1
|
Poorva P, Mast J, Cao B, Shah MV, Pollok KE, Shen J. Killing the killers: Natural killer cell therapy targeting glioma stem cells in high-grade glioma. Mol Ther 2025:S1525-0016(25)00168-6. [PMID: 40040281 DOI: 10.1016/j.ymthe.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma (GBM) in adults and diffuse intrinsic pontine glioma (DIPG) in children, are among the most aggressive and deadly brain tumors. A key factor in their resilience is the presence of glioma stem cells (GSCs), which drive tumor initiation, progression, and resistance to treatment. Targeting and eradicating GSCs holds potential for curing both GBM and DIPG. Natural killer (NK) cells, as part of the innate immune system, naturally recognize and destroy malignant cells. Recent advances in NK cell-based therapies, such as chimeric antigen receptor (CAR)-NK cells, NK cell engagers, and NK cell-derived exosomes, offer promising approaches for treating GBM and DIPG, particularly by addressing the persistence of GSCs. This review highlights these advancements, explores challenges such as the blood-brain barrier and the immunosuppressive tumor microenvironment, and proposes future directions for improving and clinically advancing these NK cell-based therapies for HGGs.
Collapse
Affiliation(s)
- Poorva Poorva
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Jensen Mast
- Biochemistry Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Bihui Cao
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Mitesh V Shah
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Yu Y, Arrigo A, Chandra A, Zhuang C, Najjar MK, Khan MS, Zhu D, Dono A, Strowd RE, Tandon N, Zhu JJ, Hsu SH, Esquenazi Y, Chan M, Lo HW. Targeting tGLI1, a novel mediator of tumor therapeutic resistance, using Ketoconazole sensitizes glioblastoma to CDK4/6 therapy and chemoradiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639359. [PMID: 40060625 PMCID: PMC11888219 DOI: 10.1101/2025.02.20.639359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with no effective treatments. While cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) show clinical promise in some cancers, they have not significantly improved survival in GBM patients. This lack of response is attributed to the treatment-resistant glioma stem cell (GSC) population. We previously identified truncated glioma-associated oncogene homolog 1 (tGLI1) as a novel transcription factor promoting GSCs; however, its role in CDK4/6i resistance has never been investigated in any cancer type. Here, we found positive correlations between tGLI1 and CDK4/6 therapeutic resistance in patient datasets and in vitro studies. Pharmacological inhibition of tGLI1 using FDA-approved ketoconazole (KCZ), a tGLI1-specific inhibitor, sensitized GBM and GSCs to CDK4/6is. KCZ+CDK4/6i combination therapy demonstrated synergistic anti-proliferative effects, significantly inhibiting GBM stemness and cell cycle progression while increasing apoptosis. The combination was more efficacious than monotherapies in two orthotopic GBM mouse models. tGLI1 promoted GBM resistance to radiation therapy and temozolomide, while KCZ potentiated effects of these treatments. Collectively, we report for the first time that tGLI1 is a novel mediator of GBM resistance to CDK4/6is, and KCZ sensitizes GBM to CDK4/6is, thereby supporting future clinical utility of novel KCZ+CDK4/6i combinatorial therapy for GBM patients.
