1
|
Bai Z, Osman M, Brendel M, Tangen CM, Flaig TW, Thompson IM, Plets M, Scott Lucia M, Theodorescu D, Gustafson D, Daneshmand S, Meeks JJ, Choi W, Dinney CPN, Elemento O, Lerner SP, McConkey DJ, Faltas BM, Wang F. Predicting response to neoadjuvant chemotherapy in muscle-invasive bladder cancer via interpretable multimodal deep learning. NPJ Digit Med 2025; 8:174. [PMID: 40121304 PMCID: PMC11929913 DOI: 10.1038/s41746-025-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Building accurate prediction models and identifying predictive biomarkers for treatment response in Muscle-Invasive Bladder Cancer (MIBC) are essential for improving patient survival but remain challenging due to tumor heterogeneity, despite numerous related studies. To address this unmet need, we developed an interpretable Graph-based Multimodal Late Fusion (GMLF) deep learning framework. Integrating histopathology and cell type data from standard H&E images with gene expression profiles derived from RNA sequencing from the SWOG S1314-COXEN clinical trial (ClinicalTrials.gov NCT02177695 2014-06-25), GMLF uncovered new histopathological, cellular, and molecular determinants of response to neoadjuvant chemotherapy. Specifically, we identified key gene signatures that drive the predictive power of our model, including alterations in TP63, CCL5, and DCN. Our discovery can optimize treatment strategies for patients with MIBC, e.g., improving clinical outcomes, avoiding unnecessary treatment, and ultimately, bladder preservation. Additionally, our approach could be used to uncover predictors for other cancers.
Collapse
Affiliation(s)
- Zilong Bai
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Thomas W Flaig
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Ian M Thompson
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Melissa Plets
- SWOG Statistics and Data Management Center, Seattle, WA, USA
| | - M Scott Lucia
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | | | - Daniel Gustafson
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Siamak Daneshmand
- USC Institute of Urology, USC/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | - Fei Wang
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Foffi E, Violante A, Pecorari R, Lena AM, Rugolo F, Melino G, Candi E. BRD4 sustains p63 transcriptional program in keratinocytes. Biol Direct 2024; 19:124. [PMID: 39605045 PMCID: PMC11600901 DOI: 10.1186/s13062-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown. Our functional analyses revealed changes in cellular proliferation and differentiation in keratinocytes depleted of either p63 or BRD4, which were further supported by using the BRD4 inhibitor JQ1. Transcriptomic analyses, chromatin immunoprecipitation, and RT-qPCR indicated a synergistic mechanism between p63 and BRD4 in regulating the transcription of keratinocyte-specific p63 target genes, including HK2, FOXM1, and EVPL. This study not only highlights the complex relationship between BRD4 and p53 family members but also suggests a role for BRD4 in maintaining keratinocyte functions. Our findings pave the way for further exploration of potential therapeutic applications of BRD4 inhibitors in treating skin disorders.
Collapse
Affiliation(s)
- E Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - A Violante
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - R Pecorari
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - A M Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - F Rugolo
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - G Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - E Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
3
|
Croft W, Pounds R, Jeevan D, Singh K, Balega J, Sundar S, Williams A, Ganesan R, Kehoe S, Ott S, Zuo J, Yap J, Moss P. The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory drivers in post-chemotherapy residual tumour cells. Commun Biol 2024; 7:1211. [PMID: 39341888 PMCID: PMC11438996 DOI: 10.1038/s42003-024-06909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Disease recurrence following chemotherapy is a major clinical challenge in ovarian cancer (OC), but little is known regarding how the tumour epigenome regulates transcriptional programs underpinning chemoresistance. We determine the single cell chromatin accessibility landscape of omental OC metastasis from treatment-naïve and neoadjuvant chemotherapy-treated patients and define the chromatin accessibility profiles of epithelial, fibroblast, myeloid and lymphoid cells. Epithelial tumour cells display open chromatin regions enriched with motifs for the oncogenic transcription factors MEIS and PBX. Post chemotherapy microenvironments show profound tumour heterogeneity and selection for cells with accessible chromatin enriched for TP53, TP63, TWIST1 and resistance-pathway-activating transcription factor binding motifs. An OC chemoresistant tumour subpopulation known to be present prior to treatment, and characterised by stress-associated gene expression, is enriched post chemotherapy. Nuclear receptors RORa, NR2F6 and HNF4G are uncovered as candidate transcriptional drivers of these cells whilst closure of binding sites for E2F2 and E2F4 indicate post-treated tumour having low proliferative capacity. Delineation of the gene regulatory landscape of ovarian cancer cells surviving chemotherapy treatment therefore reveals potential core transcriptional regulators of chemoresistance, suggesting novel therapeutic targets for improving clinical outcome.
