1
|
Liu J, Pei C, Jia N, Han Y, Zhao S, Shen Z, Huang D, Chen Q, Wu Y, Shi S, Wang Y, He Y, Wang Z. Preconditioning with Ginsenoside Rg3 mitigates cardiac injury induced by high-altitude hypobaric hypoxia exposure in mice by suppressing ferroptosis through inhibition of the RhoA/ROCK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118861. [PMID: 39326813 DOI: 10.1016/j.jep.2024.118861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng has historically been utilized as a conventional herbal remedy and dietary supplement to enhance physical stamina and alleviate fatigue. The primary active component of Ginseng, Ginsenoside Rg3 (GS-Rg3), possesses diverse pharmacological properties including immune modulation and anti-inflammatory effects. Furthermore, GS-Rg3 has demonstrated efficacy in mitigating tissue and organ damage associated with metabolic disorders such as hypertension, hyperglycemia, and hyperlipidemia. Nevertheless, its potential impact on high-altitude cardiac injury (HACI) remains insufficiently explored. AIM OF THE STUDY The aim of this study was to examine the potential cardioprotective effects of Ginsenoside Rg3, and to investigate how Ginsenoside Rg3 preconditioning can enhance high-altitude cardiac injury by inhibiting the RhoA/ROCK pathway and ferroptosis in cardiac tissue. The findings of this study may contribute to the development of novel therapeutic strategies using traditional Chinese medicine for high-altitude cardiac injury, based on experimental evidence. MATERIALS AND METHODS A hypobaric hypoxia chamber was employed to simulate hypobaric hypoxia conditions equivalent to an altitude of 6000 m. Through a randomization process, groups of six male mice were assigned to receive either saline, Ginsenoside Rg3 at doses of 15 mg/kg or 30 mg/kg, or lysophosphatidic acid (LPA) at 1 mg/kg. The impact of Ginsenoside Rg3 on high altitude-induced arrhythmias was evaluated using electrocardiography. Cardiac pathology sections stained with hematoxylin and eosin were evaluated for damage, with the extent of cardiomyocyte damage observed via transmission electron microscopy. The impact of Ginsenoside Rg3 on high-altitude cardiac injury was investigated through analysis of serum biomarkers for cardiac injury (CK-MB, BNP), inflammatory cytokines (TNF, IL-6, IL-1β), reactive oxygen species (ROS) and glutathione (GSH). The expression levels of hypoxia and hypoxia-related proteins in myocardial tissues from each experimental group were assessed using Western blot analysis. Following a review of the existing literature, the traditional regulatory mechanisms of ferroptosis were examined. Immunofluorescence staining of cardiac tissues and Western blotting techniques were utilized to investigate the impact of Ginsenoside Rg3 on cardiomyocyte ferroptosis through the RhoA/ROCK signaling pathway under conditions of hypobaric hypoxia exposure. RESULTS Pre-treatment with Ginsenoside Rg3 improved high altitude-induced arrhythmias, reduced cardiomyocyte damage, decreased cardiac injury biomarkers and inflammatory cytokines, and lowered the expression of hypoxia-related proteins in myocardial tissues. Both Western blotting and immunofluorescence staining of cardiac tissues demonstrated that exposure to high-altitude hypobaric hypoxia results in elevated expression of ferroptosis and proteins related to the RhoA/ROCK pathway. Experimental validation corroborated that the role of the RhoA/ROCK signaling pathway in mediating ferroptosis. CONCLUSIONS The findings of our study suggest that preconditioning with Ginsenoside Rg3 may attenuate cardiac injury caused by high-altitude hypobaric hypoxia exposure in mice by inhibiting ferroptosis through the suppression of the RhoA/ROCK signaling pathway. These findings contribute to the current knowledge of Ginsenoside Rg3 and high-altitude cardiac injury, suggesting that Ginsenoside Rg3 shows potential as a therapeutic agent for high-altitude cardiac injury.