Collapse
Affiliation(s)
- Yang Yu
- Department of Cancer Biology, Wake Forest School University of Medicine, Winston-Salem, NC
| | - Austin Arrigo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mariana K Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Munazza S Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest School University of Medicine, Winston-Salem, NC
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Roy E Strowd
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sigmund H Hsu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School University of Medicine, Winston-Salem, NC
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Luo J, Wang Z, Zhang X, Yu H, Chen H, Song K, Zhang Y, Schwartz LM, Chen H, Liu Y, Shao R. Vascular Immune Evasion of Mesenchymal Glioblastoma Is Mediated by Interaction and Regulation of VE-Cadherin on PD-L1. Cancers (Basel) 2023; 15:4257. [PMID: 37686533 PMCID: PMC10486786 DOI: 10.3390/cancers15174257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
The mesenchymal subtype of glioblastoma (mGBM), which is characterized by rigorous vasculature, resists anti-tumor immune therapy. Here, we investigated the mechanistic link between tumor vascularization and the evasion of immune surveillance. Clinical datasets with GBM transcripts showed that the expression of the mesenchymal markers YKL-40 (CHI3L1) and Vimentin is correlated with elevated expression of PD-L1 and poor disease survival. Interestingly, the expression of PD-L1 was predominantly found in vascular endothelial cells. Orthotopic transplantation of glioma cells GL261 over-expressing YKL-40 in mice showed increased angiogenesis and decreased CD8+ T cell infiltration, resulting in a reduction in mouse survival. The exposure of recombinant YKL-40 protein induced PD-L1 and VE-cadherin (VE-cad) expression in endothelial cells and drove VE-cad-mediated nuclear translocation of β-catenin/LEF, where LEF upregulated PD-L1 expression. YKL-40 stimulated the dissociation of VE-cad from PD-L1, rendering PD-L1 available to interact with PD-1 from CD8+-positive TALL-104 lymphocytes and inhibit TALL-104 cytotoxicity. YKL-40 promoted TALL-104 cell migration and adhesion to endothelial cells via CCR5-dependent chemotaxis but blocked its anti-vascular immunity. Knockdown of VE-cad or the PD-L1 gene ablated the effects of YKL-40 and reinvigorated TALL-104 cell immunity against vessels. In summary, our study demonstrates a novel vascular immune escape mechanism by which mGBM promotes tumor vascularization and malignant transformation.
Collapse
Affiliation(s)
- Jing Luo
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (J.L.); (H.Y.); (H.C.)
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ziyi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuemei Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China;
| | - Haihui Yu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (J.L.); (H.Y.); (H.C.)
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Hui Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (J.L.); (H.Y.); (H.C.)
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Kun Song
- Nutshell Therapeutics, Shanghai 201203, China;
| | - Yang Zhang
- Center for Nanomedicine, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Lawrence M. Schwartz
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA;
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (J.L.); (H.Y.); (H.C.)
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rong Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (J.L.); (H.Y.); (H.C.)
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
6
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Doheny D, Manore S, Sirkisoon SR, Zhu D, Aguayo NR, Harrison A, Najjar M, Anguelov M, Cox AO, Furdui CM, Watabe K, Hollis T, Thomas A, Strowd R, Lo HW. An FDA-Approved Antifungal, Ketoconazole, and Its Novel Derivative Suppress tGLI1-Mediated Breast Cancer Brain Metastasis by Inhibiting the DNA-Binding Activity of Brain Metastasis-Promoting Transcription Factor tGLI1. Cancers (Basel) 2022; 14:4256. [PMID: 36077791 PMCID: PMC9454738 DOI: 10.3390/cancers14174256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study is to identify pharmacological inhibitors that target a recently identified novel mediator of breast cancer brain metastasis (BCBM), truncated glioma-associated oncogene homolog 1 (tGLI1). Inhibitors of tGLI1 are not yet available. To identify compounds that selectively kill tGLI1-expressing breast cancer, we screened 1527 compounds using two sets of isogenic breast cancer and brain-tropic breast cancer cell lines engineered to stably express the control, GLI1, or tGLI1 vector, and identified the FDA-approved antifungal ketoconazole (KCZ) to selectively target tGLI1-positive breast cancer cells and breast cancer stem cells, but not tGLI1-negative breast cancer and normal cells. KCZ's effects are dependent on tGLI1. Two experimental mouse metastasis studies have demonstrated that systemic KCZ administration prevented the preferential brain metastasis of tGLI1-positive breast cancer and suppressed the progression of established tGLI1-positive BCBM without liver toxicities. We further developed six KCZ derivatives, two of which (KCZ-5 and KCZ-7) retained tGLI1-selectivity in vitro. KCZ-7 exhibited higher blood-brain barrier penetration than KCZ/KCZ-5 and more effectively reduced the BCBM frequency. In contrast, itraconazole, another FDA-approved antifungal, failed to suppress BCBM. The mechanistic studies suggest that KCZ and KCZ-7 inhibit tGLI1's ability to bind to DNA, activate its target stemness genes Nanog and OCT4, and promote tumor proliferation and angiogenesis. Our study establishes the rationale for using KCZ and KCZ-7 for treating and preventing BCBM and identifies their mechanism of action.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Sara Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Sherona R. Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Noah R. Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Alexandria Harrison
