1
|
Miao N, Kang Z, Wang Z, Yu W, Liu T, Kong LZ, Zheng Y, Ding C, Zhang Z, Zhong C, Fang Q, Li K. Mitochondrial reactive oxygen species promote cancer metastasis and tumor microenvironment immunosuppression through gasdermin D. Cell Death Discov 2025; 11:219. [PMID: 40324993 PMCID: PMC12053750 DOI: 10.1038/s41420-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025] Open
Abstract
Although recent research has established that gasdermin D (GSDMD), a factor that drives pyroptosis, is essential for cell death and inflammation, its involvement in cancer metastasis has yet to be elucidated. In this study, GSDMD was significantly increased in lung neutrophils at the metastatic stage from a murine orthotropic 4T1 breast cancer model. Moreover, the N terminal domain from cleaved GSDMD exhibited a positive correlation with increased mitochondrial reactive oxygen species (mROS) and serum high mobility group box 1 (HMGB-1) levels. Mechanistically, mROS inhibition significantly suppressed GSDMD-N oligomerization and pore formation. In addition, the activation of GSDMD significantly enhanced the formation of neutrophil extracellular traps (NETs) following treatment with Cathepsin C. Within a murine orthotopic breast cancer model using 4T1 cell line, the inhibition of GSDMD through the application of LDC7559 significantly attenuated the metastatic spread of breast cancer to the lung. In addition, knockout of GSDMD reduced lung metastasis in E0771 intravenous injection murine model. Furthermore, inhibition of GSDMD reduced the number of myeloid derived suppressor cells (MDSC) in the metastatic lung of breast cancer mouse model, while concurrently increasing both the percentage and total cell count of CD8+ T cells, suggesting that mitochondrial dysfunction-dependent GSDMD activation promotes tumor microenvironment immunosuppression and NETs. GSDMD represents a promising therapeutic target for mitigating the metastatic progression of breast cancer to the lung.
Collapse
Affiliation(s)
- Naijun Miao
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengchun Kang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhuning Wang
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Ting Liu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling-Zhijie Kong
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Ying Zheng
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Changli Ding
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Zhiyong Zhang
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Chen Zhong
- Department of Medical Oncology, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan, 250031, Shandong, China.
| | - Qingliang Fang
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China.
| |
Collapse
|
2
|
Li YL, Chen CH, Lai YS, Pan MR, Hung WC. Increased blood CSF3R + myeloid-derived suppressor cell is a predictor for breast cancer recurrence. Am J Cancer Res 2024; 14:3171-3185. [PMID: 39005677 PMCID: PMC11236774 DOI: 10.62347/mukd2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection of cancer recurrence using specific biomarkers remains a clinically unmet need, although methodologies for monitoring tumor markers, cell-free DNA, and circulating tumor cells have been established for decades. Tumor recurrence develops in metastatic or dormant cancer cells under continuous immune surveillance. Alterations in the population and function of immune cells may contribute to cancer recurrence. Here, we utilized an animal model to imitate breast tumor recurrence after surgical resection and investigated the abundance and gene expression profiles of immune cells using NanoString analysis. Bioinformatic analysis of a published single-cell RNA sequencing database of myeloid-derived suppressor cells (MDSCs) was performed to identify common targets between the two studies. Identified biomarkers were validated using human peripheral blood mononuclear cell (PBMC) datasets. The inhibitory effect of MDSCs on T-cell proliferation was assessed in vitro. Our data demonstrated that the number of MDSCs significantly increased during recurrence. Comparison of our NanoString data with a single-cell RNA sequencing dataset of MDSCs in another spontaneous breast cancer model identified colony-stimulating factor 3 receptor (Csf3r)-positive MDSCs as a potential marker for predicting tumor relapse. We validated our findings using two previously published PBMC databases of patients with breast cancer with or without recurrence and confirmed the elevated MDSC gene signature and CSF3R expression in patients with tumor recurrence. 35 patients with breast cancer were also included in our study, that patients with higher levels of CSF3R had worse survival. In vitro experiments demonstrated that Csf3r + MDSCs exhibited enhanced reactive oxygen species (ROS) levels and robust T-cell suppression ability. We conclude that an increase in CSF3R + MDSCs is a potential biomarker for early detection of tumor recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
3
|
Zhai X, Peng S, Zhai C, Wang S, Xie M, Guo S, Bai J. Design of Nanodrug Delivery Systems for Tumor Bone Metastasis. Curr Pharm Des 2024; 30:1136-1148. [PMID: 38551047 DOI: 10.2174/0113816128296883240320040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
Tumor metastasis is a complex process that is controlled at the molecular level by numerous cytokines. Primary breast and prostate tumors most commonly metastasize to bone, and the development of increasingly accurate targeted nanocarrier systems has become a research focus for more effective anti-bone metastasis therapy. This review summarizes the molecular mechanisms of bone metastasis and the principles and methods for designing bone-targeted nanocarriers and then provides an in-depth review of bone-targeted nanocarriers for the treatment of bone metastasis in the context of chemotherapy, photothermal therapy, gene therapy, and combination therapy. Furthermore, this review also discusses the treatment of metastatic and primary bone tumors, providing directions for the design of nanodelivery systems and future research.
