its underlying molecular mechanisms in hepatocellular carcinoma (HCC) was still unclear. Here, we reported that the expression of miR-297 increased significantly in hepG2 cells after the treatment of the conditioned medium of human amniotic epithelial cells(hAECs) which can inhibit the proliferation and migration of hepG2. And the overexpression of miR-297 inhibits the cell proliferation, migration and invasion of HCC cell lines in vitro and suppressed the tumorigenesis of HCC in vivo. Polypyrimidine tract-binding protein 3 (PTBP3) was identified as a direct target gene of miR-297 in HCC cell lines, and mediated the function of miR-297 in HCC cells. In clinical samples, miR-297 levels have a tendency to decrease, but there are no statistically significant differences. Furthermore, in vitro cell experiments confirmed that overexpression of miR-297 could inhibit the PI3K/AKT signaling pathway by down-regulating PTBP3 expression, thereby inhibiting the proliferation, migration and invasion of HCC cells. In conclusion, our results revealed that miR-297 could down-regulate the expression of PTBP3 and inhibit the activation of PI3K/AKT signaling pathway, thereby preventing HCC growth, migration and invasion.
Collapse
Affiliation(s)
- Na Lu
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiali Min
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lin Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Shengjian Huang
- Hunan Guangxiu Hi-tech Life Technology Co., Ltd., Changsha, China
| | - Xiahua Chai
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Susu Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
| |
Collapse
|
11
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
12
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
13
|
The regulatory role of LncRNA HCG18 in various cancers. J Mol Med (Berl) 2023; 101:351-360. [PMID: 36872315 DOI: 10.1007/s00109-023-02297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
As a member of long non-coding RNAs (lncRNAs), LncRNA HLA complex group 18 (HCG18) has recently become the focus of cancer research. As outlined in this review, LncRNA HCG18 has been reported to be dysregulated in various cancers development and appears to be activated in a variety of tumors, including clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), gastric cancer (GC), hepatocellular carcinoma (HCC), laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), lung adenocarcinoma (LUAD), nasopharyngeal cancer (NPC), osteosarcoma (OS), and prostate cancer (PCa). Furthermore, the expression of lncRNA HCG18 decreased in bladder cancer (BC) and papillary thyroid cancer (PTC). Overall, the presence of these differential expressions suggests the clinical value of HCG18 in cancer therapy. Additionally, lncRNA HCG18 influences various biological processes of cancer cells. This review summarizes the molecular mechanisms of HCG18 in cancer development, highlights reported the abnormal expression of HCG18 found in various cancer types, and aims to discuss the potential of HCG18 as a target for cancer therapy.
Collapse
|
14
|
Chen F, Song C, Meng F, Zhu Y, Chen X, Fang X, Ma D, Wang Y, Zhang C. 5'-tRF-GlyGCC promotes breast cancer metastasis by increasing fat mass and obesity-associated protein demethylase activity. Int J Biol Macromol 2023; 226:397-409. [PMID: 36464183 DOI: 10.1016/j.ijbiomac.2022.11.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
tRNA-derived fragments (tRFs) are a class of regulatory non-coding RNAs that play essential biological functions in cancer and stress-induced diseases. Several lines of evidence suggest that 5'-tRF-GlyGCC participates in tumor progression; however, its molecular mechanisms remain unclear. In this study, we explored the function of 5'-tRF-GlyGCC in breast cancer (BC) progression and studied the related potential molecular mechanisms. 5'-tRF-GlyGCC expression increased in human BC, and it promoted the proliferation, migration, and invasion of BC cells in vitro and tumor growth and metastasis in vivo. 5'-tRF-GlyGCC was found for the first time to bind directly to fat mass and obesity-associated proteins, and increase the activity of FTO demethylase, reducing eIF4G1 methylation, inhibiting autophagy, and promoting BC proliferation and metastasis. These findings suggest that 5'-tRF-GlyGCC might be a therapeutic target for treating BC.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Fantong Meng
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Yuhua Zhu
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China; Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221004, Jiangsu Province, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| |
Collapse
|
15
|
Li S, Shen S, Ge W, Cen Y, Zhang S, Cheng X, Wang X, Xie X, Lu W. Long non-coding RNA SLC25A21-AS1 inhibits the development of epithelial ovarian cancer by specifically inducing PTBP3 degradation. Biomark Res 2023; 11:12. [PMID: 36717926 PMCID: PMC9885650 DOI: 10.1186/s40364-022-00432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a highly prevalent disease that rapidly metastasizes and has poor prognosis. Most women are in the middle or late stages when diagnosed and have low survival rates. Recently, long non-coding RNAs (lncRNAs) were recognized to play pivotal roles in the development of EOC. METHODS The expression of SLC25A21 antisense RNA 1 (SLC25A21-AS1) and Polypyrimidine Tract Binding Protein 3 (PTBP3) in EOC cells was assessed via qPCR. The proliferation activity of these cells was detected by EdU and Cell counting kit-8 (CCK8) assays, while the death rate of apoptotic cells and the cell cycle were detected by flow cytometry. Detection of cell transfer rate by transwell assay. Protein expression was measured through western blotting. Interactions between SLC25A21-AS1 and PTBP3 were detected through RNA immunoprecipitation (RIP), IF-FISH co-localization experiments and electrophoretic mobility shift assay (EMSA). The in vivo importance of SLC25A21-AS1 as a tumor suppressor modulator was assessed using murine xenograft models. RESULTS The lncRNA SLC25A21-AS1 has negligible expression in ovarian cancer tissues compared with that in normal ovarian tissues. A series of functional experiments revealed that the upregulation of SLC25A21-AS1 markedly blocked the proliferation and metastasis of EOC cells in vitro, while its downregulation had the opposite effect. Overexpression of SLC25A21-AS1 in a nude mouse model of EOC in vivo resulted in slower tumor growth and weakened metastatic potential. Moreover, SLC25A21-AS1 reduced the protein stability of PTBP3 and promoted its degradation. A series of subsequent experiments found that SLC25A21-AS1 inhibits EOC cell proliferation and metastasis by modulating PTBP3 through the ubiquitin-proteasome pathway and that the combination of SLC25A21-AS1 and PTBP3 provides the necessary conditions for the for the function to be realized. CONCLUSIONS Our research reveals the effect of SLC25A21-AS1 in EOC development and suggests SLC25A21-AS1 can serve as a prognostic target by promoting the degradation of PTBP3 to improve patient survival.