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Mariana Najjar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Marlyn Anguelov
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Anderson O’Brien Cox
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Cristina M. Furdui
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Thomas Hollis
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Alexandra Thomas
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Roy Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
8
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|
9
|
Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188667. [PMID: 34894431 DOI: 10.1016/j.bbcan.2021.188667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is one of the most lethal human cancers, however, the molecular mechanisms driving GBM remain largely elusive. Recent studies have revealed that transcription factors are significantly involved in GBM biology. Transcription factors (TFs), which are proteins that bind DNA to regulate gene expression, have critical roles at focal points in signaling pathways, orchestrating many cellular processes, such as cell growth and proliferation, differentiation, apoptosis, immune responses, and metabolism. Dysregulated or mutated TFs are common in GBM, resulting in aberrant gene expression that promotes tumor initiation, progression, and resistance to conventional therapies. In the present Review, we focus on TFs that are implicated in GBM pathogenesis, highlighting their oncogenic or tumor suppressive functions and describing the molecular mechanisms underlying their effect on GBM cells. We also discuss their use as biomarkers for GBM prognosis and therapeutic response, as well as their targeting with drugs for GBM treatment. Deciphering the role of TFs in the biology of GBM will provide new insights into the pathological mechanisms and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece.
| |
Collapse
|
10
|
Over-expression of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma cells and the resistance to temozolomide via up-regulating the expression of multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death Discov 2021; 7:311. [PMID: 34689169 PMCID: PMC8542043 DOI: 10.1038/s41420-021-00709-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
A growing body of evidence suggests that long-chain non-coding RNA (lncRNA) plays an important role in the malignant biological behavior and drug resistance of glioblastoma (GBM) cells. In this study, we analyzed the role and potential mechanism of lncRNA TMEM161B-AS1 in the malignant biological behavior of GBM cells and temozolomide (TMZ) resistance. Studies have found that FANCD2 and CD44 are significantly related to the occurrence of GBM, TMZ resistance and the survival of GBM patients. Knockdown of TMEM161B-AS1 down-regulated the expression of FANCD2 and CD44 by sponging hsa-miR-27a-3p, inhibited the proliferation, migration, invasion and promoted apoptosis, ferroptosis of U87 cells and U251 cells. Down-regulation of lncRNA TMEM161B-AS1 and/or over-expression of hsa-miR-27a-3p down-regulated the expression of FANCD2 and CD44, and inhibited the tumor growth in nude mice. These results demonstrated that the lncRNA TMEM161B-AS1-hsa-miR-27a-3p-FANCD2/CD44 signal axis regulated the malignant biological behavior of GBM and TMZ resistance. These findings were expected to provide promising therapeutic targets for the treatment of glioma.
Collapse
|
11
|
Alwaqfi RR, Samuelson MI, Guseva NN, Ouyang M, Bossler AD, Ma D. PTCH1-GLI1 Fusion-Positive Ovarian Tumor: Report of a Unique Case With Response to Tyrosine Kinase Inhibitor Pazopanib. J Natl Compr Canc Netw 2021; 19:998-1004. [PMID: 34551385 DOI: 10.6004/jnccn.2021.7058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Recurrent GLI1 gene fusions have been recently described in a subset of soft tissue tumors showing a distinct monotonous epithelioid morphology with a rich capillary network and frequent S100 protein expression. Three different fusion partners-ACTB, MALAT1, and PTCH1-have been reported with the PTCH1-GLI1 fusion from 2 patients only, both with head and neck tumors. Herein, we report for the first time a PTCH1-GLI1 fusion in a primary ovarian tumor from a female patient aged 54 years who presented with a 21-cm right ovarian mass and mesenteric metastasis. The tumor was diagnosed as "favor malignant melanoma" based on histologic examination and extensive immunohistochemistry studies. The patient received 4 cycles of pembrolizumab and 2 cycles of trabectedin but developed multiple metastases. A next-generation sequencing-based assay detected a PTCH1-GLI1 fusion, which led to a revised pathologic diagnosis and a change of the patient's management. The patient was switched to the tyrosine kinase inhibitor (TKI) pazopanib to target the sonic hedgehog pathway. Her disease was stable 49 months post TKI therapy. Our case report is the first to show that a tumor with GLI1 oncogenic activation was sensitive to a TKI. The morphologic and immunohistochemistry similarities of our patient's tumor to other recently described tumors harboring GLI1 fusions suggest that these tumors may all belong to the same entity of GLI1 fusion-positive neoplasms and may be treated similarly.