Collapse
Affiliation(s)
- W Croft
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| | - R Pounds
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - D Jeevan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - K Singh
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - J Balega
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - S Sundar
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - A Williams
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - R Ganesan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - S Kehoe
- Department of Gynaecological Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - J Zuo
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - J Yap
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - P Moss
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK.
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK.
| |
Collapse
|
4
|
Tosios KI, Kalogirou EM, Koutlas IG. Association of MDM2 Overexpression in Ameloblastomas with MDM2 Amplification and BRAF V600E Expression. Int J Mol Sci 2024; 25:2238. [PMID: 38396916 PMCID: PMC10889355 DOI: 10.3390/ijms25042238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Ameloblastoma is a rare tumor but represents the most common odontogenic neoplasm. It is localized in the jaws and, although it is a benign, slow-growing tumor, it has an aggressive local behavior and high recurrence rate. Therefore, alternative treatment options or complementary to surgery have been evaluated, with the most promising one among them being a targeted therapy with the v-Raf murine sarcoma viral oncogene homologue B (BRAF), as in ameloblastoma the activating mutation V600E in BRAF is common. Studies in other tumors have shown that the synchronous inhibition of BRAF and human murine double minute 2 homologue (MDM2 or HDM2) protein is more effective than BRAF monotherapy, particularly in the presence of wild type p53 (WTp53). To investigate the MDM2 protein expression and gene amplification in ameloblastoma, in association with BRAFV600E and p53 expression. Forty-four cases of ameloblastoma fixed in 10% buffered formalin and embedded in paraffin were examined for MDM2 overexpression and BRAFV600E and p53 expression by immunohistochemistry, and for MDM2 ploidy with fluorescence in situ hybridization. Sixteen of forty-four (36.36%) cases of ameloblastoma showed MDM2 overexpression. Seven of sixteen MDM2-positive ameloblastomas (43.75%) were BRAFV600E positive and fifteen of sixteen MDM2-positive ameloblastomas (93.75%) were p53 negative. All MDM2 overexpressing tumors did not show copy number alterations for MDM2. Overexpression of MDM2 in ameloblastomas is not associated with MDM2 amplification, but most probably with MAPK activation and WTp53 expression. Further verification of those findings could form the basis for the use of MDM2 expression as a marker of MAPK activation in ameloblastomas and the trial of dual BRAF/MDM2 inhibition in the management of MDM2-overexpressing/BRAFV600E-positive/WTp53 ameloblastomas.