Collapse
Affiliation(s)
- Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yue Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Sijing Zhao
- School of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, No.82 Da-xue-cheng Road, Chongqing, 401331, China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Qian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| |
Collapse
|
2
|
Chen X, Han D, Zeng Y, Li H, Wang X, Huang Z, Yang L, Wagenaar GTM, Lin B, Yang C. Inhibition of lysophosphatidic acid receptor 2 attenuates neonatal chronic lung disease in mice by preserving vascular and alveolar development. Eur J Pharmacol 2024; 985:177120. [PMID: 39522686 DOI: 10.1016/j.ejphar.2024.177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
AIM Bronchopulmonary dysplasia (BPD) is a common morbidity in extremely premature infants. Previous studies demonstrated the important role of lysophosphatidic acid (LPA) in inflammation in BPD. However, the role of LPA and its receptors in hyperoxia-induced vascular malformations in BPD remains to be elucidated. METHODS AND RESULTS Elevated plasma LPA levels were observed in mice with BPD compared to controls (792 vs. 607 ng/mL, p < 0.05). Inhibition of LPA signaling protected against hyperoxia-induced lung injury in neonatal mice, demonstrated by a 2.8-fold increase in pulmonary vascular density and a 14% reduction in alveolar enlargement. In vitro studies showed that LPA suppressed tube formation in human umbilical vein endothelial cells (HUVECs) by approximately 50%. LPA receptor 2 (LPA2) was identified as a functional LPA receptor in primary endothelial cells from the lungs of hyperoxic mice and in HUVECs under hyperoxic conditions. The LPA2 antagonist H2L5186303 enhanced the tube formation ability of HUVECs exposed to LPA, both under normoxia (4-fold) and hyperoxia (5-fold). Moreover, H2L5186303 significantly protected against hyperoxia-induced vascular malformation (2-fold) and improved alveolarization in neonatal mice (12% decrease in mean linear intercept, MLI). Early growth response 1 (EGR1) was characterized as a downstream target of LPA2, silencing EGR1 restored tube formation in HUVECs exposed to LPA and hyperoxia. CONCLUSIONS Our in vitro and in vivo findings demonstrate that the inhibition of LPA/LPA2 signaling mitigates hyperoxia-induced pulmonary vascular malformations, suggesting the LPA/LPA2-dependent signaling pathway has therapeutic potential for extremely premature infants with BPD.
Collapse
Affiliation(s)
- Xueyu Chen
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China; Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Dongshan Han
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Yali Zeng
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Huitao Li
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Zilu Huang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Lingling Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | | | - Bingchun Lin
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China.
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China; Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China.
| |
Collapse
|
3
|
Yun CC, Han Y, McConnell B. Lysophosphatidic Acid Signaling in the Gastrointestinal System. Cell Mol Gastroenterol Hepatol 2024; 18:101398. [PMID: 39233124 PMCID: PMC11532463 DOI: 10.1016/j.jcmgh.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia.
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Beth McConnell
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Vahldieck C, Löning S, Hamacher C, Fels B, Rudzewski B, Nickel L, Weil J, Nording H, Baron L, Kleingarn M, Karsten CM, Kusche-Vihrog K. Dysregulated complement activation during acute myocardial infarction leads to endothelial glycocalyx degradation and endothelial dysfunction via the C5a:C5a-Receptor1 axis. Front Immunol 2024; 15:1426526. [PMID: 39055717 PMCID: PMC11269135 DOI: 10.3389/fimmu.2024.1426526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Complement-mediated damage to the myocardium during acute myocardial infarction (AMI), particularly the late components of the terminal pathway (C5-convertase and C5b-9), have previously been characterized. Unfortunately, only few studies have reported a direct association between dysregulated complement activation and endothelial function. Hence, little attention has been paid to the role of the anaphylatoxin C5a. The endothelial glycocalyx (eGC) together with the cellular actin cortex provide a vasoprotective barrier against chronic vascular inflammation. Changes in their nanomechanical properties (stiffness and height) are recognized as hallmarks of endothelial dysfunction as they correlate with the bioavailability of vasoactive substances, such as nitric oxide (NO). Here, we determined how the C5a:C5aR1 axis affects the eGC and endothelial function in AMI. Methods Samples of fifty-five patients with ST-elevation myocardial infarction (STEMI) vs. healthy controls were analyzed in this