Collapse
Affiliation(s)
| | | | | | - Michelle Ouyang
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | |
Collapse
|
12
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
15
|
Doheny D, Sirkisoon S, Carpenter RL, Aguayo NR, Regua AT, Anguelov M, Manore SG, Arrigo A, Jalboush SA, Wong GL, Yu Y, Wagner CJ, Chan M, Ruiz J, Thomas A, Strowd R, Lin J, Lo HW. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene 2020; 39:6589-6605. [PMID: 32929154 PMCID: PMC7572897 DOI: 10.1038/s41388-020-01454-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and associated with unfavorable prognosis. TNBC lacks effective treatments. HER2-positive tumors have treatment options but often acquire resistance to HER2-targeted therapy after initial response. To address these challenges, we determined whether novel combinations of JAK2-STAT3 and SMO-GLI1/tGLI1 inhibitors synergistically target TNBC and HER2 breast cancer since these two pathways are concurrently activated in both tumor types and enriched in metastatic tumors. Herein, we show that novel combinations of JAK2 inhibitors (ruxolitinib and pacritinib) with SMO inhibitors (vismodegib and sonidegib) synergistically inhibited in vitro growth of TNBC and HER2-positive trastuzumab-resistant BT474-TtzmR cells. Synergy was also observed against breast cancer stem cells. To determine if the combination is efficacious in inhibiting metastasis, we treated mice with intracardially inoculated TNBC cells and found the combination to inhibit lung and liver metastases, and prolong host survival without toxicity. The combination inhibited orthotopic growth, VEGF-A expression, and tumor vasculature of both TNBC and HER2-positive trastuzumab-refractory breast cancer. Lung metastasis of orthotopic BT474-TtzmR xenografts was suppressed by the combination. Together, our results indicated that dual targeting of JAK2 and SMO resulted in synergistic suppression of breast cancer growth and metastasis, thereby supporting future clinical testing.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Bloomington, JH 308 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Noah Reeve Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marlyn Anguelov
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yang Yu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael Chan
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jimmy Ruiz
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexandra Thomas
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Roy Strowd
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
16
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
17
|
Wang C, Wang Z, Chen C, Fu X, Wang J, Fei X, Yan X, Xu R. A low MW inhibitor of CD44 dimerization for the treatment of glioblastoma. Br J Pharmacol 2020; 177:3009-3023. [PMID: 32080830 PMCID: PMC7280016 DOI: 10.1111/bph.15030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE As a hallmark of glioblastoma multiforme (GBM), CD44 plays a crucial role in promoting glioblastoma stem cell (GSC) stemness phenotypes and multiple drug resistance. The therapeutic potential of CD44 has been validated by the clinical successes of several CD44 inhibitors, including antibodies and hyaluronan-related drugs. EXPERIMENTAL APPROACH We used systemsDock software to predict verbascoside as a candidate CD44 inhibitor. Microscale thermophoresis was used to confirm the interaction between CD44 and verbascoside. Four glioblastoma cell lines and a patient-derived glioblastoma cell line were used to test the influences of verbascoside on glioblastoma. CD44-overexpressing and CD44-knockout cell lines were also used. Real-time quantitative PCR and western blot analyses were performed. A xenograft mouse model was used to test verbascoside. KEY RESULTS Verbascoside bound to CD44 and suppressed its dimerization. By inhibiting CD44 dimerization, verbascoside decreased the release of the CD44 intracellular domain (CD44ICD) and suppressed the expression of CD44 downstream genes. Verbascoside treatment suppressed the stemness phenotypes of cells with high CD44 expression. In a mouse model of glioma, verbascoside treatment highly reduced the growth of intracranial tumours and inhibited CD44ICD release. Both stem cell marker and mesenchymal GBM subtype marker genes were down-regulated in verbascoside-treated mice. CONCLUSION AND IMPLICATIONS Verbascoside suppressed growth of glioblastoma cells by inhibiting CD44 dimerization. Stem cell-like cell properties and tumour cell growth were also suppressed by verbascoside, both in vitro and in vivo. Verbascoside significantly prolonged survival of xenografted mice.
