1
|
Rimal P, Paul SK, Panday SK, Alexov E. Further Development of SAMPDI-3D: A Machine Learning Method for Predicting Binding Free Energy Changes Caused by Mutations in Either Protein or DNA. Genes (Basel) 2025; 16:101. [PMID: 39858648 PMCID: PMC11764785 DOI: 10.3390/genes16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Predicting the effects of protein and DNA mutations on the binding free energy of protein-DNA complexes is crucial for understanding how DNA variants impact wild-type cellular function. As many cellular interactions involve protein-DNA binding, accurately predicting changes in binding free energy (ΔΔG) is valuable for distinguishing pathogenic mutations from benign ones. METHODS This study describes the development and optimization of the SAMPDI-3Dv2 machine learning method, which is trained on an expanded database of experimentally measured ΔΔGs. This enhanced model incorporates new features, including the 3D structure of the mutant protein, features of the mutant structure, and a position-specific scoring matrix (PSSM). Benchmarking was conducted using 5-fold cross-validation. RESULTS The updated SAMPDI-3D model (SAMPDI-3Dv2) achieved Pearson correlation coefficients (PCCs) of 0.68 for protein and 0.80 for DNA mutations. These results represent significant improvements over existing tools. Additionally, the method's rapid execution time enables genome-scale predictions. CONCLUSIONS The improved SAMPDI-3Dv2 shows enhanced predictive performance for analyzing mutations in protein-DNA complexes. By leveraging structural information and an expanded training dataset, SAMPDI-3Dv2 provides researchers with a more accurate and efficient tool for mutation analysis, contributing to identifying pathogenic variants and improving our understanding of cellular function.
Collapse
Affiliation(s)
| | | | | | - Emil Alexov
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, SC 29634, USA; (P.R.); (S.K.P.); (S.K.P.)
| |
Collapse
|
2
|
Frey Y, Lungu C, Olayioye MA. Regulation and functions of the DLC family of RhoGAP proteins: Implications for development and cancer. Cell Signal 2025; 125:111505. [PMID: 39549821 DOI: 10.1016/j.cellsig.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The DLC (Deleted in Liver Cancer) family of RhoGAP (Rho GTPase-activating) proteins has been extensively studied since the identification of the first family member nearly 30 years ago. Rho GTPase signaling is essential for various cellular processes, including cytoskeletal dynamics, cell migration, and proliferation. Members of the DLC family are key regulators of this signaling pathway, with well-established roles in development and carcinogenesis. Here, we provide a comprehensive review of research into DLC regulation and cellular functions over the last three decades. In particular, we summarize control mechanisms of DLC gene expression at both the transcriptional and post-transcriptional level. Additionally, recent advances in understanding the post-translational regulation of DLC proteins that allow for tuning of protein activity and localization are highlighted. This detailed overview will serve as resource for future studies aimed at further elucidating the complex regulatory mechanisms of DLC family proteins and exploring their potential as targets for therapeutic applications.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; Medical University of Innsbruck, Institute of Pathophysiology, Innsbruck, Austria
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| |
Collapse
|
3
|
Hooglugt A, van der Stoel MM, Shapeti A, Neep BF, de Haan A, van Oosterwyck H, Boon RA, Huveneers S. DLC1 promotes mechanotransductive feedback for YAP via RhoGAP-mediated focal adhesion turnover. J Cell Sci 2024; 137:jcs261687. [PMID: 38563084 PMCID: PMC11112125 DOI: 10.1242/jcs.261687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
| | - Miesje M. van der Stoel
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| | - Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, 3001 Leuven, Belgium
| | - Beau F. Neep
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
| | - Annett de Haan
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| | - Hans van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, 3001 Leuven, Belgium
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, 3000 Leuven, Belgium
| | - Reinier A. Boon
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081HZ Amsterdam, the Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt am Main, Germany
- Goethe University, Institute of Cardiovascular Regeneration, 60590 Frankfurt am Main, Germany
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105AZ Amsterdam, the Netherlands
| |
Collapse
|
4
|
He Y, Goyette MA, Chapelle J, Boufaied N, Al Rahbani J, Schonewolff M, Danek EI, Muller WJ, Labbé DP, Côté JF, Lamarche-Vane N. CdGAP is a talin-binding protein and a target of TGF-β signaling that promotes HER2-positive breast cancer growth and metastasis. Cell Rep 2023; 42:112936. [PMID: 37552602 DOI: 10.1016/j.celrep.2023.112936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor β (TGF-β)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-β signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-β-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-β and integrin/talin signaling pathways.