Collapse
Affiliation(s)
- Konstantinos I. Tosios
- Department of Oral Pathology & Medicine and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni-Marina Kalogirou
- Faculty of Health and Rehabilitation Sciences, Metropolitan College, 15125 Athens, Greece;
| | - Ioannis G. Koutlas
- Division of Oral Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Miley DR, Andrews-Pfannkoch CM, Pulido JS, Erickson SA, Vile RG, Fautsch MP, Marmorstein AD, Dalvin LA. Direct early growth response-1 knockdown decreases melanoma viability independent of mitogen-activated extracellular signal-related kinase inhibition. Melanoma Res 2023; 33:482-491. [PMID: 37650708 PMCID: PMC10615778 DOI: 10.1097/cmr.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
To investigate downstream molecular changes caused by mitogen-activated protein kinase (MEK) inhibitor treatment and further explore the impact of direct knockdown of early growth response-1 ( EGR1 ) in melanoma cell culture. RNA-sequencing (RNA-Seq) was performed to determine gene expression changes with MEK inhibitor treatment. Treatment with MEK inhibitor (trametinib) was then assessed in two cutaneous (MEL888, MEL624) and one conjunctival (YUARGE 13-3064) melanoma cell line. Direct knockdown of EGR1 was accomplished using lentiviral vectors containing shRNA. Cell viability was measured using PrestoBlueHS Cell Viability Reagent. Total RNA and protein were assessed by qPCR and SimpleWestern. RNA-Seq demonstrated a profound reduction in EGR1 with MEK inhibitor treatment, prompting further study of melanoma cell lines. Following trametinib treatment of melanoma cells, viability was reduced in both cutaneous (MEL888 26%, P < 0.01; MEL624 27%, P < 0.001) and conjunctival (YUARGE 13-3064 33%, P < 0.01) melanoma compared with DMSO control, with confirmed EGR1 knockdown to 0.04-, 0.01-, and 0.16-fold DMSO-treated levels (all P < 0.05) in MEL888, MEL624, and YUARGE 13-3064, respectively. Targeted EGR1 knockdown using shRNA reduced viability in both cutaneous (MEL624 78%, P = 0.05) and conjunctival melanoma (YUARGE-13-3064 67%, P = 0.02). RNA-Sequencing in MEK inhibitor-treated cells identified EGR1 as a candidate effector molecule of interest. In a malignant melanoma cell population, MEK inhibition reduced viability in both cutaneous and conjunctival melanoma with a profound downstream reduction in EGR1 expression. Targeted knockdown of EGR1 reduced both cutaneous and conjunctival melanoma cell viability independent of MEK inhibition, suggesting a key role for EGR1 in melanoma pathobiology.
Collapse
Affiliation(s)
- David R. Miley
- Departments of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Jose S. Pulido
- Departments of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States of America
| | - Samantha A. Erickson
- Departments of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael P. Fautsch
- Departments of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alan D. Marmorstein
- Departments of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lauren A. Dalvin
- Departments of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
6
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
Suchitha GP, Balaya RDA, Raju R, Keshava Prasad TS, Dagamajalu S. A network map of cytoskeleton-associated protein 4 (CKAP4) mediated signaling pathway in cancer. J Cell Commun Signal 2023; 17:1097-1104. [PMID: 36944905 PMCID: PMC10409693 DOI: 10.1007/s12079-023-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.
Collapse
Affiliation(s)
- G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
8
|
Vemurafenib and Dabrafenib Downregulates RIPK4 Level. Cancers (Basel) 2023; 15:cancers15030918. [PMID: 36765875 PMCID: PMC9913565 DOI: 10.3390/cancers15030918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Vemurafenib and dabrafenib are BRAF kinase inhibitors (BRAFi) used for the treatment of patients with melanoma carrying the V600E BRAF mutation. However, melanoma cells develop resistance to both drugs when used as monotherapy. Therefore, mechanisms of drug resistance are investigated, and new molecular targets are sought that could completely inhibit melanoma progression. Since receptor-interacting protein kinase (RIPK4) probably functions as an oncogene in melanoma and its structure is similar to the BRAF protein, we analyzed the impact of vemurafenib and dabrafenib on RIPK4 in melanomas. The in silico study confirmed the high similarity of BRAF kinase domains to the RIPK4 protein at both the sequence and structural levels and suggests that BRAFi could directly bind to RIPK4 even more strongly than to ATP. Furthermore, BRAFi inhibited ERK1/2 activity and lowered RIPK4 protein levels in BRAF-mutated melanoma cells (A375 and WM266.4), while in wild-type BRAF cells (BLM and LoVo), both inhibitors decreased the level of RIPK4 and enhanced ERK1/2 activity. The phosphorylation of phosphatidylethanolamine binding protein 1 (PEBP1)-a suppressor of the BRAF/MEK/ERK pathway-via RIPK4 observed in pancreatic cancer did not occur in melanoma. Neither downregulation nor upregulation of RIPK4 in BRAF- mutated cells affected PEBP1 levels or the BRAF/MEK/ERK pathway. The downregulation of RIPK4 inhibited cell proliferation and the FAK/AKT pathway, and increased BRAFi efficiency in WM266.4 cells. However, the silencing of RIPK4 did not induce apoptosis or necroptosis. Our study suggests that RIPK4 may be an off-target for BRAF inhibitors.