Collapse
Affiliation(s)
- Chongwu Wang
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
| | - Zhaotao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chen Chen
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
| | - Xiaojun Fu
- Chinese PLA General HospitalMedicine School of Chinese PLABeijingChina
| | - Ji Wang
- School of basic medical scienceSouthern Medicine UniversityGuangzhouChina
| | - Xiaowei Fei
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
| | - Ruxiang Xu
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
- School of basic medical scienceSouthern Medicine UniversityGuangzhouChina
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
18
|
Yi L, Guo G, Li J, Fan X, Li T, Tong L, Liu P, Wang X, Yuan F, Yu S, Huang Q, Yang X. IKBKE, a prognostic factor preferentially expressed in mesenchymal glioblastoma, modulates tumoral immunosuppression through the STAT3/PD‐L1 pathway. Clin Transl Med 2020. [PMCID: PMC7418810 DOI: 10.1002/ctm2.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Li Yi
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of Oncology‐Pathology, Karolinska InstitutetKarolinska University Hospital Solna Stockholm Sweden
| | - Gaochao Guo
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of Neurosurgery, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jiabo Li
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Xiaoguang Fan
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Tao Li
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Luqing Tong
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of NeurosurgeryJohns Hopkins University School of Medicine Baltimore MD USA
| | - Peidong Liu
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
- Department of NeurosurgeryJohns Hopkins University School of Medicine Baltimore MD USA
| | - Xuya Wang
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Feng Yuan
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Shengping Yu
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Qiang Huang
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| | - Xuejun Yang
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Laboratory of Neuro‐OncologyTianjin Neurological Institute Tianjin China
| |
Collapse
|
19
|
Koyama S, Tsuchiya H, Amisaki M, Sakaguchi H, Honjo S, Fujiwara Y, Shiota G. NEAT1 is Required for the Expression of the Liver Cancer Stem Cell Marker CD44. Int J Mol Sci 2020; 21:ijms21061927. [PMID: 32168951 PMCID: PMC7139689 DOI: 10.3390/ijms21061927] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
CD44, a cancer stem cell (CSC) marker, is required for maintaining CSC properties in hepatocellular carcinoma (HCC). Nuclear enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), is an oncogenic driver in HCC. In the present study, we investigated the significance of the NEAT1 gene in association with CD44 expression in liver CSCs of human HCC cell lines. The CSC properties were evaluated by spheroid culture, CSC marker expression, and sensitivity to anti-cancer drugs. The expression of both NEAT1 variant 1 (NEAT1v1) and variant 2 (NEAT1v2) as well as CD44 was significantly increased in the spheroid culture, compared with that in monolayer culture. Overexpression of Neat1v1, but not Neat1v2, enhanced the CSC properties, while knockout of the NEAT1 gene suppressed them. CD44 expression was increased by the overexpression of Neat1v1 and abrogated by NEAT1 knockout. The overexpression of NEAT1v1 restored the CSC properties and CD44 expression in NEAT1-knockout cells. NEAT1v1 expression in HCC tissues was correlated with poor prognosis and CD44 expression. These results suggest that NEAT1v1 is required for CD44 expression. To our surprise, NEAT1v1 also restored the CSC properties even in CD44-deficient cells, suggesting that NEAT1v1 maintains the properties of CSCs in a CD44-independent manner.