study. eGC components and C5a levels were determined via ELISA; NO levels were quantified chemiluminescence-based. Endothelial cells were stimulated with C5a or patient sera (with/without C5a-receptor1 antagonist "PMX53") and the nanomechanical properties of eGC quantified using the atomic force microscopy (AFM)-based nanoindentation technique. To measure actin cytoskeletal tension regulator activation (RhoA and Rac1) G-LISA assays were applied. Vascular inflammation was examined by quantifying monocyte-endothelium interaction via AFM-based single-cell-force spectroscopy. Results Serum concentrations of eGC components and C5a were significantly increased during STEMI. Serum and solely C5a stimulation decreased eGC height and stiffness, indicating shedding of the eGC. C5a enhanced RhoA activation, resulting in increased cortical stiffness with subsequent reduction in NO concentrations. Monocyte adhesion to the endothelium was enhanced after both C5a and stimulation with STEMI serum. eGC degradation- and RhoA-induced cortical stiffening with subsequent endothelial dysfunction were attenuated after administering PMX53. Conclusion This study demonstrates that dysregulated C5a activation during AMI results in eGC damage with subsequent endothelial dysfunction and reduced NO bioavailability, indicating progressively developing vascular inflammation. This could be prevented by antagonizing C5aR1, highlighting the role of the C5a:C5a-Receptor1 axis in vascular inflammation development and endothelial dysfunction in AMI, offering new therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, Luebeck, Germany
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | | | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | | | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Henry Nording
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
- Cardioimmunology Group, Medical Clinic II, University Heart Center Luebeck, Luebeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Luebeck, Luebeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Luebeck, Luebeck, Germany
| | | | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
5
|
Qi Y, Wang Y, Yuan J, Xu Y, Pan H. Unveiling the therapeutic promise: exploring Lysophosphatidic Acid (LPA) signaling in malignant bone tumors for novel cancer treatments. Lipids Health Dis 2024; 23:204. [PMID: 38943207 PMCID: PMC11212261 DOI: 10.1186/s12944-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Yichen Qi
- Huankui Academy, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Jinping Yuan
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yufei Xu
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Haili Pan
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China.
| |
Collapse
|
6
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Nishikiori N, Umetsu A, Ogawa T, Furuhashi M, Ohguro H. Lysophosphatidic Acid Modulates TGF-β2-Induced Biological Phenotype in Human Conjunctival Fibroblasts. Life (Basel) 2024; 14:770. [PMID: 38929752 PMCID: PMC11204428 DOI: 10.3390/life14060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although lysophosphatidic acid (LPA) is known to have multiple pathophysiological roles, its contributions to ocular tissues, especially conjunctival fibrogenesis, remain to be elucidated. METHODS To study this issue, the effects of LPA on transforming growth factor-β2 (TGF-β2)-induced fibrogenesis of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblasts (HconF) were examined by the following analyses: (1) planar proliferation determined by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability measurements, (2) real-time metabolic analyses, (3) measurements of the size and stiffness of 3D spheroids, and (4) mRNA expression of extracellular matrix (ECM) molecules and their modulators. RESULTS LPA had no effect on TGF-β2-induced increase in the planar proliferation of HconF cells. LPA induced a more quiescent metabolic state in 2D HconF cells, but this metabolic suppression by LPA was partially blunted in the presence of TGF-β2. In contrast, LPA caused a substantial decrease in the hardness of 3D HconF spheroids independently of TGF-β2. In agreement with these different LPA-induced effects between 2D and 3D cultured HconF cells, mRNA expressions of ECM and their modulators were differently modulated. CONCLUSION The findings that LPA induced the inhibition of both TGF-β2-related and -unrelated subepithelial proliferation of HconF cells may be clinically applicable.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| |
Collapse
|
7
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
8
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Matsui Y, Muramatsu F, Nakamura H, Noda Y, Matsumoto K, Kishima H, Takakura N. Brain-derived endothelial cells are neuroprotective in a chronic cerebral hypoperfusion mouse model. Commun Biol 2024; 7:338. [PMID: 38499610 PMCID: PMC10948829 DOI: 10.1038/s42003-024-06030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.