Collapse
Affiliation(s)
- Xiaoqing Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Chunyuan Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shuai Wang
- People's Hospital of Gaoqing County, Zibo 256399, China
| | - Meina Xie
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
4
|
Gao Y, Huang Q, Qin Y, Bao X, Pan Y, Mo J, Ning S. A prognostic model related to necrotizing apoptosis of breast cancer based on biorthogonal constrained depth semi-supervised nonnegative matrix decomposition and single-cell sequencing analysis. Am J Cancer Res 2023; 13:3875-3897. [PMID: 37818066 PMCID: PMC10560928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumours in women, and its prognosis is poor. The prognosis of BC patients can be improved by immunotherapy. However, due to the heterogeneity of BC, the identification of new biomarkers is urgently needed to improve the prognosis of BC patients. Necrotic apoptosis has been shown to play an essential role in many cancers. First, this study proposed a novel clustering algorithm called biorthogonal constrained depth semisupervised nonnegative matrix factorization (DO-DSNMF). The DO-DSNMF algorithm added multilayer nonlinear transformation to the coefficient matrix obtained after decomposition, which was used to mine the nonlinear relationship between samples. In addition, we also added orthogonal constraints on the basis matrix and coefficient matrix to reduce the influence of redundant features and samples on the results. We applied the DO-DSNMF algorithm and analysed the differences in survival and immunity between the subtypes. Then, we used prognosis analysis to construct the prognosis model. Finally, we analysed single cells using single-cell sequencing (scRNA-seq) data from the GSE75688 dataset in the GEO database. We identified two BC subtypes based on the BC transcriptome data in the TCGA database. Immune infiltration analysis showed that the necrotizing apoptosis-related genes of BC were related to various immune cells and immune functions. Necrotizing apoptosis was found to play a role in BC progression and immunity. The role of prognosis-related NRGs in BC was also verified by cell experiments. This study proposed a novel clustering algorithm to analyse BC subtypes and constructed an NRG prognostic model for BC. The prognosis and immune landscape of BC patients were evaluated by this model. The cell experiment supported its role in BC, which provides a potential therapeutic target for the treatment of BC.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Head and Neck Radiotherapy, Harbin Medical University Cancer Hospital Harbin 150000, Heilongjiang, China
| | - Qinghua Huang
- Department of Breast Surgery, Wuzhou Red Cross Hospital Wuzhou 543000, Guangxi, China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital Nanning 530000, Guangxi, China
| | - Xianhui Bao
- Department of Neurology, Harbin The First Hospital Harbin 150000, Heilongjiang, China
| | - You Pan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital Nanning 530000, Guangxi, China
| | - Jianlan Mo
- Department of Anesthesiology, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region Nanning 530000, Guangxi, China
| | - Shipeng Ning
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital Nanning 530000, Guangxi, China
| |
Collapse
|
5
|
Samakkarnthai P, Saul D, Zhang L, Aversa Z, Doolittle ML, Sfeir JG, Kaur J, Atkinson EJ, Edwards JR, Russell GG, Pignolo RJ, Kirkland JL, Tchkonia T, Niedernhofer LJ, Monroe DG, Lebrasseur NK, Farr JN, Robbins PD, Khosla S. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging (Albany NY) 2023; 15:3331-3355. [PMID: 37154858 PMCID: PMC10449299 DOI: 10.18632/aging.204701] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
In addition to reducing fracture risk, zoledronic acid has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronic acid could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronic acid killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronic acid or vehicle for 8 weeks, zoledronic acid significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronic acid demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronic acid, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronic acid significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronic acid has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo. These data point to the need for additional studies testing zoledronic acid and/or other bisphosphonate derivatives for senotherapeutic efficacy.