Collapse
Affiliation(s)
- Shigemi Koyama
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
- Correspondence: ; Tel./Fax: +81-859-38-6435
| | - Masataka Amisaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiromi Sakaguchi
- Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
20
|
Splicing Dysregulation as Oncogenic Driver and Passenger Factor in Brain Tumors. Cells 2019; 9:cells9010010. [PMID: 31861467 PMCID: PMC7016899 DOI: 10.3390/cells9010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/21/2022] Open
Abstract
Brain tumors are a heterogeneous group of neoplasms ranging from almost benign to highly aggressive phenotypes. The malignancy of these tumors mostly relies on gene expression reprogramming, which is frequently accompanied by the aberrant regulation of RNA processing mechanisms. In brain tumors, defects in alternative splicing result either from the dysregulation of expression and activity of splicing factors, or from mutations in the genes encoding splicing machinery components. Aberrant splicing regulation can generate dysfunctional proteins that lead to modification of fundamental physiological cellular processes, thus contributing to the development or progression of brain tumors. Herein, we summarize the current knowledge on splicing abnormalities in brain tumors and how these alterations contribute to the disease by sustaining proliferative signaling, escaping growth suppressors, or establishing a tumor microenvironment that fosters angiogenesis and intercellular communications. Lastly, we review recent efforts aimed at developing novel splicing-targeted cancer therapies, which employ oligonucleotide-based approaches or chemical modulators of alternative splicing that elicit an impact on brain tumor biology.
Collapse
|
21
|
Sirkisoon SR, Carpenter RL, Rimkus T, Doheny D, Zhu D, Aguayo NR, Xing F, Chan M, Ruiz J, Metheny-Barlow LJ, Strowd R, Lin J, Regua AT, Arrigo A, Anguelov M, Pasche B, Debinski W, Watabe K, Lo HW. TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment. Oncogene 2019; 39:64-78. [PMID: 31462709 PMCID: PMC6938539 DOI: 10.1038/s41388-019-0959-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Mechanisms for breast cancer metastasis remain unclear. Whether truncated glioma-associated oncogene homolog 1 (TGLI1), a transcription factor known to promote angiogenesis, migration and invasion, plays any role in metastasis of any tumor type has never been investigated. In this study, results of two mouse models of breast cancer metastasis showed that ectopic expression of TGLI1, but not GLI1, promoted preferential metastasis to the brain. Conversely, selective TGLI1 knockdown using antisense oligonucleotides led to decreased breast cancer brain metastasis (BCBM) in vivo. Immunohistochemical staining showed that TGLI1, but not GLI1, was increased in lymph node metastases compared to matched primary tumors, and that TGLI1 was expressed at higher levels in BCBM specimens compared to primary tumors. TGLI1 activation is associated with a shortened time to develop BCBM and enriched in HER2-enriched and triple-negative breast cancers. Radioresistant BCBM cell lines and specimens expressed higher levels of TGLI1, but not GLI1, than radiosensitive counterparts. Since cancer stem cells (CSCs) are radioresistant and metastasis-initiating cells, we examined TGLI1 for its involvement in breast CSCs and found TGLI1 to transcriptionally activate stemness genes CD44, Nanog, Sox2, and OCT4 leading to CSC renewal, and TGLI1 outcompetes with GLI1 for binding to target promoters. We next examined whether astrocyte-priming underlies TGLI1-mediated brain tropism and found that TGLI1-positive CSCs strongly activated and interacted with astrocytes in vitro and in vivo. These findings demonstrate, for the first time, that TGLI1 mediates breast cancer metastasis to the brain, in part, through promoting metastasis-initiating CSCs and activating astrocytes in BCBM microenvironment.
Collapse
Affiliation(s)
- Sherona R Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Tadas Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Noah R Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael Chan
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jimmy Ruiz
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Linda J Metheny-Barlow
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Roy Strowd
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marlyn Anguelov
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA. .,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
22
|
Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells. JOURNAL OF ONCOLOGY 2019; 2019:1740763. [PMID: 31467533 PMCID: PMC6699388 DOI: 10.1155/2019/1740763] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
The invasive capacity of GBM is one of the key tumoral features associated with treatment resistance, recurrence, and poor overall survival. The molecular machinery underlying GBM invasiveness comprises an intricate network of signaling pathways and interactions with the extracellular matrix and host cells. Among them, PI3k/Akt, Wnt, Hedgehog, and NFkB play a crucial role in the cellular processes related to invasion. A better understanding of these pathways could potentially help in developing new therapeutic approaches with better outcomes. Nevertheless, despite significant advances made over the last decade on these molecular and cellular mechanisms, they have not been translated into the clinical practice. Moreover, targeting the infiltrative tumor and its significance regarding outcome is still a major clinical challenge. For instance, the pre- and intraoperative methods used to identify the infiltrative tumor are limited when trying to accurately define the tumor boundaries and the burden of tumor cells in the infiltrated parenchyma. Besides, the impact of treating the infiltrative tumor remains unclear. Here we aim to highlight the molecular and clinical hallmarks of invasion in GBM.