Collapse
Affiliation(s)
- Yuichi Matsui
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimi Noda
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kinnosuke Matsumoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
10
|
An X, Zhong C, Han B, Chen E, Zhu Q, Yang Y, Li R, Yang R, Zha D, Han Y. Lysophosphatidic acid exerts protective effects on HEI-OC1 cells against cytotoxicity of cisplatin by decreasing apoptosis, excessive autophagy, and accumulation of ROS. Cell Death Discov 2023; 9:415. [PMID: 37968255 PMCID: PMC10651903 DOI: 10.1038/s41420-023-01706-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an active phospholipid signaling molecule that binds to six specific G protein-coupled receptors (LPA1-6) on the cell surface and exerts a variety of biological functions, including cell migration and proliferation, morphological changes, and anti-apoptosis. The earliest study from our group demonstrated that LPA treatment could restore cochlear F-actin depolymerization induced by noise exposure, reduce hair cell death, and thus protect hearing. However, whether LPA could protect against cisplatin-induced ototoxicity and which receptors play the major role remain unclear. To this end, we integrated the HEI-OC1 mouse cochlear hair cell line and zebrafish model, and found that cisplatin exposure induced a large amount of reactive oxygen species accumulation in HEI-OC1 cells, accompanied by mitochondrial damage, leading to apoptosis and autophagy. LPA treatment significantly attenuated autophagy and apoptosis in HEI-OC1 cells after cisplatin exposure. Further investigation revealed that all LPA receptors except LPA3 were expressed in HEI-OC1 cells, and the mRNA expression level of LPA1 receptor was significantly higher than that of other receptors. When LPA1 receptor was silenced, the protective effect of LPA was reduced and the proportion of apoptosis cells was increased, indicating that LPA-LPA1 plays an important role in protecting HEI-OC1 cells from cisplatin-induced apoptosis. In addition, the behavioral trajectory and in vivo fluorescence imaging results showed that cisplatin exposure caused zebrafish to move more actively, and the movement speed and distance were higher than those of the control and LPA groups, while LPA treatment reduced the movement behavior. Cisplatin caused hair cell death and loss in zebrafish lateral line, and LPA treatment significantly protected against hair cell death and loss. LPA has a protective effect on hair cells in vitro and in vivo against the cytotoxicity of cisplatin, and its mechanism may be related to reducing apoptosis, excessive autophagy and ROS accumulation.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Cuiping Zhong
- The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730050, Gansu Province, China
| | - Bang Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Erfang Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Qingwen Zhu
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Yang Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Rui Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Runqin Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
11
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
12
|
Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma. Nat Commun 2023; 14:435. [PMID: 36702831 PMCID: PMC9880004 DOI: 10.1038/s41467-023-35957-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immunosuppression. Here, we develop a nanostructure named Nano-reshaper to co-encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.
Collapse
|
13
|
Nakagawa T, Kijima N, Hasegawa K, Ikeda S, Yaga M, Wibowo T, Tachi T, Kuroda H, Hirayama R, Okita Y, Kinoshita M, Kagawa N, Kanemura Y, Hosen N, Kishima H. Identification of glioblastoma-specific antigens expressed in patient-derived tumor cells as candidate targets for chimeric antigen receptor T cell therapy. Neurooncol Adv 2022; 5:vdac177. [PMID: 36601313 PMCID: PMC9798403 DOI: 10.1093/noajnl/vdac177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background New therapies for glioblastoma (GBM) are urgently needed because the disease prognosis is poor. Chimeric antigen receptor (CAR)-T cell therapy that targets GBM-specific cell surface antigens is a promising therapeutic strategy. However, extensive transcriptome analyses have uncovered few GBM-specific target antigens. Methods We established a library of monoclonal antibodies (mAbs) against a tumor cell line derived from a patient with GBM. We identified mAbs that reacted with tumor cell lines from patients with GBM but not with nonmalignant human brain cells. We then detected the antigens they recognized using expression cloning. CAR-T cells derived from a candidate mAb were generated and tested in vitro and in vivo. Results We detected 507 mAbs that bound to tumor cell lines from patients with GBM. Among them, E61 and A13 reacted with tumor cell lines from most patients with GBM, but not with nonmalignant human brain cells. We found that B7-H3 was the antigen recognized but E61. CAR-T cells were established using the antigen-recognition domain of E61-secreted cytokines and exerted cytotoxicity in co-culture with tumor cells from patients with GBM. Conclusions Cancer-specific targets for CAR-T cells were identified using a mAb library raised against primary GBM tumor cells from a patient. We identified a GBM-specific mAb and its antigen. More mAbs against various GBM samples and novel target antigens are expected to be identified using this strategy.