Collapse
Affiliation(s)
- Sihui Li
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Shizhen Shen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Wanzhong Ge
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, 310058, China
| | - Yixuan Cen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Chen X, Yong H, Chen M, Deng C, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. TRIM21 attenuates renal carcinoma lipogenesis and malignancy by regulating SREBF1 protein stability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:34. [PMID: 36694250 PMCID: PMC9875457 DOI: 10.1186/s13046-022-02583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of various cancers. Targeting metabolic processes is a very attractive treatment for cancer. Renal cell carcinoma (RCC) is a type of metabolic disease, and the lipidomic profile of RCC is significantly altered compared with that of healthy tissue. However, the molecular mechanism underlying lipid metabolism regulation in RCC is not clear. METHODS The XF long-chain fatty acid oxidative stress test kits were used to assess the dependence on long-chain fatty acids and mitochondrial function after knockdown TRIM21 in RCC cells. The effect of TRIM21 on the lipid content in RCC cells was determined by metabolomics analysis, Oil Red O staining, and cellular Nile red staining. qRT-PCR and western blot were used to explore the relationship between TRIM21 and lipogenesis, and then the key molecule sterol regulatory element binding transcription factor 1 (SREBF1) was identified to interact with TRIM21 by immunoprecipitation, which was also identified in an orthotopic model. Subsequently, the relevance and clinical significance of TRIM21 and SREBF1 were analyzed by The Cancer Genome Atlas (TCGA) database, and 239 tissues were collected from RCC patients. RESULTS TRIM21 silencing attenuated the dependence of RCC cells on fatty acids, and enhanced lipid accumulation in RCC cells. TRIM21 overexpression significantly decreased lipid contents by decreasing the expression of lipogenic enzymes via ubiquitination-mediated degradation of SREBF1. SREBF1 is critical for TRIM21-mediated lipogenesis inhibition in vitro and in vivo. Moreover, TRIM21 expression is negatively correlated with SREBF1 expression, and TRIM21-SREBF1 is a reliable combinational biomarker for RCC prognosis. CONCLUSION The findings from this study reveal a novel pathway through which TRIM21 inhibits the lipid metabolism process of RCC and shed light on the development of targeted metabolic treatment and prognosis diagnosis of RCC.
Collapse
Affiliation(s)
- Xintian Chen
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Hongmei Yong
- grid.417303.20000 0000 9927 0537Department of Oncology, The Second People’s Hospital of Huai’an, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huaian, Jiangsu China
| | - Miaolei Chen
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Chuyin Deng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Pengfei Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Sufang Chu
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Minle Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Pingfu Hou
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Zhongwei Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Jin Bai
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| |
Collapse
|
17
|
Ju Z, Pan H, Qu C, Xiao L, Zhou M, Wang Y, Luo J, Shen L, Zhou P, Huang R. Lactobacillus rhamnosus GG ameliorates radiation-induced lung fibrosis via lncRNASNHG17/PTBP1/NICD axis modulation. Biol Direct 2023; 18:2. [PMID: 36635762 PMCID: PMC9835385 DOI: 10.1186/s13062-023-00357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a major side effect experienced for patients with thoracic cancers after radiotherapy. RIPF is poor prognosis and limited therapeutic options available in clinic. Lactobacillus rhamnosus GG (LGG) is advantaged and widely used for health promotion. However. Whether LGG is applicable for prevention of RIPF and relative underlying mechanism is poorly understood. Here, we reported a unique comprehensive analysis of the impact of LGG and its' derived lncRNA SNHG17 on radiation-induced epithelial-mesenchymal transition (EMT) in vitro and RIPF in vivo. As revealed by high-throughput sequencing, SNHG17 expression was decreased by LGG treatment in A549 cells post radiation and markedly attenuated the radiation-induced EMT progression (p < 0.01). SNHG17 overexpression correlated with poor overall survival in patients with lung cancer. Mechanistically, SNHG17 can stabilize PTBP1 expression through binding to its 3'UTR, whereas the activated PTBP1 can bind with the NICD part of Notch1 to upregulate Notch1 expression and aggravated EMT and lung fibrosis post radiation. However, SNHG17 knockdown inhibited PTBP1 and Notch1 expression and produced the opposite results. Notably, A549 cells treated with LGG also promoted cell apoptosis and increased cell G2/M arrest post radiation. Mice of RIPF treated with LGG decreased SNHG17 expression and attenuated lung fibrosis. Altogether, these data reveal that modulation of radiation-induced EMT and lung fibrosis by treatment with LGG associates with a decrease in SNHG17 expression and the inhibition of SNHG17/PTBP1/Nothch1 axis. Collectively, our results indicate that LGG exerts protective effects in RIPF and SNHG17 holds a potential marker of RIPF recovery in patients with thoracic cancers.
Collapse
Affiliation(s)
- Zhao Ju
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China ,grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Huiji Pan
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Can Qu
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Liang Xiao
- grid.73113.370000 0004 0369 1660Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433 China
| | - Meiling Zhou
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China ,grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Yin Wang
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Jinhua Luo
- grid.216417.70000 0001 0379 7164Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078 Hunan Province China
| | - Liangfang Shen
- grid.216417.70000 0001 0379 7164Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Pingkun Zhou
- grid.410740.60000 0004 1803 4911Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China.
| |
Collapse
|
18
|
Chen C, Shang A, Gao Y, Huang J, Liu G, Cho WC, Li D. PTBPs: An immunomodulatory-related prognostic biomarker in pan-cancer. Front Mol Biosci 2022; 9:968458. [PMID: 36203873 PMCID: PMC9531344 DOI: 10.3389/fmolb.2022.968458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The polypyrimidine tract-binding protein (PTBP) nuclear ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3, regulate the process of cell proliferation, differentiation, apoptosis and carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However, the role of PTBPs in pan-cancer remains unclear. Our study examined the clinical significance and mechanism of PTBPs in pan-cancer. Methods: We compared the expression of PTBPs in paired and unpaired tissue samples from the Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression, Kaplan-Meier curves, and time-dependent receiver operating characteristic (ROC) curves were used to assess the prognostic significance of PTBPs in pan-cancer. The cBioPortal database also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer were used to investigate the relationship between PTBP expression and immune subtypes, immune checkpoint (ICP) genes, tumor mutational burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells, and chemosensitivity. cBioPortal was used to search for PTBP co-expressing genes in pan-cancer, and GO and KEGG enrichment analyses were performed to search for PTBP-related signaling pathways. Results: PTBPs were shown to be widely upregulated in human tumor tissues. PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were differentially expressed in tumor immune subtypes and had a strong correlation with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment (TME). In addition, PTBP expressions were related to ICP, TMB, and MSI, suggesting that these three PTBPs may be potential tumor immunotherapeutic targets and predict the efficacy of immunotherapy. Enrichment analysis of co-expressed genes of PTBPs showed that they may be involved in alternative splicing, cell cycle, cellular senescence, and protein modification. Conclusion: PTBPs are involved in the malignant progression of tumors. PTBP1, PTBP2 and PTBP3 may be potential biomarkers for prognosis and immunotherapy in pan-cancer and may be novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Chen Chen
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuting Gao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjuan Huang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gege Liu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Xie P, Zhang Y, Chen R, Zheng J, Cui G. PTBP3 promotes tumorigenesis of glioblastoma by stabilizing Twist1. Transl Oncol 2022; 25:101520. [PMID: 35987089 PMCID: PMC9411677 DOI: 10.1016/j.tranon.2022.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
PTBP3 is upregulated in GBM and predicts poor prognosis. PTBP3 promotes proliferation, EMT, migration, and invasion of GBM. PTBP3 stabilizes Twist1 by decreasing its ubiquitination and degradation.