Collapse
Affiliation(s)
- Parinya Samakkarnthai
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Phramongkutklao Hospital and College of Medicine, Bangkok 10400, Thailand
| | - Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen 72076, Germany
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Madison L. Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jad G. Sfeir
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Japneet Kaur
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Graham G. Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, S10 2RX, UK
| | - Robert J. Pignolo
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David G. Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K. Lebrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology 2023; 21:103. [PMID: 36944946 PMCID: PMC10031984 DOI: 10.1186/s12951-023-01826-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Zhang Y, Zhang L, Zhao Y, Wang S, Feng L. Overexpression of LILRA2 indicated poor prognosis of ovarian carcinoma: A new potential biomarker and therapeutic target. Taiwan J Obstet Gynecol 2023; 62:77-88. [PMID: 36720556 DOI: 10.1016/j.tjog.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE This study aimed to assess the role of leukocyte immunoglobulin-like receptor A2 (LILRA2) in ovarian carcinoma (OC) oncogenesis and prognosis. MATERIALS AND METHODS Using the Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, the association between clinicopathological profiles and LILRA2 expression was investigated using logistic regression analysis. Kaplan-Meier analysis, Cox regression analysis, and column plots predicted the clinical outcomes of patients with OC and determine the predictive value of LILRA2. The biological functions of LILRA2 were assessed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. We used single-sample Gene Set Enrichment Analysis to investigate the relationship between immune cell infiltration and LILRA2 expression. RESULTS LILRA2 expression in OC tumors was significantly higher than in normal tissue (P < 0.05). The high LILRA2 expression in OC was correlated with lymphatic invasion (P = 0.014). The results showed consistency indices of 0.611 [95% confidence interval (CI), 0.572-0.649] and 0.623 (95% CI, 0.584-0.663) for the overall and disease-specific survival nomograms, respectively. Cox regression analysis showed that LILRA2 was an independent risk factor for overall survival (hazard ratio [HR], 1.511; P = 0.002) and disease-specific survival (HR, 1.537; P = 0.003). Functional annotation revealed enrichment with immunoglobulin-corresponding pathways when LILRA2 expression was high. CONCLUSION By evaluating gene expression profiles, we demonstrated that LILRA2 has considerable potential to act as a therapeutic target and prognostic biomarker in OC.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Medical Ultrasound, Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, No.16766, Jingshi Road, Jinan, Shandong Province, China
| | - Li Zhang
- Department of Medical Ultrasound, Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, No.16766, Jingshi Road, Jinan, Shandong Province, China
| | - Yuli Zhao
- Department of Medical Ultrasound, Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, No.16766, Jingshi Road, Jinan, Shandong Province, China
| | - Sen Wang
- Department of Medical Ultrasound, Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, No.16766, Jingshi Road, Jinan, Shandong Province, China
| | - Li Feng
- Department of Medical Ultrasound, Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, No.16766, Jingshi Road, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
Application value of the treatment of breast cancer bone metastases with radioactive seed 125I implantation under CT-guidance. BMC Med Imaging 2022; 22:3. [PMID: 34983423 PMCID: PMC8725351 DOI: 10.1186/s12880-021-00726-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the application value of the treatment of breast cancer bone metastases with radioactive seed 125I implantation under CT-guidance. Methods A total of 90 patients with breast cancer admitted to our hospital from January 2017 to January 2018 were selected as the research objects and were divided into control group and experimental group according to random grouping, with 45 cases in each group. Conventional treatment was used in the control group, while the treatment of radioactive seed 125I implantation under CT-guidance was used in the experimental group. The clinical efficacy, pain intensity and levels of carcinoembryonic antigen (CEA), carcinoembryonic antigen 153 (CA153), carbohydrate antigen (CA125) in the two groups were compared. Results As for the pain intensity, it was evidently lower in the experimental group after treatment than that in the control group (P < 0.05); as for the total effective rate, it was obviously higher in the experimental group after treatment than that in the control group (P < 0.05); as for the levels of CEA, CA153 and CA125, the data in the experimental group after treatment were much lower than the control group (P < 0.05). Conclusion Radioactive seed 125I implantation under CT-guidance can effectively improve the effect of the treatment of breast cancer bone metastases. It has curative efficacy and it is worth promoting and using.