Collapse
Affiliation(s)
- Tomoyoshi Nakagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Kijima
- Corresponding Authors: Noriyuki Kijima, MD, PhD, Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 5650871, Osaka, Japan ()
| | - Kana Hasegawa
- Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shunya Ikeda
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Moto Yaga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tansri Wibowo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Naoki Hosen
- Naoki Hosen, MD, PhD, Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 5650871, Osaka, Japan ()
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Wang H, Li M, St Onge CM, Fuss B, Zhang Y. Elucidating the binding mechanism of LPA species and analogs in an LPA 4 receptor homology model. J Mol Graph Model 2022; 116:108274. [PMID: 35868118 DOI: 10.1016/j.jmgm.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid receptor 4 (LPA4) has emerged as a potential therapeutic target for the treatment of a variety of diseases, including cancer and obesity-induced diabetes, but its structure remains to be revealed. In the present work, a homology model of LPA4 was built for studying the binding mechanism of LPA species and analogs. Then five selected LPA species and analogs with structural variations in their phosphate groups, substitutions on the glycerol backbone, and fatty acyl chains were docked into the LPA4 model, followed by molecular dynamics simulations and energy analyses. The computational results revealed that the aliphatic residues located at the vertical cleft of LPA4 may form a hydrophobic environment for the fatty acyl moiety of LPA species and their analogs. Meanwhile, the positively charged residues in the central cavity of LPA4 may form ionic interactions with the negatively charged hydrophilic head group of LPA species and their analogs. In addition, it was noted that a different binding mode of the hydrophilic head group in each species with the central cavity of the LPA4 might lead to a special rearrangement of the fatty acyl moiety. Taken together, these results may facilitate understanding of the activation mechanism of LPA4 and help design selective ligands to modulate its function for therapeutic purposes.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA, 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
15
|
Pei J, Cai L, Wang F, Xu C, Pei S, Guo H, Sun X, Chun J, Cong X, Zhu W, Zheng Z, Chen X. LPA 2 Contributes to Vascular Endothelium Homeostasis and Cardiac Remodeling After Myocardial Infarction. Circ Res 2022; 131:388-403. [PMID: 35920162 DOI: 10.1161/circresaha.122.321036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood. OBJECTIVES To study the unknown role of LPA and its receptors in heart during MI. METHODS AND RESULTS In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout (Lpar2-KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2-KO mice. Furthermore, Lpar2-KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus-Lpar2 and pharmacologically activated LPA2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling. CONCLUSIONS Our results indicate that endothelial LPA-LPA2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.
Collapse
Affiliation(s)
- Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.P., Z.Z.)
| | - Lin Cai
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (L.C.)
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengqiang Pei
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Guo
- Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (J.C.)
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, Department of Pathology, University of Utah, Salt Lake City (W.Z.)
| | - Zhe Zheng
- Department of Cardiovascular Surgery (H.G., X.S., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.P., Z.Z.)
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease (J.P., L.C., C.X., S.P., X.C., Z.Z.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Center of Laboratory Medicine (F.W., X. Cong, X. Chen), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Kurano M, Sakai E, Yatomi Y. Understanding modulations of lipid mediators in cancer using a murine model of carcinomatous peritonitis. Cancer Med 2022; 11:3491-3507. [PMID: 35315587 PMCID: PMC9487885 DOI: 10.1002/cam4.4699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have investigated the possible involvement of eicosanoids, lysophospholipids, and sphingolipids in cancer. We considered that comprehensive measurement of these lipid mediators might provide a better understanding of their involvement in the pathogenesis of cancer. In the present study, we attempted to elucidate the modulations of sphingolipids, lysophospholipids, diacyl‐phospholipids, eicosanoids, and related mediators in cancer by measuring their levels simultaneously by a liquid chromatography‐mass spectrometry method in a mouse model of carcinomatous peritonitis. Methods We investigated the modulations of these lipids in both ascitic fluid and plasma specimens obtained from Balb/c mice injected intraperitoneally with Colon‐26 cells, as well as the modulations of the lipid contents in the cancer cells obtained from the tumor xenografts. Results The results were as follows: the levels of sphingosine 1‐phosphate were increased, while those of lysophosphatidic acid (LysoPA), especially unsaturated long‐chain LysoPA, tended to be increased, in the ascitic