Objective Glioblastoma (GBM) is the most common malignancy tumor of central nervous system. PTBP3 was closely associated with the development of tumor. However, the function and molecular mechanism of PTBP3 in GBM is little known. Methods qPCR and immunoblotting were used to detect PTBP3 expression levels in glioma tissues and cells. CCK8, Edu, flow cytometry, wound healing, and transwell assays were used to examined the function of PTBP3 in GBM. qPCR, Immunoblotting, and ubiquitination assays were performed to identify the mechanism of PTBP3. Results We found that PTBP3 was upregulated in GBM, and high expression of PTBP3 correlated with the poor survival of GBM patients. PTBP3 knockdown reduced proliferation, invasion, and migration of GBM. Conversely, overexpressing PTBP3 has an opposite effect. Moreover, PTBP3 had an effect on the EMT of GBM. More importantly, we found that PTBP3 stabilized Twist1 by decreasing its ubiquitination and degradation. Furthermore, orthotopic xenograft models were used to demonstrate the PTBP3 on the development of GBM in vivo. Conclusion This study proved that PTBP3 promoted tumorigenesis of GBM by stabilizing Twist1, which provided a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Yueqing Zhang
- Department of Neurosurgery, Huai'an Cancer Hospital, No19 shanyang Road, Huai'an, Jiangsu 223200, P.R. China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.
| |
Collapse
|
20
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|
21
|
Gao Q, Cheng B, Chen C, Lei C, Lin X, Nie D, Li J, Huang L, Li X, Wang K, Huang A, Tang N. Dysregulated glucuronic acid metabolism exacerbates hepatocellular carcinoma progression and metastasis through the TGFβ signalling pathway. Clin Transl Med 2022; 12:e995. [PMID: 35979621 PMCID: PMC9386326 DOI: 10.1002/ctm2.995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Glucuronic acid metabolism participates in cellular detoxification, extracellular matrix remodeling and cell adhesion and migration. Here, we aimed to explore the crosstalk between dysregulated glucuronic acid metabolism and crucial metastatic signalling in glutathione S-transferase zeta 1 (GSTZ1)-deficient hepatocellular carcinoma (HCC). METHODS Transwell, HCC xenograft and Gstz1-/- mouse models were used to examine the role of GSTZ1 in HCC metastasis. Non-targeted and targeted metabolomics and global transcriptomic analyses were performed to screen significantly altered metabolic and signalling pathways in GSTZ1 overexpressing hepatoma cells. Further, RNA-binding protein immunoprecipitation, Biotin-RNA pull-down, mRNA decay assays and luciferase reporter assays were used to explore the interaction between RNA and RNA-binding proteins. RESULTS GSTZ1 was universally silenced in both human and murine HCC cells, and its deficiency contributed to HCC metastasis in vitro and in vivo. UDP-glucose 6-dehydrogenase (UGDH)-mediated UDP-glucuronic acid (UDP-GlcUA) accumulation promoted hepatoma cell migration upon GSTZ1 loss. UDP-GlcUA stabilized TGFβR1 mRNA by enhancing its binding to polypyrimidine tract binding protein 3, contributing to the activation of TGFβ/Smad signalling. UGDH or TGFβR1 blockade impaired HCC metastasis. In addition, UGDH up-regulation and UDP-GlcUA accumulation correlated with increased metastatic potential and decreased patient survival in GSTZ1-deficient HCC. CONCLUSIONS GSTZ1 deficiency and subsequent up-regulation of the glucuronic acid metabolic pathway promotes HCC metastasis by increasing the stability of TGFβR1 mRNA and activating TGFβ/Smad signalling. UGDH and a key metabolite, UDP-GlcUA, may serve as prognostic markers. Targeting UGDH might be a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chong Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xue Lin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Nie
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jingjing Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
24
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
25
|
Fang Z, Li P, Li H, Chong W, Li L, Shang L, Li F. New Insights Into PTBP3 in Human Cancers: Immune Cell Infiltration, TMB, MSI, PDCD1 and m6A Markers. Front Pharmacol 2022; 13:811338. [PMID: 35359851 PMCID: PMC8960631 DOI: 10.3389/fphar.2022.811338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Polypyrimidine tract binding protein 3 (PTBP3) plays a critical role in post-transcriptional regulation. The role of PTBP3 in various human tumours was explored and analysed in this study based on the Cancer Genome Atlas and Gene Expression Omnibus datasets. PTBP3 was highly expressed in most tumours, such as breast invasive carcinoma, colon adenocarcinoma and hepatocellular carcinoma. PTBP3 overexpression generally predicts poor overall survival and disease-free survival in patients with adrenocortical carcinoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma. However, low PTBP3 expression predicts poor prognosis in kidney renal clear cell carcinoma. We also explored PTBP3 genetic alterations in different tumour tissues. The result found that the frequency of PTBP3 alteration (>4%) was the highest in uterine tumours with “mutation” as the primary type. Furthermore, we found a significant correlation between PTBP3 expression and tumour mutational burden and microsatellite instability in various human tumours, and found that PTBP3 expression was positively correlated with TMB in ACC, STAD, PAAD, LUAD, and SARC. Two enhanced phosphorylation levels of S30 and S426 in colon cancer, ovarian cancer, and uterine corpus endometrial carcinoma were found. Further analysis indicated that PTBP3 expression was positively correlated with the cancer-associated fibroblasts for most tumour types. This study also found a relationship between immune checkpoints and N6-methyladenosine-related markers and PTBP3 expression. Moreover, the “mRNA surveillance pathway” and “RNA degradation” were involved in the functional mechanisms of PTBP3. These results provide new insights for molecular studies, and integrative analysis provided a framework for determining the predictive, prognostic, and therapeutic relevance of PTBP3 in cancer patients.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peijuan Li
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Han Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Liang Shang, ; Fei Li,
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liang Shang, ; Fei Li,
| |
Collapse
|
26
|
Sun J, Chen X, Ji X, Meng S, Wang W, Wang P, Bai J, Li Z, Chen Y. TRIM21 deficiency promotes cell proliferation and tumorigenesis via regulating p21 expression in ovarian cancer. Bioengineered 2022; 13:6024-6035. [PMID: 35226825 PMCID: PMC8973816 DOI: 10.1080/21655979.2022.2042134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Tripartite motif-containing 21 (TRIM21) has been reported to have a cancer-promoting or anticancer effect in various tumors; however, its role in ovarian cancer (OC) remains to be elucidated. In this study, we explored the biological function of TRIM21 in OC progression and investigated the potential mechanisms. We found that TRIM21 was remarkably decreased in OC tissues and cell lines compared with adjacent-cancerous tissues and normal ovarian epithelium cell. Decreased expression of TRIM21 in OC patients was significantly correlated with shorter overall and disease-specific survival by The Cancer Genome Atlas database (TCGA) analysis. Functional assays revealed that TRIM21 inhibited the migration and invasion of OC cells; and that TRIM21 also obviously impaired cell proliferation by inhibiting cell cycle progression in vitro and in vivo. Taken together, our results suggest that TRIM21 may be a promising biomarker and target for OC diagnosis and treatment.
Collapse
Affiliation(s)
- Jieyun Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xueying Ji
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Wenwen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
28
|
Xie C, Long F, Li L, Li X, Ma M, Lu Z, Wu R, Zhang Y, Huang L, Chou J, Gong N, Hu G, Lin C. PTBP3 modulates P53 expression and promotes colorectal cancer cell proliferation by maintaining UBE4A mRNA stability. Cell Death Dis 2022; 13:128. [PMID: 35136024 PMCID: PMC8826374 DOI: 10.1038/s41419-022-04564-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
The RNA binding protein PTBP3 was recently reported to play a critical role in multiple cancers, and the molecular mechanisms involved RNA splicing, 3' end processing and translation. However, the role of PTBP3 in colorectal cancer (CRC) remains poorly explored. Herein, PTBP3 was upregulated in CRC and associated with a poor prognosis. PTBP3 knockdown in colorectal cancer cell lines restricted CRC proliferative capacities in vitro and in vivo. Mechanistically, PTBP3 regulated the expression of the E3 ubiquitin ligase UBE4A by binding the 3' UTR of its mRNA, preventing its degradation. UBE4A participated in P53 degradation, and PTBP3 knockdown in colorectal cancer cell lines showed increased P53 expression. UBE4A overexpression rescued PTBP3 knockdown-induced inhibition of CRC cell proliferation and P53 expression. Our results demonstrated that PTBP3 plays an essential role in CRC cell proliferation by stabilizing UBE4A to regulate P53 expression and may serve as a new prognostic biomarker and effective therapeutic target for CRC.