Collapse
|
23
|
Liang W, Guo B, Ye J, Liu H, Deng W, Lin C, Zhong X, Wang L. Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Sci 2019; 110:2558-2572. [PMID: 31215106 PMCID: PMC6676100 DOI: 10.1111/cas.14103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Glioma, the most common human primary brain tumor, is characterized by invasive capabilities and angiogenesis. Vasorin (VASN), a transmembrane protein, is reported to be associated with vascular injury repair and is overexpressed in some human tumors. However, its role in tumor progression and angiogenesis in glioma is unknown. In this study, VASN was shown to be overexpressed in high‐grade gliomas, and the expression level correlated with tumor grade and microvessel density in glioma specimens. Glioma patients with high VASN expression had a shorter overall survival time. Knockdown of VASN in glioma cells by shRNA significantly inhibited the malignancy of glioma, including cell proliferation, colony formation, invasion, and sphere formation. Ectopic expression of VASN increased glioma progression in vitro. The expression of VASN correlated with the mesenchymal type of glioblastoma multiforme (GBM) subtyped by gene set enrichment analysis (GSEA). Our results showed that the concentration of VASN was increased in the conditioned medium (CM) from glioma cells with VASN overexpression, and the CM from glioma cells with knockdown or overexpressed VASN inhibited or promoted HUVEC migration and tubulogenesis in vitro, respectively. Glioma growth and angiogenesis were stimulated upon ectopic expression of VASN in vivo. The STAT3 and NOTCH pathways were found to be activated and inhibited by VASN overexpression. Our findings suggest that VASN stimulates tumor progression and angiogenesis in glioma, and, as such, represents a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Weiye Liang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Baoyin Guo
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Hui Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Wanying Deng
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Chenli Lin
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Krichevsky AM, Uhlmann EJ. Oligonucleotide Therapeutics as a New Class of Drugs for Malignant Brain Tumors: Targeting mRNAs, Regulatory RNAs, Mutations, Combinations, and Beyond. Neurotherapeutics 2019; 16:319-347. [PMID: 30644073 PMCID: PMC6554258 DOI: 10.1007/s13311-018-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant brain tumors are rapidly progressive and often fatal owing to resistance to therapies and based on their complex biology, heterogeneity, and isolation from systemic circulation. Glioblastoma is the most common and most aggressive primary brain tumor, has high mortality, and affects both children and adults. Despite significant advances in understanding the pathology, multiple clinical trials employing various treatment strategies have failed. With much expanded knowledge of the GBM genome, epigenome, and transcriptome, the field of neuro-oncology is getting closer to achieve breakthrough-targeted molecular therapies. Current developments of oligonucleotide chemistries for CNS applications make this new class of drugs very attractive for targeting molecular pathways dysregulated in brain tumors and are anticipated to vastly expand the spectrum of currently targetable molecules. In this chapter, we will overview the molecular landscape of malignant gliomas and explore the most prominent molecular targets (mRNAs, miRNAs, lncRNAs, and genomic mutations) that provide opportunities for the development of oligonucleotide therapeutics for this class of neurologic diseases. Because malignant brain tumors focally disrupt the blood-brain barrier, this class of diseases might be also more susceptible to systemic treatments with oligonucleotides than other neurologic disorders and, thus, present an entry point for the oligonucleotide therapeutics to the CNS. Nevertheless, delivery of oligonucleotides remains a crucial part of the treatment strategy. Finally, synthetic gRNAs guiding CRISPR-Cas9 editing technologies have a tremendous potential to further expand the applications of oligonucleotide therapeutics and take them beyond RNA targeting.