Collapse
|
9
|
Mouchemore KA, Anderson RL. Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 2021; 54:101512. [PMID: 34763974 DOI: 10.1016/j.smim.2021.101512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Torres-Montaner A. The telomere complex and the origin of the cancer stem cell. Biomark Res 2021; 9:81. [PMID: 34736527 PMCID: PMC8567692 DOI: 10.1186/s40364-021-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022] Open
Abstract
Exquisite regulation of telomere length is essential for the preservation of the lifetime function and self-renewal of stem cells. However, multiple oncogenic pathways converge on induction of telomere attrition or telomerase overexpression and these events can by themselves trigger malignant transformation. Activation of NFκB, the outcome of telomere complex damage, is present in leukemia stem cells but absent in normal stem cells and can activate DOT1L which has been linked to MLL-fusion leukemias. Tumors that arise from cells of early and late developmental stages appear to follow two different oncogenic routes in which the role of telomere and telomerase signaling might be differentially involved. In contrast, direct malignant transformation of stem cells appears to be extremely rare. This suggests an inherent resistance of stem cells to cancer transformation which could be linked to a stem cell’specific mechanism of telomere maintenance. However, tumor protection of normal stem cells could also be conferred by cell extrinsic mechanisms.
Collapse
Affiliation(s)
- A Torres-Montaner
- Department of Pathology, Queen's Hospital, Rom Valley Way, London, Romford, RM7 OAG, UK. .,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
11
|
Kähkönen TE, Halleen JM, Bernoulli J. Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis. Cells 2021; 10:1529. [PMID: 34204474 PMCID: PMC8233913 DOI: 10.3390/cells10061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns.
Collapse
Affiliation(s)
| | | | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| |
Collapse
|
12
|
Werner S, Heidrich I, Pantel K. Clinical management and biology of tumor dormancy in breast cancer. Semin Cancer Biol 2021; 78:49-62. [PMID: 33582172 DOI: 10.1016/j.semcancer.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
Clinical tumor dormancy is specified as an extended latency period between removal of the primary tumor and subsequent relapse in a cancer patient who has been clinically disease-free. In particular, patients with estrogen receptor-positive breast cancer can undergo extended periods of more than five years before they relapse with overt metastatic disease. Recent studies have shown that minimal residual disease in breast cancer patients can be monitored by different liquid biopsy approaches like analysis of circulating tumor cells or cell-free tumor DNA. Even though the biological principles underlying tumor dormancy in breast cancer patients remain largely unknown, clinical observations and experimental studies have identified emerging mechanisms that control the state of tumor dormancy. In this review, we illustrate the latest discoveries on different molecular aspects that contribute to the control of tumor dormancy and distant metastatic relapse, then discuss current treatments affecting minimal residual disease and dormant cancer cells, and finally highlight how novel liquid biopsy based diagnostic methodologies can be integrated into the detection and molecular characterization of minimal residual disease.