Collapse
Affiliation(s)
- Canbin Xie
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
- School of Life Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
29
|
Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis 2022; 13:99. [PMID: 35110545 PMCID: PMC8810869 DOI: 10.1038/s41419-022-04575-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 01/05/2023]
Abstract
Transketolase (TKT) which is an important metabolic enzyme in the pentose phosphate pathway (PPP) participates in maintaining ribose 5-phosphate levels. TKT is necessary for maintaining cell growth. However, we found that in addition to this, TKT can also affect tumor progression through other ways. Our previous study indicate that TKT could promote the development of liver cancer by affecting bile acid metabolism. And in this study, we discovered that TKT expression was remarkably upregulated in colorectal cancer, abnormal high expression of TKT is associated with poor prognosis of colorectal cancer. Additionally, TKT promoted colorectal cancer cell growth and metastasis. Further study demonstrated that TKT interacted with GRP78 and promoted colorectal cancer cell glycolysis through increasing AKT phosphorylation, thereby enhancing colorectal cancer cell metastasis. Thus, TKT is expected to become an indicator for judging the prognosis of colorectal cancer, and provide a theoretical basis for drug development of new treatment targets for colorectal cancer.
Collapse
|
30
|
Chen Y, Ji Y, Liu S, Liu Y, Feng W, Jin L. PTBP3 regulates proliferation of lung squamous cell carcinoma cells via CDC25A-mediated cell cycle progression. Cancer Cell Int 2022; 22:19. [PMID: 35016691 PMCID: PMC8753890 DOI: 10.1186/s12935-022-02448-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/01/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The roles of Polypyrimidine tract-binding protein 3 (PTBP3) in regulating lung squamous cell carcinoma (LUSC) cells progression is unclear. The aim of this study was to investigate the role of PTBP3 in LUSC. METHODS Expression and survival analysis of PTBP3 was firstly investigated using TCGA datasets. Quantitative reverse transcription PCR and Western blot were performed to detect PTBP3 expression in clinical samples. Moreover, cell counting kit 8 (CCK-8) assays, colony formation assays and in vivo tumor formation assays were used to examine the effects of PTBP3 on LUSC cell proliferation. RNA-sequence and analysis explores pathways regulated by PTBP3.Flow cytology was used analyzed cell cycle. Cell cycle-related markers were analyzed by Western blot. RESULTS PTBP3 was found to be overexpressed in LUSC tissues compared with normal tissues. High PTBP3 expression was significantly correlated with poor prognosis. In vitro and vivo experiments demonstrated that PTBP3 knockdown caused a significant decrease in the proliferation rate of cells. Bioinformatics analysis showed that PTBP3 involved in cell cycle pathway regulation in LUSC. Furthermore, PTBP3 knockdown arrested cell cycle progression at S phase via decreasing CDK2/Cyclin A2 complex. In addition, downregulation of PTBP3 significantly decreased the expression of CDC25A. CONCLUSIONS Our results suggest that PTBP3 regulated LUSC cell proliferation via cell cycle and might be a potential target for molecular therapy of LUSC.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Ying Ji
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Yicai Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China.
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha City, Hunan, China.
| |
Collapse
|
31
|
Tomaszewska W, Kozłowska-Masłoń J, Baranowski D, Perkowska A, Szałkowska S, Kazimierczak U, Severino P, Lamperska K, Kolenda T. miR-154 Influences HNSCC Development and Progression through Regulation of the Epithelial-to-Mesenchymal Transition Process and Could Be Used as a Potential Biomarker. Biomedicines 2021; 9:1894. [PMID: 34944712 PMCID: PMC8698850 DOI: 10.3390/biomedicines9121894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs and their role in cancer have been extensively studied for the past decade. Here, we analyzed the biological role and diagnostic potential of miR-154-5p and miR-154-3p in head and neck squamous cell carcinoma (HNSCC). miRNA expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from cBioPortal, UALCAN, Santa Cruz University, and Gene Expression Omnibus (GEO). The expression data were correlated with clinicopathological parameters. The functional enrichment was assessed with Gene Set Enrichment Analysis (GSEA). The immunological profiles were assessed using the ESTIMATE tool and RNAseq data from TCGA. All statistical analyses were performed with GraphPad Prism and Statistica. The study showed that both miR-154-5p and miR-154-3p were downregulated in the HNSCC samples and their expression levels correlated with tumor localization, overall survival, cancer stage, tumor grade, and HPV p16 status. GSEA indicated that individuals with the increased levels of miR-154 had upregulated AKT-MTOR, CYCLIN D1, KRAS, EIF4E, RB, ATM, and EMT gene sets. Finally, the elevated miR-154 expression correlated with better immune response. This study showed that miR-154 is highly involved in HNSCC pathogenesis, invasion, and immune response. The implementation of miR-154 as a biomarker may improve the effectiveness of HNSCC treatment.
Collapse
Affiliation(s)
- Weronika Tomaszewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Dawid Baranowski
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Anna Perkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Sandra Szałkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Patricia Severino
- Centro de Pesquisa Experimental, Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627-Jardim Leonor, São Paulo 05652-900, SP, Brazil;
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| |
Collapse
|
32
|
Liu X, Shan W, Li T, Gao X, Kong F, You H, Kong D, Qiao S, Tang R. Cellular retinol binding protein-1 inhibits cancer stemness via upregulating WIF1 to suppress Wnt/β-catenin pathway in hepatocellular carcinoma. BMC Cancer 2021; 21:1224. [PMID: 34775955 PMCID: PMC8590789 DOI: 10.1186/s12885-021-08967-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background CRBP-1, a cytosolic chaperone of vitamin A, is identified in a serious number of cancers; however, its biological role in hepatocellular carcinoma (HCC) needs to be further explored. The aim of our present study is to explore the roles and mechanisms of CRBP-1 in regulating liver cancer by using in vitro and in vivo biology approaches. Methods The expression level of CRBP-1 was detected using immunohistochemistry in HCC and matching adjacent non-tumorous liver tissues. Following established stable CRBP-1 overexpressed HCC cell lines, the cell growth and tumorigenicity were investigated both in vitro and in vivo. Intracellular retinoic acid was quantified by ELISA. The relationship between CRBP-1 and WIF1 was validated by using dual luciferase and ChIP analyses. Results The low expression of CRBP-1 was observed in HCC tissues compared to the normal liver tissues, while high CRBP-1 expression correlated with clinicopathological characteristics and increased overall survival in HCC patients. Overexpression of CRBP-1 significantly inhibited cell growth and tumorigenicity both in vitro and in vivo. Moreover, overexpression of CRBP-1 suppressed tumorsphere formation and cancer stemness related genes expression in HCC. Mechanically, CRBP-1 inhibited Wnt/β-catenin signaling pathway to suppress cancer cell stemness of HCC. Furthermore, our results revealed that CRBP-1 could increase the intracellular levels of retinoic acid, which induced the activation of RARs/RXRs leading to the transcriptional expression of WIF1, a secreted antagonist of the Wnt/β-catenin signaling pathway, by physically interacting with the region on WIF1 promoter. Conclusion Our findings reveal that CRBP-1 is a crucial player in the initiation and progression of HCC, which provide a novel independent prognostic biomarker and therapeutic target for the diagnosis and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08967-2.