Collapse
|
9
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
10
|
Challenging Metastatic Melanoma to the Lung With p40 Expression: A Diagnostic Pitfall, Case Report. Appl Immunohistochem Mol Morphol 2023; 31:64-67. [PMID: 36315473 DOI: 10.1097/pai.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
p40 immunohistochemistry is a cornerstone of histopathological examination for non-small cell lung carcinoma. p40 is an isoform of p63 and is reported to be highly specific for the diagnosis of squamous cell carcinoma. Very rare pitfalls are reported for this antibody, and p40 is typically negative in melanoma. A 66-year-old patient was admitted for multiple hemorrhagic brain tumors evocative of secondary tumors. On imaging, a 26 mm lung tumor was detected, and a biopsy of the lung tumor was performed. The tumor was stained by melanic markers and diffusely stained by p40 and p63. Molecular analysis found a somatic p.Asn581Ser (c.1742A>G) point mutation in exon 15 of BRAF and a p.Arg80Ter (c.238C>T) germline variant of CDKN2A , a predisposing mutation to melanoma. This case report highlights the importance of clinical, pathologic, and molecular correlation.
Collapse
|
11
|
Vlašić I, Horvat A, Tadijan A, Slade N. p53 Family in Resistance to Targeted Therapy of Melanoma. Int J Mol Sci 2022; 24:ijms24010065. [PMID: 36613518 PMCID: PMC9820688 DOI: 10.3390/ijms24010065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Metastatic melanoma is one of the most aggressive tumors, with frequent mutations affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial response to BRAF inhibitors, melanoma progresses due to development of resistance. In addition to frequent reactivation of MAPK or activation of PI3K/AKT signaling pathways, recently, the p53 pathway has been shown to contribute to acquired resistance to targeted MAPK inhibitor therapy. Canonical tumor suppressor p53 is inactivated in melanoma by diverse mechanisms. The TP53 gene and two other family members, TP63 and TP73, encode numerous protein isoforms that exhibit diverse functions during tumorigenesis. The p53 family isoforms can be produced by usage of alternative promoters and/or splicing on the C- and N-terminus. Various p53 family isoforms are expressed in melanoma cell lines and tumor samples, and several of them have already shown to have specific functions in melanoma, affecting proliferation, survival, metastatic potential, invasion, migration, and response to therapy. Of special interest are p53 family isoforms with increased expression and direct involvement in acquired resistance to MAPK inhibitors in melanoma cells, implying that modulating their expression or targeting their functional pathways could be a potential therapeutic strategy to overcome resistance to MAPK inhibitors in melanoma.
Collapse
|
12
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
13
|
Lv W, Zhan Y, Tan Y, Wu Y, Chen H. A combined aging and immune prognostic signature predict prognosis and responsiveness to immunotherapy in melanoma. Front Pharmacol 2022; 13:943944. [PMID: 36034849 PMCID: PMC9402914 DOI: 10.3389/fphar.2022.943944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/13/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Melanoma is the most lethal, and one of the most aggressive forms of cutaneous malignancies, which poor response to treatment has always puzzled clinicians. As is known to all, aging and immune microenvironment are two crucial factors impacting melanoma biological progress through the tumor microenvironment (TME). However, reliable biomarkers for predicting melanoma prognosis based on aging and immune microenvironment and therapeutic efficacy of immune checkpoints remain to be determined. Methods: The aging-related genes (ARGs) were obtained from the Human Ageing Genomic Resources and immune-related genes (IRGs) were downloaded from the Immunology database as well as Analysis Portal (ImmPort) database. Next, we initially performed LASSO regression and multivariate Cox regression to identify prognostic ARGs and IRGs in the TCGA and GSE65904 datasets, and firstly constructed a novel comprehensive index of aging and immune (CIAI) signature. Finally, in vitro molecular biology experiments were performed to assess the regulatory role of CNTFR in melanoma cell lines proliferation and migration, macrophage recruitment, and M2 polarization. Results: This novel CIAI signature consisted of 7 genes, including FOXM1, TP63, ARNTL, KIR2DL4, CCL8, SEMA6A, and CNTFR, in which melanoma patients in the high-CIAI group had shorter OS, DSS, and PFI, indicating CIAI model served as an independent prognostic index. Moreover, we found the CIAI score was potentially correlated with immune scores, estimate score, immune cell infiltration level, tumor microenvironment, immunotherapy effect, and drug sensitivity. Finally, CNTFR might function as oncogenes in melanoma cell lines and the silencing of CNTFR reduced macrophage recruitment and M2 polarization. Conclusion: In this study, we have first presented a novel prognostic CIAI model applied to assess immune checkpoint therapy and the efficacy of conventional chemotherapy agents in melanoma patients. Thus providing a new insight for combating melanoma.