Collapse
Affiliation(s)
- Stefan Werner
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany; Mildred-Scheel-Nachwuchszentrum HaTRiCs4, Universitäres Cancer Center Hamburg, Germany
| | - Isabel Heidrich
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
13
|
Xie Y, Jiang Z, Yang R, Ye Y, Pei L, Xiong S, Wang S, Wang L, Liu S. Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer. Biomed Pharmacother 2021; 137:111338. [PMID: 33578234 DOI: 10.1016/j.biopha.2021.111338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide is one of main components in Polygonatum sibiricum (PS), which is an herbal medicine widely used in East Asia. Polysaccharides from Polygonatum sibiricum has been shown to exhibit multiple biological activities, such as anti-diabetes, anti-inflammation, antioxidant, immunity modulation, and anticancer. Since hematopoietic system is one of determinant factors in cancer control, we here explored the effect of polysaccharide-rich extract from Polygonatum sibiricum (PREPS) on hematopoiesis in the mice bearing triple negative breast cancer (TNBC). We found that the 4T1 TNBC tumor significantly increased myeloid cells in peripheral blood, bone marrow and spleen, while decreasing bone marrow hematopoietic stem and progenitor cells (HSPCs), indicative of an inhibition of medullary hematopoiesis. When 4T1 TNBC tumor-bearing mice were treated with PREPS, the percentage of myeloid cells within tumor-infiltrating immune cells was reduced. In addition, PREPS also inhibited hematopoietic cell expansion in the spleen, which was induced by TNBC tumors. Importantly, PREPS markedly increased HSPCs and common lymphoid progenitors in the bone marrow that had been suppressed by TNBC tumors. These findings suggest that PREPS protect hematopoiesis inhibited by TNBC tumors in the bone marrow. Although PREPS alone did not achieve statistical significance in the suppression of TNBC tumor growth, it may have a long-lasting anti-tumor effect to assist TNBC therapies by sustaining hematopoiesis and lymphoid regeneration in bone marrow.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ziwei Jiang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Yang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyi Ye
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixia Pei
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Xiong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Wu ZH, Tang Y, Zhou Y. DNA Methylation Based Molecular Subtypes Predict Prognosis in Breast Cancer Patients. Cancer Control 2021; 28:1073274820988519. [PMID: 33504182 PMCID: PMC8482718 DOI: 10.1177/1073274820988519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epigenetic changes are tightly linked to tumorigenesis development and malignant transformation' However, DNA methylation occurs earlier and is constant during tumorigenesis. It plays an important role in controlling gene expression in cancer cells. METHODS In this study, we determining the prognostic value of molecular subtypes based on DNA methylation status in breast cancer samples obtained from The Cancer Genome Atlas database (TCGA). RESULTS Seven clusters and 204 corresponding promoter genes were identified based on consensus clustering using 166 CpG sites that significantly influenced survival outcomes. The overall survival (OS) analysis showed a significant prognostic difference among the 7 groups (p<0.05). Finally, a prognostic model was used to estimate the results of patients on the testing set based on the classification findings of a training dataset DNA methylation subgroups. CONCLUSIONS The model was found to be important in the identification of novel biomarkers and could be of help to patients with different breast cancer subtypes when predicting prognosis, clinical diagnosis and management.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Tang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2020; 265:120404. [PMID: 32987273 DOI: 10.1016/j.biomaterials.2020.120404] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
A variety of targeted nanoparticles were developed for the diagnosis and therapy of orthotopic and metastatic bone tumors during the past decade. This critical review will focus on principles and methods in the design of these bone-targeted nanoparticles. Ligands including bisphosphonates, aspartic acid-rich peptides and synthetic polymers were grafted on nanoparticles such as PLGA nanoparticles, liposomes, dendrimers and inorganic nanoparticles for bone targeting. Besides, other ligands such as monoclonal antibodies, peptides and aptamers targeting biomarkers on tumor/bone cells were identified for targeted diagnosis and therapy. Examples of targeted nanoparticles for the early detection of bone metastatic tumors and the ablation of cancer via chemotherapy, photothermal therapy, gene therapy and combination therapy will be intensively reviewed. The development of multifunctional nanoparticles to break down the "vicious" cycle between tumor cell proliferation and bone resorption, and the challenges and perspectives in this area will be discussed.