Collapse
Affiliation(s)
- Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Wenhua Shan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Tingting Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Shuxi Qiao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
33
|
Son SW, Yun BD, Song MG, Lee JK, Choi SY, Kuh HJ, Park JK. The Hypoxia-Long Noncoding RNA Interaction in Solid Cancers. Int J Mol Sci 2021; 22:ijms22147261. [PMID: 34298879 PMCID: PMC8307739 DOI: 10.3390/ijms22147261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs. In this review, we focus attention on the relationship between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate molecules for controlling cancer.
Collapse
Affiliation(s)
- Seung Wan Son
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Ba Da Yun
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Mun Gyu Song
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Jin Kyeong Lee
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
34
|
Wu DP, Zhou Y, Hou LX, Zhu XX, Yi W, Yang SM, Lin TY, Huang JL, Zhang B, Yin XX. Cx43 deficiency confers EMT-mediated tamoxifen resistance to breast cancer via c-Src/PI3K/Akt pathway. Int J Biol Sci 2021; 17:2380-2398. [PMID: 34326682 PMCID: PMC8315014 DOI: 10.7150/ijbs.55453] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Tamoxifen (TAM) resistance has indicated a significant challenge during endocrine therapy for hormone-sensitive breast cancer. Thus, it is significant to elucidate the molecular events endowing TAM resistance to endocrine therapy. In this study, we found that epithelial-mesenchymal transition (EMT) was an important event to confer TAM resistance, and attenuating EMT by elevating connexin (Cx) 43 expression could reverse TAM resistance. Specifically, Cx43 overexpression improved TAM sensitivity, while Cx43 depletion facilitated TAM insensitivity by modulating EMT in T47D TAM-resistant and -sensitive cells, and transplanted xenografts. Importantly, we found a novel reciprocal regulation between Cx43 and c-Src/PI3K/Akt pathway contributing to EMT and TAM resistance in breast cancer. Moreover, we identified that Cx43 deficiency was significantly correlated with poor relapse-free survival in patients undergoing TAM treatment. Therefore, Cx43 represents a prognostic marker and an attractive target for breast cancer treatments. Therapeutic strategies designed to increase or maintain Cx43 function may be beneficial to overcome TAM resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Yan Zhou
- Clinical Pharmacy, Jingjiang People's Hospital, 214500, Jingjiang City, Jiangsu Province, P.R. China
| | - Li-Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Xiao-Xiao Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Tian-Yu Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Bei Zhang
- Department of gynaecology and obstetrics, Xuzhou Central Hospital, 221009, Xuzhou City, Jiangsu Province, P.R. China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| |
Collapse
|
35
|
Zhou L, Zhou Q, Wu Y, Xin L. Integrating 13 Microarrays to Construct a 6 RNA-binding proteins Prognostic Signature for Gastric Cancer patients. J Cancer 2021; 12:4971-4984. [PMID: 34234866 PMCID: PMC8247375 DOI: 10.7150/jca.57225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: It has been confirmed in many tumors that RNA-binding proteins (RBPs) will affect the progress of cancer, but there is still a lack of large-scale research in gastric cancer (GC). Methods: We obtained 13 microarray mRNA expression profiles of the GPL570 platform, and extracted expression from them after integration to analyze the expression differences of RBPs. Enrichment analysis studies the role of these RBPs in GC. Univariate, Lasso and multivariate Cox regression analysis are used to identify independent prognostic hub RBPs, thereby constructing and verifying a prognostic signature. External data and rt-PCR verified the expression of hub RBPs. Results: We have identified 51 dysregulated RBPs in GC. Enrichment analysis shows that it can mainly participate in RNA decomposition, modification, processing, etc. and affect the progress of GC. After multiple statistical analysis, six independent prognostic RBPs of GC were determined and a prognostic signature was developed. According to the median risk value, the training cohort was divided into high-risk and low-risk groups. Considering the clinical characteristics, in training, testing, and complete cohorts, the overall survival rate of the high-risk group was significantly lower than that of the low-risk group, which was confirmed by the time-dependent receiver operating characteristic curve. Univariate and multivariate Cox regression analysis of independent prognostic ability of risk score. In addition, we constructed and verified a nomogram based on the prognostic signature, showing accurate prediction performance. rt-PCR and external data verification are consistent with our conclusions. Conclusion: This study analyzed the overall expression of RPBs in GC and explored its mechanism. A new prognostic signature was developed and verified. A nomogram has also been established and verified, which helps to improve the treatment strategy for GC.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
36
|
Zhou D, Wang M, Zhang Y, Wang K, Zhao M, Wang Y, Wang X, Yu R, Zhou X. Screening and identification of LMNB1 and DLGAP5, two key biomarkers in gliomas. Biosci Rep 2021; 41:BSR20210231. [PMID: 33956061 PMCID: PMC8144940 DOI: 10.1042/bsr20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Glioma is the most common primary cancer in the central nervous system. Despite advances in surgery, radiotherapy and chemotherapy over the past decades, the prognosis of glioblastoma patients remains poor. We aim to identify robust gene signatures to better understand the complex molecular mechanisms and to discover potential novel molecular biomarkers for glioma. By exploring GSE16011, GSE4290 and GSE50161 data in Gene Expression Omnibus (GEO) database, we screened out 380 differentially expressed genes between non-tumor and glioma tissues, and further selected 30 hub genes through the Molecular Complex Detection (MCODE) plug-in in Cytoscape. In addition, LMNB1 and DLGAP5 were selected for further analyses due to their high expression in gliomas and were verified by using our cohort. Our study confirmed that LMNB1 and DLGAP5 were up-regulated in gliomas, and patients with high expression of LMNB1 or DLGAP5 had poor survival rate. Furthermore, silence of LMNB1 and DLGAP5 inhibited the proliferation of glioma cells. Together, LMNB1 and DLGAP5 were two potentially novel molecular biomarkers for diagnosis and prognosis of glioma.
Collapse
Affiliation(s)
- Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Mengmeng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
37
|
Hou P, Lin T, Meng S, Shi M, Chen F, Jiang T, Li Z, Li M, Chu S, Zheng J, Bai J. Long noncoding RNA SH3PXD2A-AS1 promotes colorectal cancer progression by regulating p53-mediated gene transcription. Int J Biol Sci 2021; 17:1979-1994. [PMID: 34131400 PMCID: PMC8193262 DOI: 10.7150/ijbs.58422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various human cancers. We aimed to determine the key lncRNAs mediating colorectal cancer (CRC) progression. We identified some lncRNAs aberrantly expressed in CRC tissues by using lncRNA microarrays and demonstrated that SH3PXD2A-AS1 was one of the most highly overexpressed lncRNAs in CRC. We further aimed to explore the roles and possible molecular mechanisms of SH3PXD2A-AS1 in CRC. RNA ISH revealed that SH3PXD2A-AS1 was overexpressed in CRC compared with adjacent normal colon tissues and indicated poor prognosis in CRC. Functional analyses showed that SH3PXD2A-AS1 enhanced cell proliferation, angiogenesis, and metastasis. Mechanistically, SH3PXD2A-AS1 can directly interact with p53 protein and regulate p53-mediated gene transcription in CRC. We provided mechanistic insights into the regulation of SH3PXD2A-AS1 on p53-mediated gene transcription and suggested its potential as a new prognostic biomarker and target for the clinical management of CRC.