Collapse
Affiliation(s)
- Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA.
| | - Erik J Uhlmann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA
| |
Collapse
|
25
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
26
|
Kashyap T, Pramanik KK, Nath N, Mishra P, Singh AK, Nagini S, Rana A, Mishra R. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol 2018; 86:234-243. [PMID: 30409306 DOI: 10.1016/j.oraloncology.2018.09.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The cell-surface glycoprotein CD44 is an important oral cancer stem cell (OCSC) marker and plays significant role in oral squamous cell carcinoma (OSCC) aggressiveness, however, the regulation of CD44 is incompletely understood. METHODS In the present study, 145 fresh human OSCC tissue specimens, including 18 adjacent normal, 42 noninvasive (N0), 53 invasive tumor samples (N1-3) and 32 chemo-radiation resistant samples (RCRT), were included. The expression of CD44 standard (CD44s) and variants (CD44v4, CD44v6); the activation of pERK1/2, GSK3β, NICD (Notch) pathways; the cell viability; and the MMP-9/-2 activity were assessed using RT-PCR, immunohistochemistry, Western blotting, MTT assay and gelatin zymography. OSCC cell lines, including parental (SCC9/SCC4) and Cisplatin-resistant (CisR-SCC9/-SCC4) cells, were used. Knock down of CD44v4/CD44v6 (by siRNA) or inactivation of MAPK/PI3K pathways using specific PD98059/LY294002 was achieved for in vitro analysis of chemoresistance and invasion/migration. RESULTS Elevated CD44 variants were associated with overall OSCC progression, chemoresistance and invasion. Positive correlations were observed, mainly between the expression of CD44v4 and the activation of ERK1/2 causing chemoresistance, whereas CD44v6 expression and inactivation of GSK3β caused invasiveness of OSCC. Cisplatin resistant, CisR-SCC9/SCC4 cell lines showed OCSC properties. Inhibition of MEK/ERK1/2 by SMI or knock down (KD) of CD44v4 by siRNA reversed cisplatin-resistance, whereas blocking the PI3K/Akt/GSK3β pathway by SMI or KD of CD44v6 isoforms by respective siRNA diminished invasion/metastasis potential. CONCLUSION Collectively, our results demonstrated that CD44v4 expression is more linked with ERK1/2 activation and promote cisplatin resistance, whereas CD44v6 expression is associated primarily with PI3K/Akt/GSK3β activation and driving tumor invasion/migration.
Collapse
Affiliation(s)
- Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Kamdeo K Pramanik
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Nidhi Nath
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Abhay K Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago 840 S. Wood Street, Suite 601 Clinical Sciences Building, MC 958, Chicago, IL 60612 USA
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
27
|
Renfrow JJ, Soike MH, Debinski W, Ramkissoon SH, Mott RT, Frenkel MB, Sarkaria JN, Lesser GJ, Strowd RE. Hypoxia-inducible factor 2α: a novel target in gliomas. Future Med Chem 2018; 10:2227-2236. [PMID: 30089425 PMCID: PMC6479274 DOI: 10.4155/fmc-2018-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an important contributor to aggressive behavior and resistance mechanisms in glioblastoma. Upregulation of hypoxia inducible transcription factors (HIFs) is the primary adaptive cellular response to a hypoxic environment. While HIF1α has been widely studied in cancer, HIF2α offers a potentially more specific and appealing target in glioblastoma given expression in glioma stem cells and not normal neural progenitors, activation in states of chronic hypoxia and expression that correlates with glioma patient survival. A first-in-class HIF2α inhibitor, PT2385, is in clinical trials for renal cell carcinoma, and provides the first opportunity to therapeutically target this important pathway in glioma biology.
Collapse
Affiliation(s)
- Jaclyn J Renfrow
- Department of Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Michael H Soike
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Shakti H Ramkissoon
- Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, NC27157, USA
- Foundation Medicine, Inc., Morrisville, NC 27560, USA
| | - Ryan T Mott
- Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, NC27157, USA
- Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Mark B Frenkel
- Department of Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Glenn J Lesser
- Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Hematology & Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Roy E Strowd
- Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Internal Medicine, Section on Hematology & Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|