Collapse
Affiliation(s)
- Xin Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Lin Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Xiaopan Cai
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Quan Huang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Yiyun Cheng
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
17
|
Zhang L, Wu X, Feng Y, Zheng L, Jian J. Selenium donors inhibits osteoclastogenesis through inhibiting IL-6 and plays a pivotal role in bone metastasis from breast cancer. Toxicol Res (Camb) 2020; 9:544-551. [PMID: 32905216 DOI: 10.1093/toxres/tfaa053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022] Open
Abstract
Bone metastases are a frequent complication of breast cancer, and there has been little progress in the treatment of breast cancer patients with bone metastases. The cytotoxicity of selenium donors, including organic selenium and selenium nanoparticles (SeNPs), to cancer cells has been reported previously, but their relationship with bone metastases progression is not fully clear yet. In this study, multicenter clinical exploration was conducted to obtain dietary selenium intakes of breast cancer patients with or without bone metastasis, to study the relationship between selenium and breast cancer prognosis and bone metastasis. We found that dietary selenium intakes were significantly lower in breast cancer patients with bone metastasis, comparing with the non-bone metastasis cases. Selenium lower group of bone metastasis breast cancer patients had worse prognosis, whereas the daily selenium intakes could not predict the prognosis of breast cancer patients without bone metastasis. Subsequently, we study the regulatory role of selenium donors on bone metastasis at the cellular level, by challenging the cells with SeNPs. SeNPs showed potent cytotoxicity in breast cancer cells, no matter whether they were primary or bone-metastatic. SeNPs treated cancer cell inhibited the survival and differentiation of osteoclast progenitor cells. At the molecular level, we demonstrated that IL-6 partially mediated osteoclastogenesis suppression by SeNPs. These results provide a new way for biomarkers or drug development to treat and even prevent bone metastases of breast cancer by using selenium donors.
Collapse
Affiliation(s)
- Luyan Zhang
- Department of Oncology, Binzhou People's Hospital, 515# Huanghe 7th Road, Binzhou 256600, China
| | - Xifa Wu
- Department of Spinal Surgery, Zibo Central Hospital, 54# gongqingtuan West Road, Zibo 255036, China
| | - Yong Feng
- Department of Orthopaedics, Chongqing University Central Hospita, 1# Jiankang Road, Chongqing, China
| | - Linlin Zheng
- Department of Spinal Surgery, Zibo Central Hospital, 54# gongqingtuan West Road, Zibo 255036, China
| | - Jinbo Jian
- Department of Oncology, Binzhou Medical University Hospital, 661# Huanghe 2th Road, Binzhou 256603, China
| |
Collapse
|
18
|
Haider MT, Saito H, Zarrer J, Uzhunnumpuram K, Nagarajan S, Kari V, Horn-Glander M, Werner S, Hesse E, Taipaleenmäki H. Breast cancer bone metastases are attenuated in a Tgif1-deficient bone microenvironment. Breast Cancer Res 2020; 22:34. [PMID: 32272947 PMCID: PMC7146874 DOI: 10.1186/s13058-020-01269-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Osteoclast activation is a hallmark of breast cancer-induced bone disease while little is known about the role of osteoblasts in this process. Recently, we identified the homeodomain protein TG-interacting factor-1 (Tgif1) as a crucial regulator of osteoblast function. In this study, we demonstrate that lack of Tgif1 also restricts the progression of breast cancer bone metastases. Methods Transwell migration assays were used to investigate the osteoblast-breast cancer cell interaction in vitro. Molecular analyses included RNA sequencing, immunoblotting, and qRT-PCR. To determine the role of Tgif1 in metastatic bone disease, 4T1 breast cancer cells were injected intracardially into mice with a germ line deletion of Tgif1 (Tgif1−/−) or control littermates (Tgif1+/+). Progression of bone metastases and alterations in the bone microenvironment were assessed using bioluminescence imaging, immunofluorescence staining, confocal microscopy, and histomorphometry. Results Medium conditioned by osteoblasts stimulated breast cancer cell migration, indicating a potential role of osteoblasts during bone metastasis progression. Tgif1 expression was strongly increased in osteoblasts upon stimulation by breast cancer cells, demonstrating the implication of Tgif1 in the osteoblast-breast cancer cell interaction. Indeed, conditioned medium from osteoblasts of Tgif1−/− mice failed to induce breast cancer cell migration compared to control, suggesting that Tgif1 in osteoblasts augments cancer cell motility. Semaphorin 3E (Sema3E), which is abundantly secreted by Tgif1−/− osteoblasts, dose-dependently reduced breast cancer cell migration while silencing of Sema3E expression in Tgif1−/− osteoblasts partially restored the impaired migration. In vivo, we observed a decreased number of breast cancer bone metastases in Tgif1−/− mice compared to control littermates. Consistently, the presence of single breast cancer cells or micro-metastases in the tibiae was reduced in Tgif1−/− mice. Breast cancer cells localized in close proximity to Endomucin-positive vascular cells as well as to osteoblasts. Although Tgif1 deficiency did not affect the bone marrow vasculature, the number and activity of osteoblasts were reduced compared to control. This suggests that the protective effect on bone metastases might be mediated by osteoblasts rather than by the bone marrow vasculature. Conclusion We propose that the lack of Tgif1 in osteoblasts increases Sema3E expression and attenuates breast cancer cell migration as well as metastases formation.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hiroaki Saito