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tian Lin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meilin Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
38
|
Chen X, Li Z, Yong H, Wang W, Wang D, Chu S, Li M, Hou P, Zheng J, Bai J. Trim21-mediated HIF-1α degradation attenuates aerobic glycolysis to inhibit renal cancer tumorigenesis and metastasis. Cancer Lett 2021; 508:115-126. [PMID: 33794309 DOI: 10.1016/j.canlet.2021.03.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Tripartite motif-containing 21 (Trim21) is mainly involved in antiviral responses and autoimmune diseases. Although Trim21 has been reported to have a cancer-promoting or anticancer effect in various tumours, its role in renal cell cancer (RCC) remains to be elucidated. In this study, we demonstrate that Trim21 is downregulated in primary RCC tissues. Low Trim21 expression in RCC is correlated with poor clinicopathological characteristics and short overall survival. Moreover, we illustrate that Trim21 inhibits RCC cells glycolysis through the ubiquitination-mediated degradation of HIF-1α, which inhibits the proliferation, tumorigenesis, migration, and metastasis of RCC cells in vitro and in vivo. Our findings show that Trim21 may become a promising predictive biomarker for the prognosis of patients with RCC.
Collapse
Affiliation(s)
- Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Wenwen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Diandian Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
39
|
Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem 2021; 168:535-546. [PMID: 32663252 DOI: 10.1093/jb/mvaa073] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023] Open
Abstract
Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.
Collapse
Affiliation(s)
- Yuepei Zou
- Zhengzhou University, No. 100 Science Ave, Gaoxin District, Zhengzhou 450001, China
| | - Zhonghua Sun
- Medical Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan 250011, China
| | - Shuangming Sun
- Security and Anti-Terrorism Department, People's Public Security University of China, No. 1 Muxidinanli, Xicheng District, Beijing 100038, China
| |
Collapse
|
40
|
Gao S, Sha Z, Zhou J, Wu Y, Song Y, Li C, Liu X, Zhang T, Yu R. BYSL contributes to tumor growth by cooperating with the mTORC2 complex in gliomas. Cancer Biol Med 2021; 18:88-104. [PMID: 33628587 PMCID: PMC7877178 DOI: 10.20892/j.issn.2095-3941.2020.0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: BYSL, which encodes the Bystin protein in humans, is upregulated in reactive astrocytes following brain damage and/or inflammation. We aimed to determine the role and mechanism of BYSL in glioma cell growth and survival. Methods: BYSL expression in glioma tissues was measured by quantitative real-time PCR, Western blot, and immunohistochemistry. In vitro assays were performed to assess the role of BYSL in cell proliferation and apoptosis. Protein interactions and co-localization were determined by co-immunoprecipitation and double immunofluorescence. The expression and activity of the AKT/mTOR signaling molecules were determined by Western blot analysis, and the role of BYSL in glioma growth was confirmed in an orthotopic xenograft model. Results: The BYSL mRNA and protein levels were elevated in glioma tissues. Silencing BYSL inhibited glioma cell proliferation, impeded cell cycle progression, and induced apoptosis, whereas overexpressing BYSL protein led to the opposite effects. We identified a complex consisting of BYSL, RIOK2, and mTOR, and observed co-localization and positive correlations between BYSL and RIOK2 in glioma cells and tissues. Overexpressing BYSL or RIOK2 increased the expression and activity of AKT/mTOR signaling molecules, whereas downregulation of BYSL or RIOK2 decreased the activity of AKT/mTOR signaling molecules. Silencing BYSL or RIOK2 decreased the growth of the tumors and prolonged the lifespan of the animals in an orthotopic xenograft model. Conclusions: High expression of BYSL in gliomas promoted tumor cell growth and survival both in vitro and in vivo. These effects could be attributed to the association of BYSL with RIOK2 and mTOR, and the subsequent activation of AKT signaling.
Collapse
Affiliation(s)
- Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junbo Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yihao Wu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Cheng Li
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
41
|
Li R, Sun N, Chen X, Li X, Zhao J, Cheng W, Hua H, Fukatsu M, Mori H, Takahashi H, Ohkawara H, Fukami M, Okamoto M, Hamazaki Y, Zheng K, Yang J, Ikezoe T. JAK2V617F Mutation Promoted IL-6 Production and Glycolysis via Mediating PKM1 Stabilization in Macrophages. Front Immunol 2021; 11:589048. [PMID: 33628203 PMCID: PMC7897702 DOI: 10.3389/fimmu.2020.589048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
A substitution mutation of valine to phenylalanine at codon encoding position 617 of the Janus kinase 2 (JAK2) gene (JAK2V617F) has been detected in myeloid cells of some individuals with higher levels of proinflammatory cytokine production such as interleukin (IL)-6. However, the mechanisms by which JAK2V617F mutation mediating those cytokines remain unclear. We, therefore, established JAK2V617F-expressing murine macrophages (JAK2V617F macrophages) and found that the levels of p-STAT3 were markedly elevated in JAK2V617F macrophages in association with an increase in IL-6 production. However, inhibition of STAT3 by C188-9 significantly decreased the production of IL-6. Furthermore, the JAK2V617F mutation endowed macrophages with an elevated glycolytic phenotype in parallel with aberrant expression of PKM1. Interestingly, silencing of PKM1 inactivated STAT3 in parallel with reduced IL-6 production. In contrast, ectopic expression of PKM1 elevated IL-6 production via STAT3 activation. Importantly, the JAK2V617F mutation contributed to PKM1 protein stabilization via blockade of lysosomal-dependent degradation via chaperone-mediated autophagy (CMA), indicating that the JAK2V617F mutation could protect PKM1 from CMA-mediated degradation, leading to activation of STAT3 and promoting IL-6 production.
Collapse
Affiliation(s)
- Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Na Sun
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Xin Chen
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xueqin Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jie Zhao
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hui Hua
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Masahiko Fukatsu
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hirotaka Mori
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Ohkawara
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Miwa Fukami
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Masatoshi Okamoto
- Department of Hematology, YUASA Foundation Jusendo General Hospital, Koriyama, Japan
| | - Yoichi Hamazaki
- Department of Hematology, Iwaki City Medical Center, Iwaki, Japan
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Takayuki Ikezoe
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
42
|
Qin J, Zhu T, Wu W, Chen H, He Y. Long Non-Coding RNA PCED1B-AS1 Promotes the Progression of Clear Cell Renal Cell Carcinoma Through miR-484/ZEB1 Axis. Onco Targets Ther 2021; 14:393-402. [PMID: 33469315 PMCID: PMC7813644 DOI: 10.2147/ott.s270149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) has been recognized as the new regulator and biomarker for cancers. However, in clear cell renal cell carcinoma (ccRCC), the functions of lncRNAs are not well characterized. This research aimed to probe the function of lncRNA PCED1B-AS1 in the progression of ccRCC. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression levels of PCED1B-AS1, microRNA-484 (miR-484), and zinc finger E-box binding homeobox 1 (ZEB1) in 40 pairs of human ccRCC tissues and corresponding adjacent kidney tissue samples. Chi-square test was employed to evaluate the association between PCED1B-AS1 expression level and clinicopathological characteristics. The effects of PCED1B-AS1, miR-484 and ZEB1 on the cell proliferation, migration and epithelial-mesenchymal transition (EMT) process of ccRCC cells were studied by CCK-8 assay, EdU cell proliferation assay, wound healing test and Western blotting. The regulatory relationships among PCED1B-AS1, miR-484, ZEB1 were examined by luciferase reporter gene assay and RNA immunoprecipitation assay. Results PCED1B-AS1 was remarkably up-regulated in ccRCC tissues and cell lines. High expression of PCED1B-AS1 was associated with poor prognosis of the patients. Loss-of-function experiments showed that PCED1B-AS1 could regulate the proliferation, migration and EMT of ccRCC cells. PCED1B-AS1 sponged miR-484 to suppress its expression, and miR-484 targeted the 3ʹ-UTR of ZEB1 to repress the expression of ZEB1. MiR-484 counteracted the functions of PCED1B-AS1 in promoting the proliferation, migration and EMT of ccRCC cells, and PCED1B-AS1 promotes the expression of ZEB1 via repressing miR-484. Conclusion PCED1B-AS1/miR-484/ZEB1 axis is involved in regulating the progression of ccRCC.