Collapse
Affiliation(s)
- Yi He
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Marie-Anne Goyette
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Jennifer Chapelle
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jalal Al Rahbani
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Maribel Schonewolff
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Eric I Danek
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
| | - Jean-François Côté
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
5
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Su MH, Lai RY, Lin YF, Chen CY, Feng YCA, Hsiao PC, Wang SH. Evaluation of the causal relationship between smoking and schizophrenia in East Asia. SCHIZOPHRENIA 2022; 8:72. [PMID: 36085329 PMCID: PMC9463183 DOI: 10.1038/s41537-022-00281-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Cigarette smoking has been suggested to be associated with the risk of schizophrenia in observational studies. A significant causal effect of smoking on schizophrenia has been reported in European populations using the Mendelian randomization approach; however, no evidence of causality was found in participants from East Asia. Using Taiwan Biobank (TWBB), we conducted genome-wide association studies (GWAS) to identify susceptibility loci for smoking behaviors, including smoking initiation (N = 79,989) and the onset age (N = 15,582). We then meta-analyzed GWAS from TWBB and Biobank Japan (BBJ) with the total sample size of 245,425 for smoking initiation and 46,000 for onset age of smoking. The GWAS for schizophrenia was taken from the East Asia Psychiatric Genomics Consortium, which included 22,778 cases and 35,362 controls. We performed a two-sample Mendelian randomization to estimate the causality of smoking behaviors on schizophrenia in East Asia. In TWBB, we identified one locus that met genome-wide significance for onset age. In a meta-analysis of TWBB and BBJ, we identified two loci for smoking initiation. In Mendelian randomization, genetically predicted smoking initiation (odds ratio (OR) = 4.00, 95% confidence interval (CI) = 0.89–18.01, P = 0.071) and onset age (OR for a per-year increase = 0.96, 95% CI = 0.91–1.01, P = 0.098) were not significantly associated with schizophrenia; the direction of effect was consistent with European Ancestry samples, which had higher statistical power. These findings provide tentative evidence consistent with a causal role of smoking on the development of schizophrenia in East Asian populations.
Collapse
|
7
|
Hinsenkamp I, Köhler JP, Flächsenhaar C, Hitkova I, Meessen SE, Gaiser T, Wieland T, Weiss C, Röcken C, Mowat M, Quante M, Taxauer K, Mejias-Luque R, Gerhard M, Vogelmann R, Meindl-Beinker N, Ebert M, Burgermeister E. Functional antagonism between CagA and DLC1 in gastric cancer. Cell Death Dis 2022; 8:358. [PMID: 35963849 PMCID: PMC9376073 DOI: 10.1038/s41420-022-01134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Helicobacter (H.) pylori-induced gastritis is a risk factor for gastric cancer (GC). Deleted-in-liver-cancer-1 (DLC1/ARHGAP7) inhibits RHOA, a downstream mediator of virulence factor cytotoxin-A (CagA) signalling and driver of consensus-molecular-subtype-2 diffuse GC. DLC1 located to enterochromaffin-like and MIST1+ stem/chief cells in the stomach. DLC1+ cells were reduced in H. pylori gastritis and GC, and in mice infected with H. pylori. DLC1 positivity inversely correlated with tumour progression in patients. GC cells retained an N-terminal truncation variant DLC1v4 in contrast to full-length DLC1v1 in non-neoplastic tissues. H. pylori and CagA downregulated DLC1v1/4 promoter activities. DLC1v1/4 inhibited cell migration and counteracted CagA-driven stress phenotypes enforcing focal adhesion. CagA and DLC1 interacted via their N- and C-terminal domains, proposing that DLC1 protects against H. pylori by neutralising CagA. H. pylori-induced DLC1 loss is an early molecular event, which makes it a potential marker or target for subtype-aware cancer prevention or therapy.
Collapse
Affiliation(s)
- Isabel Hinsenkamp
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jan P Köhler
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Flächsenhaar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ivana Hitkova
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Eberhart Meessen
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Röcken
- Institute of Pathology, Christian Albrechts University Kiel, Kiel, Germany
| | - Michael Mowat
- CancerCare Manitoba Research Institute, Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Michael Quante
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Karin Taxauer
- Institute for Med. Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejias-Luque
- Institute for Med. Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Markus Gerhard
- Institute for Med. Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Roger Vogelmann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,DKFZ-Hector Institute at the University Medical Center, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
8
|
Frey Y, Franz-Wachtel M, Macek B, Olayioye MA. Proteasomal turnover of the RhoGAP tumor suppressor DLC1 is regulated by HECTD1 and USP7. Sci Rep 2022; 12:5036. [PMID: 35322810 PMCID: PMC8943137 DOI: 10.1038/s41598-022-08844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The Rho GTPase activating protein Deleted in Liver Cancer 1 (DLC1) is frequently downregulated through genetic and epigenetic mechanisms in various malignancies, leading to aberrant Rho GTPase signaling and thus facilitating cancer progression. Here we show that in breast cancer cells, dysregulation of DLC1 expression occurs at the protein level through rapid degradation via the ubiquitin–proteasome system. Using mass spectrometry, we identify two novel DLC1 interaction partners, the ubiquitin-ligase HECTD1 and the deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7). While DLC1 protein expression was rapidly downregulated upon pharmacological inhibition of USP7, siRNA-mediated knockdown of HECTD1 increased DLC1 protein levels and impaired its degradation. Immunofluorescence microscopy analyses revealed that the modulation of HECTD1 levels and USP7 activity altered DLC1 abundance at focal adhesions, its primary site of action. Thus, we propose opposing regulatory mechanisms of DLC1 protein homeostasis by USP7 and HECTD1, which could open up strategies to counteract downregulation and restore DLC1 expression in cancer.