Collapse
|
14
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Tadijan A, Precazzini F, Hanžić N, Radić M, Gavioli N, Vlašić I, Ozretić P, Pinto L, Škreblin L, Barban G, Slade N, Ciribilli Y. Altered Expression of Shorter p53 Family Isoforms Can Impact Melanoma Aggressiveness. Cancers (Basel) 2021; 13:5231. [PMID: 34680379 PMCID: PMC8533715 DOI: 10.3390/cancers13205231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Cutaneous melanoma is the most aggressive form of skin cancer. Despite the significant advances in the management of melanoma in recent decades, it still represents a challenge for clinicians. The TP53 gene, the guardian of the genome, which is altered in more than 50% of human cancers, is rarely mutated in melanoma. More recently, researchers started to appreciate the importance of shorter p53 isoforms as potential modifiers of the p53-dependent responses. We analyzed the expression of p53 and p73 isoforms both at the RNA and protein level in a panel of melanoma-derived cell lines with different TP53 and BRAF status, in normal conditions or upon treatment with common anti-cancer DNA damaging agents or targeted therapy. Using lentiviral vectors, we also generated stable clones of H1299 p53 null cells over-expressing the less characterized isoforms Δ160p53α, Δ160p53β, and Δ160p53γ. Further, we obtained two melanoma-derived cell lines resistant to BRAF inhibitor vemurafenib. We observed that melanoma cell lines expressed a wide array of p53 and p73 isoforms, with Δ160p53α as the most variable one. We demonstrated for the first time that Δ160p53α, and to a lesser extent Δ160p53β, can be recruited on chromatin, and that Δ160p53γ can localize in perinuclear foci; moreover, all Δ160p53 isoforms can stimulate proliferation and in vitro migration. Lastly, vemurafenib-resistant melanoma cells showed an altered expression of p53 and p73 isoforms, namely an increased expression of potentially pro-oncogenic Δ40p53β and a decrease in tumor-suppressive TAp73β. We therefore propose that p53 family isoforms can play a role in melanoma cells' aggressiveness.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Francesca Precazzini
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
- Laboratory of RNA Biology and Biotechnology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy
| | - Nikolina Hanžić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Martina Radić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Nicolò Gavioli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| | - Ignacija Vlašić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Lia Pinto
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| | - Lidija Škreblin
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Giulia Barban
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| | - Neda Slade
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| |
Collapse
|
16
|
Scatolini M, Patel A, Grosso E, Mello-Grand M, Ostano P, Coppo R, Vitiello M, Venesio T, Zaccagna A, Pisacane A, Sarotto I, Taverna D, Poliseno L, Bergamaschi D, Chiorino G. GJB5 association with BRAF mutation and survival in cutaneous malignant melanoma. Br J Dermatol 2021; 186:117-128. [PMID: 34240406 DOI: 10.1111/bjd.20629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Gap junctional intercellular communication is crucial for epidermal cellular homeostasis. Inability to establish melanocyte-keratinocytes contacts and loss of intercellular junction's integrity may contribute to melanoma development. Connexins, laminins and desmocollins have been implicated in the control of melanoma growth, where their reduced expression has been reported in metastatic lesions. OBJECTIVES The aim of this study was to investigate Connexin 31.1 (GJB5) expression and identify any association with BRAF mutational status, melanoma patient prognosis and MAPK inhibitors (MAPKi) treatment. MATERIAL AND METHODS GJB5 expression was measured at RNA and protein level in melanoma clinical samples and established cell lines treated or not with BRAF and MEK inhibitors, as well as in cell lines which developed MAPK inhibitors resistance. Findings were further validated and confirmed by analysis of independent datasets. RESULTS Our analysis reveals significant downregulation of GJB5 expression in metastatic melanoma lesions compared to primary ones and in BRAF mutated versus BRAF wild-type melanomas. Likewise, GJB5 expression is significantly lower in BRAFV600E compared with BRAFWT cell lines and increases upon MAPKi treatment. MAPKi-resistant melanoma cells display a similar expression pattern compared to BRAFWT cells, with increased GJB5 expression associated with morphological changes. Enhancement of BRAFV600E expression