Collapse
Affiliation(s)
- Jianhua Qin
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, People's Republic of China
| | - Tingting Zhu
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, People's Republic of China
| | - Weihua Wu
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, People's Republic of China
| | - Huan Chen
- Department of Pathogen Biology, Basic Medical College, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Yi He
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| |
Collapse
|
43
|
Pang X, Wang Y, Miao B, Fei S, Chen W. Regulation of ARL2 in colorectal cancer cell proliferation and tumorigenicity, and its negative association with AXL. Oncol Lett 2021; 21:196. [PMID: 33574935 PMCID: PMC7816291 DOI: 10.3892/ol.2021.12457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant disease in adults. ADP ribosylation factor-like GTPase 2 (ARL2) is crucial for controlling the dynamics of microtubules and mitochondrial functions. However, the biological function of ARL2 in CRC remains unclear. The present study was performed to identify the expression level and functional role of ARL2 in CRC. A total of 19 CRC and 3 normal healthy colorectal tissues were collected. Furthermore, ARL2 expression was analyzed in healthy colorectal and CRC tissues by immunohistochemistry (IHC). ARL2 overexpression and knockdown was achieved using lentiviral vectors and plasmid transfection in HCT8 and HCT116 cells. The protein and mRNA expression levels of ARL2 and AXL were analyzed using western blot and reverse transcription-quantitative PCR in ARL2 knockdown and ARL2 overexpressing HCT8 and HCT116 cells. Cell Counting Kit-8, colony formation, wound healing, and Matrigel assays were used to investigate the biological functions of ARL2. Taken together, ARL2 protein expression level was upregulated in CRC tissues. Furthermore, ARL2 overexpression decreased proliferation and weakened the colony-formation abilities of the CRC cells, as well as their migratory and invasive abilities. ARL2 interference enhanced proliferation and colony-formation rates of the CRC cells, as well as their migratory and invasive abilities. ARL2 regulated CRC proliferation and tumorigenicity and was negatively associated with AXL. The results of the present study suggested that the proliferation, migration and tumorigenicity of the CRC cells could be inhibited by ARL2 overexpression. The latter may be used as a predicted and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Xunlei Pang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215008, P.R. China.,Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yanhong Wang
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Bei Miao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215008, P.R. China
| |
Collapse
|
44
|
The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression. DNA Repair (Amst) 2021; 98:103036. [PMID: 33429260 DOI: 10.1016/j.dnarep.2020.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression. In this regard, the ncRNAs possible regulatory role in DDR via modulation of key components expression and controlling repair signaling pathway activation is validated. Therefore, in this article, we will discuss the latest developments of ncRNAs contribution in different aspects of DNA repair through regulation of ATM-ATR, P53, and other regulatory signaling pathways.
Collapse
|
45
|
Parreno J, Amadeo MB, Kwon EH, Fowler VM. Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32492110 PMCID: PMC7415280 DOI: 10.1167/iovs.61.6.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Epithelial to mesenchymal transition (EMT) is a cause of anterior and posterior subcapsular cataracts. Central to EMT is the formation of actin stress fibers. Selective targeting of actin stress fiber-associated tropomyosin (Tpm) in epithelial cells may be a means to prevent stress fiber formation and repress lens EMT. Methods We identified Tpm isoforms in mouse immortalized lens epithelial cells and epithelial and fiber cells from whole lenses by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) followed Sanger sequencing. We focused on the role of one particular tropomyosin isoform, Tpm3.1, in EMT. To induce EMT, we treated cells or native lenses with TGFβ2. To test the function of Tpm3.1, we exposed cells or whole lenses to a Tpm3.1-specific chemical inhibitor, TR100, as well as investigated lenses from Tpm3.1 knockout mice. We examined stress fiber formation by confocal microscopy and assessed EMT progression by analysis of alpha-smooth muscle actin (αSMA) mRNA (real-time RT-PCR), and protein (Western immunoassay [WES]). Results Lens epithelial cells express eight Tpm isoforms. Cell culture studies showed that TGFβ2 treatment results in the upregulation of Tpm3.1, which associates with actin in stress fibers. TR100 prevents stress fiber formation and reduces αSMA in TGFβ2-treated cells. Using an ex vivo lens culture model, TGFβ2 treatment results in stress fiber formation at the basal regions of the epithelial cells. Genetic knockout of Tpm3.1 or treatment of lenses with TR100 prevents basal stress fiber formation and reduces epithelial αSMA levels. Conclusions Targeting specific stress fiber associated tropomyosin isoform, Tpm3.1, is a means to repress lens EMT.
Collapse
|
46
|
Yan L, Yang S, Yue CX, Wei XY, Peng W, Dong ZY, Xu HN, Chen SL, Wang WR, Chen CJ, Yang QL. Long noncoding RNA H19 acts as a miR-340-3p sponge to promote epithelial-mesenchymal transition by regulating YWHAZ expression in paclitaxel-resistant breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1015-1028. [PMID: 32420678 DOI: 10.1002/tox.22938] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer-related death in women worldwide and one of the most prevalent malignancy. In recent years, increasing evidence had illuminated that long noncoding RNAs (lncRNAs) serve as critical factors in multiple tumor progression, including BC. Emerging references had indicated that the lncRNA H19 acts as significant roles in tumor progression and epithelial-mesenchymal transition (EMT). However, the underlying molecular mechanisms and biological roles of H19 in BC invasion, metastasis and EMT are still unclear. In this study, it was detected that the expression level of H19 was increased in BC paclitaxel-resistant (PR) cells subline (MCF-7/PR) in comparison with MCF-7 parental cells. In vitro, there were demonstrated that H19 overexpression promoted BC cells proliferation, metastasis, invasion and EMT procedures, and suppressed cells apoptosis. Whereas, H19 suppression resulted in the contrary biological effects. Besides, bioinformatics tools and dual-luciferase reporters assays indicated that miR-340-3p could act as a potential target gene of H19, the underlying mechanism studies proved that H19 could act as a competing endogenous RNA (ceRNA) via competitively binding miR-340-3p to promote BC cell proliferation, metastasis and EMT by regulating tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) and potentiate the Wnt/β-catenin signaling in BC cells. In summary, our findings demonstrated that H19 could act as a ceRNA in BC progression, metastasis and EMT through modulating miR-340-3p/YWHAZ axis and activating the canonical Wnt/β-catenin signaling pathway, indicating that H19 might act as an underlying therapeutic target and prognostic biomarker for BC therapy.