fluid. Our findings suggested that ceramides, sphingomyelin, and phosphatidylcholine, their precursors, were supplied by both de novo synthesis and from elsewhere in the body. The levels of lysophosphatidylserine (LysoPS), lysophosphatidylinositol, lysophosphatidylglycerol, and lysophosphatidylethanolamine were also increased in the ascitic fluid, while those of phosphatidylserine (PS), a precursor of LysoPS, were markedly decreased. The levels of arachidonic acid derivatives, especially PGE2‐related metabolites, were increased, while the plasma levels of eicosanoids and related mediators were decreased. Comprehensive statistical analyses mainly identified PS in the ascitic fluid and eicosanoids in the plasma as having highly negative predictive values for cancer. Conclusions The results proposed many unknown associations of lipid mediators with cancer, underscoring the need for further studies. In particular, the PS/LysoPS pathway could be a novel therapeutic target, and plasma eicosanoids could be useful biomarkers for cancer.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
17
|
Endothelial cell-derived Apelin inhibits tumor growth by altering immune cell localization. Sci Rep 2021; 11:14047. [PMID: 34234274 PMCID: PMC8263715 DOI: 10.1038/s41598-021-93619-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The Apelin/APJ signalling pathway, involved in multiple physiological and pathological processes, has been attracting increasing interest recently. In our previous study, Apelin overexpression in colon26 tumor cells suppressed tumor growth by inducing vascular maturation. Here, we found that MC38 and LLC tumor growth were greater in the absence of Apelin than in wild-type (WT) mice, suggesting that Apelin acts as a tumor suppressor. Consistent with this, treating WT mice with [Pyr1]Apelin-13 inhibited tumor growth. In MC38 tumors, only endothelial cells (ECs) strongly express APJ, a cognate receptor for Apelin, indicating that EC-derived Apelin might regulate tumor formation in an autocrine manner. Comparing with WT mice, larger numbers of vessels with narrower diameters were observed in tumors of Apelin knockout mice and lack of Apelin enhanced tumor hypoxia. Investigating immune cells in the tumor revealed that [Pyr1]Apelin-13 infusion induced the accumulation of CD8+ and CD4+ T cells in central areas. Moreover, RNA-sequencing analysis showed that Apelin induces chemokine CCL8 expression in ECs. Thus, enhancing anti-tumor immunity might be one of the mechanisms by which Apelin is involved in tumor growth. Our result indicated that increased CCL8 expression might induce CD8 + T cells infiltration into tumor and tumor inhibition.
Collapse
|
18
|
Lysophosphatidic Acid Receptor Antagonists and Cancer: The Current Trends, Clinical Implications, and Trials. Cells 2021; 10:cells10071629. [PMID: 34209775 PMCID: PMC8306951 DOI: 10.3390/cells10071629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases, idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with various diseases, including cancer.
Collapse
|
19
|
Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, Kanagarla A, Mathew B. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem 2021; 222:113574. [PMID: 34126459 DOI: 10.1016/j.ejmech.2021.113574] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.
Collapse
Affiliation(s)
- Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - H S Akshatha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Abhinav Kanagarla
- Department of Pharmaceutical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
20
|
VAV1 mutations contribute to development of T-cell neoplasms in mice. Blood 2021; 136:3018-3032. [PMID: 32992343 DOI: 10.1182/blood.2020006513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Activating mutations in the Vav guanine nucleotide exchange factor 1 (VAV1) gene are reported in various subtypes of mature T-cell neoplasms (TCNs). However, oncogenic activities associated with VAV1 mutations in TCNs remain unclear. To define them, we established transgenic mice expressing VAV1 mutants cloned from human TCNs. Although we observed no tumors in these mice for up to a year, tumors did develop in comparably aged mice on a p53-null background (p53-/-VAV1-Tg), and p53-/-VAV1-Tg mice died with shorter latencies than did p53-null (p53-/-) mice. Notably, various TCNs with tendency of maturation developed in p53-/-VAV1-Tg mice, whereas p53-/- mice exhibited only immature TCNs. Mature TCNs in p53-/-VAV1-Tg mice mimicked a subtype of human peripheral T-cell lymphoma (PTCL-GATA3) and exhibited features of type 2 T helper (Th2) cells. Phenotypes seen following transplantation of either p53-/-VAV1 or p53-/- tumor cells into nude mice were comparable, indicating cell-autonomous tumor-initiating capacity. Whole-transcriptome analysis showed enrichment of multiple Myc-related pathways in TCNs from p53-/-VAV1-Tg mice relative to p53-/- or wild-type T cells. Remarkably, amplification of the Myc locus was found recurrently in TCNs of p53-/-VAV1-Tg mice. Finally, treatment of nude mice transplanted with p53-/-VAV1-Tg tumor cells with JQ1, a bromodomain inhibitor that targets the Myc pathway, prolonged survival of mice. We conclude that VAV1 mutations function in malignant transformation of T cells in vivo and that VAV1-mutant-expressing mice could provide an efficient tool for screening new therapeutic targets in TCNs harboring these mutations.