- Institute of Molecular Musculoskeletal Research, University Hospital, LMU Munich, Munich, Germany
| | - Jennifer Zarrer
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Uzhunnumpuram
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany.,Present address: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Michael Horn-Glander
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Hesse
- Institute of Molecular Musculoskeletal Research, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Faham S, Ghavami R, Golmohammadi H, Khayatian G. Spectrophotometric and visual determination of zoledronic acid by using a bacterial cell-derived nanopaper doped with curcumin. Mikrochim Acta 2019; 186:719. [DOI: 10.1007/s00604-019-3815-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
|
20
|
Alečković M, McAllister SS, Polyak K. Metastasis as a systemic disease: molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer 2019; 1872:89-102. [PMID: 31202687 PMCID: PMC6692219 DOI: 10.1016/j.bbcan.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022]
Abstract
Metastasis is a complex systemic disease that develops as a result of interactions between tumor cells and their local and distant microenvironments. Local and systemic immune-related changes play especially critical roles in limiting or enabling the development of metastatic disease. Although anti-tumor immune responses likely eliminate most early primary and metastatic lesions, factors secreted by cancer or stromal cells in the primary tumor can mobilize and activate cells in distant organs in a way that promotes the outgrowth of disseminated cancer cells into macrometastatic lesions. Therefore, the prevention, detection, and effective treatment of metastatic disease require a deeper understanding of the systemic effects of primary tumors as well as predisposing hereditary and acquired host factors including chronic inflammatory conditions. The success of immunotherapy in a subset of cancer patients is an example of how modulating the microenvironment and tumor-immune cell interactions can be exploited for the effective eradiation of even advanced-stage tumors. Here, we highlight emerging insights and clinical implications of cancer as a systemic disease.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Sandra S McAllister
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
21
|
Kolb AD, Bussard KM. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers (Basel) 2019; 11:cancers11071020. [PMID: 31330786 PMCID: PMC6678871 DOI: 10.3390/cancers11071020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Bone is a preferential site for cancer metastases, including multiple myeloma, prostate, and breast cancers.The composition of bone, especially the extracellular matrix (ECM), make it an attractive site for cancer cell colonization and survival. The bone ECM is composed of living cells embedded within a matrix composed of both organic and inorganic components. Among the organic components, type I collagen provides the tensile strength of bone. Inorganic components, including hydroxyapatite crystals, are an integral component of bone and provide bone with its rigidity. Under normal circumstances, two of the main cell types in bone, the osteoblasts and osteoclasts, help to maintain bone homeostasis and remodeling through cellular communication and response to biophysical signals from the ECM. However, under pathological conditions, including osteoporosis and cancer, bone remodeling is dysregulated. Once in the bone matrix, disseminated tumor cells utilize normal products of bone remodeling, such as collagen type I, to fuel cancer cell proliferation and lesion outgrowth. Models to study the complex interactions between the bone matrix and metastatic cancer cells are limited. Advances in understanding the interactions between the bone ECM and bone metastatic cancer cells are necessary in order to both regulate and prevent metastatic cancer cell growth in bone.
Collapse
Affiliation(s)
- Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
22
|
Bernasconi P, Borsani O. Endosteal vessel integrity: a new therapeutic goal in acute myeloid leukemia? Stem Cell Investig 2018; 5:36. [PMID: 30498747 DOI: 10.21037/sci.2018.10.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Paolo Bernasconi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Oscar Borsani
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|