Collapse
Affiliation(s)
- Lei Yan
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuo Yang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Cheng-Xu Yue
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Xin-Yu Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Zheng-Yuan Dong
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - He-Nan Xu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
| | - Su-Lian Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wen-Rui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Chang-Jie Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qing-Ling Yang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
47
|
Zhu J, Ma C, Zhu L, Li J, Peng F, Huang L, Luan X. A role for the NLRC4 inflammasome in premature rupture of membrane. PLoS One 2020; 15:e0237847. [PMID: 32833985 PMCID: PMC7446792 DOI: 10.1371/journal.pone.0237847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022] Open
Abstract
PROM is one of the common complications of perinatal period, which seriously threatens the mother and newborn. The purpose of this study was to identify the role of NLRC4 inflammasomes in this process and their underlying mechanisms. We performed high-throughput RNA sequencing of fetal membrane tissue from 3 normal pregnant women and 3 term-premature rupture of fetal membrane (TPROM) patients who met the inclusion criteria, and found that NLRC4 was significantly up-regulated in TPROM patients. An observational study of TPROM patients (PROM group, n = 30) and normal pregnant women (control group, n = 30) was performed at the Xuzhou Maternal and Child Health Hospital affiliated to Xuzhou Medical University from May 2018 to May 2019. The expression of genes involved in inflammasome complex including NLRC1, NLRC3, AIM2, NLRC4, ASC, caspase-1, IL-6, IL-18 and IL-1βwas determined via real-time PCR, immunohistochemistry and immunofluorescence. Measurement of NLRC4 level in serum was conducted by ELISA assay. The results showed that the NLRC4, ASC, caspase-1, IL-1β and IL-18 levels in fetal membrane, placental tissues and maternal serum were markedly higher in the PROM group than that in the control group. In conclusion, NLRC4 is a markedly up-regulated gene in TPROM fetal membrane tissue, suggesting that NLRC4 is involved in the occurrence and development of TPROM; NLRC4 levels in maternal blood serum are closely related to TPROM and have the potential to assist doctors in predicting and diagnosing PROM.
Collapse
Affiliation(s)
- Jinming Zhu
- Department of Obstetrics, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
- * E-mail:
| | - Chunling Ma
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lina Zhu
- Department of Obstetrics and Gynecology, Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Juan Li
- Department of Obstetrics, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fengyun Peng
- Department of Obstetrics, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Huang
- Department of Obstetrics, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaomei Luan
- Department of Obstetrics, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
48
|
AlAhmari MM, Al-Khalaf HH, Al-Mohanna FH, Ghebeh H, Aboussekhra A. AUF1 promotes stemness in human mammary epithelial cells through stabilization of the EMT transcription factors TWIST1 and SNAIL1. Oncogenesis 2020; 9:70. [PMID: 32759946 PMCID: PMC7406652 DOI: 10.1038/s41389-020-00255-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
The AU-rich element RNA-binding protein 1 (AUF1) is an RNA-binding protein, which can both stabilize and destabilize the transcripts of several cancer-related genes. Since epithelial-to-mesenchymal transition (EMT) and the acquisition of cancer stem cell traits are important for cancer onset and progression, we sought to determine the role of AUF1 in these two important processes. We have shown that AUF1 induces EMT and stemness in breast epithelial cells via stabilization of the SNAIL1 and TWIST1 mRNAs, and their consequent upregulation. Indeed, AUF1 binds the transcripts of these two genes at their 3′UTR and reduces their turnover. Ectopic expression of AUF1 also promoted stemness in mammary epithelial cells, and thereby increased the proportion of cancer stem cells. Importantly, breast cancer cells that ectopically express AUF1 were more efficient in forming orthotopic tumor xenografts in nude mice than their corresponding controls with limiting cell inocula. On the other hand, AUF1 downregulation with specific siRNA inhibited EMT and reduced the stemness features in breast cancer cells. Moreover, AUF1 knockdown sensitized breast cancer cells to the killing effect of cisplatin. Together, these findings provide clear evidence that AUF1 is an important inducer of the EMT process through stabilization of SNAIL1 and TWIST1 and the consequent promotion of breast cancer stem cells. Thereby, AUF1 targeted molecules could constitute efficient therapeutics for breast cancer patients.
Collapse
Affiliation(s)
- Manar M AlAhmari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia
| | - Huda H Al-Khalaf
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia.,The National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, 11461, Saudi Arabia.,KACST-BWH/Harvard Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11461, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
49
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
50
|
Wu Q, Zhang B, Li B, Cao X, Chen X, Xue Q. PTBP3 promotes migration of non-small cell lung cancer through regulating E-cadherin in EMT signaling pathway. Cancer Cell Int 2020; 20:172. [PMID: 32477006 PMCID: PMC7236532 DOI: 10.1186/s12935-020-01240-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background Human polypyrimidine tract binding protein 3 (PTBP3), which belongs to the PTB family, demonstrate a significant tumorigenic capability in a variety of malignancies. However, the correlation between PTBP3 expression and pathogenesis of non-small cell lung cancer (NSCLC) remains little known. The design of the study attempts to examine the role of PTBP3 in the pathogenesis and prognosis of NSCLC. Methods Our study conducted an investigation on the PTBP3 expression in human NSCLC tissues and a comprehensive analysis of the associations between three factors, involving the PTBP3 expression, clinicopathological features, and patient’s survival. Additionally, we also explored the role of PTBP3 expression in the proliferation and invasion of cancer cells. Results The mining of The Cancer Genome Atlas (TCGA) database, western blotting and immunohistochemistry analyses showed significantly up-regulation of PTBP3 in NSCLC tissues than in normal tissues. Although overexpress or knockdown PTBP3 expression had no significant effect on proliferation of selected cell line, it could promotes migration of NSCLC cells via regulating E-cadherin in epithelial–mesenchymal transition (EMT) signaling pathway. Moreover, in the univariate analysis, the PTBP3-high is markedly related to poor overall survival results where hazard ratio (HR): 1.55; 95% confidence interval (95% CI): 1.87–2.01; p = 0.0001. Also, according to the multivariate analysis, an independent prognostic factor among NSCLC patients is the PTBP3 with an HR of 1.42 (CI: 1.09–1.9; p = 0.011). To explore potential signaling pathways, we used the TCGA dataset and performed Gene Set Enrichment Analysis (GSEA). Moreover, its expression in NSCLC was related to Tumor differentiation, lymph node metastasis, distant metastasis status and poor prognosis. Beside, by changing the expression of PTBP3 in selected cell lines, we found that overexpress or knockdown PTBP3 expression had no significant effect on proliferation, however it regulated migration possibly by EMT signaling. Conclusions Collectively, our findings suggested that PTBP3 contributed to the progression of NSCLC and might serve as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Qiong Wu
- 1Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.,2Medical School of Nantong University, Nantong, China
| | - Bo Zhang
- 2Medical School of Nantong University, Nantong, China
| | - Ben Li
- 1Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.,2Medical School of Nantong University, Nantong, China
| | - Xiang Cao
- 1Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinming Chen
- 1Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Xue
- 1Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|