Collapse
|
21
|
Takakura N. Vascular reconstitution in the tumor for more effective tumor immunotherapy. Cancer Sci 2021; 112:1348-1356. [PMID: 33587826 PMCID: PMC8019202 DOI: 10.1111/cas.14854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
It has been widely accepted that the regulation of the tumor microenvironment is an important strategy in cancer treatment. Particularly, control of the tumor vasculature has been suggested to be critical for antitumor immunotherapy. Effectiveness of cancer immunotherapy depends on the quality and quantity of immune cells infiltrating into tumor tissues, which may be affected by the status of the tumor vasculature. Under physiological conditions, immune cells migrate from the intravascular lumen into the parenchyma especially by passing through the vascular wall of venulae. Extravasation of immune cells is induced from venulae where endothelial cells (ECs) are fully covered with pericytes from the basal side. Interaction of pericytes with ECs contributes to immune cell extravasation by several steps, ie, adhesion of immune cells to intraluminal ECs, transmigration, and chemotaxis of immune cells. Blood vessels are structurally immature and non‐functional in tumors, and therefore, induction of maturation in the tumor vasculature is a promising strategy for effective cancer therapies and is relevant not only for immune cell migration but also drug delivery.
Collapse
Affiliation(s)
- Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Anti-cancer strategies targeting the autotaxin-lysophosphatidic acid receptor axis: is there a path forward? Cancer Metastasis Rev 2021; 40:3-5. [PMID: 33454844 PMCID: PMC7897189 DOI: 10.1007/s10555-021-09955-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
An in vivo model allowing continuous observation of human vascular formation in the same animal over time. Sci Rep 2021; 11:745. [PMID: 33436931 PMCID: PMC7804448 DOI: 10.1038/s41598-020-80497-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.
Collapse
|
25
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Xie Y, Wang X, Wu X, Tian L, Zhou J, Li X, Wang B. Lysophosphatidic acid receptor 4 regulates osteogenic and adipogenic differentiation of progenitor cells via inactivation of RhoA/ROCK1/β-catenin signaling. Stem Cells 2019; 38:451-463. [PMID: 31778241 DOI: 10.1002/stem.3128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Lijie Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaoxia Li
- College of Basic Medical Sciences; Tianjin Medical University; Tianjin People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| |
Collapse
|
27
|
Zhou Y, Little PJ, Ta HT, Xu S, Kamato D. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204:107404. [DOI: 10.1016/j.pharmthera.2019.107404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
|
28
|
Zhang M, Liu K, Wang M. Development of cancer immunotherapy based on PD-1/PD-L1 pathway blockade. RSC Adv 2019; 9:33903-33911. [PMID: 35528929 PMCID: PMC9073714 DOI: 10.1039/c9ra04590b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
Programmed death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy has achieved considerable success in various tumours. However, only a fraction of patients benefit from its clinical application, and some patients might be suffer from tumour resistance against PD-1/PD-L1 blockade therapy after the original response. In this review, we summarized the main reasons that caused the low response rate of PD-/PD-L1 blockade therapy: firstly, the off-target of PD-1/PD-L1 blocking agents, which is also the main factor of the side effect of autoimmune disorders; secondly, the insufficient infiltration of T cells in a tumour microenvironment; thirdly, the low immunogenicity of tumor cells; fourth, other immunosuppressive components impairing the therapeutic efficacy of the immunotherapy based on the PD-/PD-L1 blockade, and introducing some updated the delivery system of PD-1/PD-L1 blocking agents and the combination therapy based on PD-1/PD-L1 inhibitors and other therapeutics that can complement and promote each other to achieve improved immune response.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
| | - Kehai Liu
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
- University Hong Kong, School of Biological Sciences Pokfulam Road Hong Kong 999077 China
| |
Collapse
|
29
|
Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics 2019; 9:8073-8090. [PMID: 31754382 PMCID: PMC6857053 DOI: 10.7150/thno.37198] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
The use of nanomedicine for cancer treatment takes advantage of its preferential accumulation in tumors owing to the enhanced permeability and retention (EPR) effect. The development of cancer nanomedicine has promised highly effective treatment options unprecedented by standard therapeutics. However, the therapeutic efficacy of passively targeted nanomedicine is not always satisfactory because it is largely influenced by the heterogeneity of the intensity of the EPR effect exhibited within a tumor, at different stages of a tumor, and among individual tumors. In addition, limited data on EPR effectiveness in human hinders further clinical translation of nanomedicine. This unsatisfactory therapeutic outcome in mice and humans necessitates novel approaches to improve the EPR effect. This review focuses on current attempts at overcoming the limitations of traditional EPR-dependent nanomedicine by incorporating supplementary strategies, such as additional molecular targeting, physical alteration, or physiological remodeling of the tumor microenvironment. This review will provide valuable insight to researchers who seek to overcome the limitations of relying on the EPR effect alone in cancer nanomedicine and go "beyond the EPR effect".