in BRAFWT melanoma cells significantly upregulates miR-335-5p expression with consequent downregulation of GJB5, one of its targets. Furthermore, overexpression of miR-335-5p in two BRAFWT cell lines confirms specific GJB5 protein downregulation. RT-qPCR analysis also revealed upregulation of miR-335 in BRAFV600E melanoma cells, which is significantly downregulated in cells resistant to MEK inhibitors. Our data were further validated using the TCGA-SKCM dataset, where BRAF mutations associate with increased miR-335 expression and inversely correlate with GJB5 expression. In clinical samples, GJB5 underexpression is also associated with patient overall worse survival, especially at early stages. CONCLUSION We identified a significant association between metastases / BRAF mutation and low GJB5 expression in melanoma. Our results identify a novel mechanism of Gap-junctional protein regulation, suggesting a prognostic role for GJB5 in cutaneous melanoma.
Collapse
Affiliation(s)
- M Scatolini
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875, Ponderano, BI, Italy
| | - A Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London SMD, QMUL, London, E1 2AT, UK
| | - E Grosso
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875, Ponderano, BI, Italy
| | - M Mello-Grand
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - P Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - R Coppo
- Molecular Biotechnology Centre, 10126, Torino, Italy.,Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Institute of Clinical Physiology, CNR, 56124, Pisa, Italy
| | - T Venesio
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - A Zaccagna
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - A Pisacane
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - I Sarotto
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - D Taverna
- Molecular Biotechnology Centre, 10126, Torino, Italy
| | - L Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Institute of Clinical Physiology, CNR, 56124, Pisa, Italy
| | - D Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London SMD, QMUL, London, E1 2AT, UK
| | - G Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| |
Collapse
|
17
|
Zheng JM, Gan MF, Yu HY, Ye LX, Yu QX, Xia YH, Zhou HX, Bao JQ, Guo YQ. KDF1, a Novel Tumor Suppressor in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:686678. [PMID: 34136411 PMCID: PMC8201614 DOI: 10.3389/fonc.2021.686678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
KDF1 has been identified as a key regulator of epidermal proliferation and differentiation, but it is unknown whether KDF1 is involved in the pathogenesis of malignancy. No study has reported the expression and function of KDF1 in renal cancer. To explore the pathologic significance of KDF1 in clear cell renal cell carcinoma (ccRCC), the expression level of KDF1 protein in the tumor tissue of ccRCC patients was examined by immunohistochemistry and Western blot while the expression level of KDF1 mRNA was analyzed by using the data from TCGA database. In vitro cell experiments and allogeneic tumor transplantation tests were performed to determine the effects of altered KDF1 expression on the phenotype of ccRCC cells. Both the KDF1 mRNA and protein were found to be decreasingly expressed in the tumor tissue of ccRCC patients when compared with the adjacent non-tumor control tissue. The expression level of KDF1 in the tumor tissue was found to correlate negatively with the tumor grade. Patients with higher KDF1 in the tumor tissue were found to have longer overall survival and disease-specific survival time. KDF1 was shown to be an independent factor influencing the disease-specific survival of the ccRCC patients. Overexpression of KDF1 was found to inhibit the proliferation, migration and invasion of ccRCC cells, which could be reversed by decreasing the expression of KDF1 again. ccRCC cells with KDF1 overexpression were found to produce smaller transgrafted tumors. These results support the idea that KDF1 is involved in ccRCC and may function as a tumor suppressor.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China.,Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Mei-Fu Gan
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Hong-Yuan Yu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Lu-Xia Ye
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Qing-Xin Yu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Yu-Hui Xia
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Han-Xi Zhou
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Jia-Qian Bao
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Yi-Qing Guo
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| |
Collapse
|