Collapse
Affiliation(s)
- Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yongwhan Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyeyoun Chang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Fan Y, Mu J, Huang M, Imani S, Wang Y, Lin S, Fan J, Wen Q. Epigenetic identification of ADCY4 as a biomarker for breast cancer: an integrated analysis of adenylate cyclases. Epigenomics 2019; 11:1561-1579. [PMID: 31584294 DOI: 10.2217/epi-2019-0207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To explore the role of adenylyl cyclase isoforms and its epigenetics in cancer. Materials & methods: Adenylyl cyclase expression profiles, epigenetic alterations, prognostic value and molecular networks were assessed by use of public omics datasets. Results: ADCY4 was significantly downregulated in breast cancer. This downregulation was associated with promoter hypermethylation. High ADCY4 expression was correlated with better survival of patients with breast cancer and its different intrinsic subtypes and tumor stages. ADCY4 was shown to be strongly associated with G protein coupled receptors and the downstream cAMP signaling pathway, which was also significantly enriched in newly identified lysophosphatidic acid receptor 4 and glucagon-like peptide-1. Conclusion: ADCY4 may be used as an epigenetic biomarker for breast cancer, as well as a possible target for therapy.
Collapse
Affiliation(s)
- Yu Fan
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Mingquan Huang
- Breast Surgery Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Saber Imani
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Yu Wang
- Health Examination Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Sheng Lin
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Juan Fan
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Qinglian Wen
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| |
Collapse
|
31
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
32
|
Yang L, Kraemer M, Fang XF, Angel PM, Drake RR, Morris AJ, Smyth SS. LPA receptor 4 deficiency attenuates experimental atherosclerosis. J Lipid Res 2019; 60:972-980. [PMID: 30796085 PMCID: PMC6495174 DOI: 10.1194/jlr.m091066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The widely expressed lysophosphatidic acid (LPA) selective receptor 4 (LPAR4) contributes to vascular development in mice and zebrafish. LPAR4 regulates endothelial permeability, lymphocyte migration, and hematopoiesis, which could contribute to atherosclerosis. We investigated the role of LPAR4 in experimental atherosclerosis elicited by adeno-associated virus expressing PCSK9 to lower LDL receptor levels. After 20 weeks on a Western diet, cholesterol levels and lipoprotein distribution were similar in WT male and Lpar4Y/- mice (P = 0.94). The atherosclerotic lesion area in the proximal aorta and arch was ∼25% smaller in Lpar4Y/- mice (P = 0.009), and less atherosclerosis was detected in Lpar4Y/- mice at any given plasma cholesterol. Neutral lipid accumulation in aortic root sections occupied ∼40% less area in Lpar4Y/- mice (P = 0.001), and CD68 expression was ∼25% lower (P = 0.045). No difference in α-smooth muscle actin staining was observed. Bone marrow-derived macrophages isolated from Lpar4Y/- mice displayed significantly increased upregulation of the M2 marker Arg1 in response to LPA compared with WT cells. In aortic root sections from Lpar4Y/- mice, heightened M2 "repair" macrophage marker expression was detected by CD206 staining (P = 0.03). These results suggest that LPAR4 may regulate the recruitment of specific sets of macrophages or their phenotypic switching in a manner that could influence the development of atherosclerosis.
Collapse
Affiliation(s)
- Liping Yang
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Maria Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Xianjun Frank Fang
- Department of Biochemistry and Molecular Biology VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511.
| |
Collapse
|