Collapse
Affiliation(s)
- Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
9
|
Sanchez-Solana B, Wang D, Qian X, Velayoudame P, Simanshu DK, Acharya JK, Lowy DR. The tumor suppressor activity of DLC1 requires the interaction of its START domain with Phosphatidylserine, PLCD1, and Caveolin-1. Mol Cancer 2021; 20:141. [PMID: 34727930 PMCID: PMC8561924 DOI: 10.1186/s12943-021-01439-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DLC1, a tumor suppressor gene that is downregulated in many cancer types by genetic and nongenetic mechanisms, encodes a protein whose RhoGAP and scaffolding activities contribute to its tumor suppressor functions. The role of the DLC1 START (StAR-related lipid transfer; DLC1-START) domain, other than its binding to Caveolin-1, is poorly understood. In other START domains, a key function is that they bind lipids, but the putative lipid ligand for DLC1-START is unknown. METHODS Lipid overlay assays and Phosphatidylserine (PS)-pull down assays confirmed the binding of DLC1-START to PS. Co-immunoprecipitation studies demonstrated the interaction between DLC1-START and Phospholipase C delta 1 (PLCD1) or Caveolin-1, and the contribution of PS to those interactions. Rho-GTP, cell proliferation, cell migration, and/or anchorage-independent growth assays were used to investigate the contribution of PS and PLCD1, or the implications of TCGA cancer-associated DLC1-START mutants, to DLC1 functions. Co-immunoprecipitations and PS-pull down assays were used to investigate the molecular mechanisms underlying the impaired functions of DLC1-START mutants. A structural model of DLC1-START was also built to better understand the structural implications of the cancer-associated mutations in DLC1-START. RESULTS We identified PS as the lipid ligand for DLC1-START and determined that DLC1-START also binds PLCD1 protein in addition to Caveolin-1. PS binding contributes to the interaction of DLC1 with Caveolin-1 and with PLCD1. The importance of these activities for tumorigenesis is supported by our analysis of 7 cancer-associated DLC1-START mutants, each of which has reduced tumor suppressor function but retains wildtype RhoGAP activity. Our structural model of DLC1-START indicates the mutants perturb different elements within the structure, which is correlated with our experimental findings that the mutants are heterogenous with regard to the deficiency of their binding properties. Some have reduced PS binding, others reduced PLCD1 and Caveolin-1 binding, and others are deficient for all of these properties. CONCLUSION These observations highlight the importance of DLC1-START for the tumor suppressor function of DLC1 that is RhoGAP-independent. They also expand the versatility of START domains, as DLC1-START is the first found to bind PS, which promotes the binding to other proteins.
Collapse
Affiliation(s)
- Beatriz Sanchez-Solana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Parthibane Velayoudame
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21701, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21701, USA
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
11
|
Yan Y, Martinez R, Rasheed MN, Cahal J, Xu Z, Rui Y, Qualmann KJ, Hagan JP, Kim DH. Germline and somatic mutations in the pathology of pineal cyst: A whole-exome sequencing study of 93 individuals. Mol Genet Genomic Med 2021; 9:e1691. [PMID: 33943042 PMCID: PMC8222845 DOI: 10.1002/mgg3.1691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pineal cyst is a benign lesion commonly occurring in people of any age. Until now, the underlying molecular alterations have not been explored. Methods We performed whole exome sequencing of 93 germline samples and 21 pineal cyst tissue samples to illustrate its genetic architecture and somatic mutations. The dominant and recessive inheritance modes were considered, and a probability was calculated to evaluate the significance of variant overrepresentation. Results By analyzing pineal cyst as a Mendelian disease with a dominant inheritance pattern, we identified 42,325 rare germline variants, and NM_001004711.1:c.476A>G was highly enriched (FDR<0.2). By analyzing it as a recessive disorder, we identified 753 homozygous rare variants detected in at least one pineal cyst sample each. One STIM2 rare variant, NM_001169117.1:c.1652C>T, was overrepresented (FDR<0.05). Analyzing at a gene‐based level, we identified a list of the most commonlymutated germline genes, including POP4, GNGT2 and TMEM254. A somatic mutation analysis of 21 samples identified 16 variants in 15 genes, which mainly participated in the biological processes of gene expression and epigenetic regulation, immune response modulation, and transferase activity. Conclusion These molecular profiles are novel for this condition and provide data for investigators interested in pineal cysts.
Collapse
Affiliation(s)
- Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rebecca Martinez
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria N Rasheed
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joshua Cahal
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhen Xu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanning Rui
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krista J Qualmann
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John P Hagan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dong H Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX, USA
| |
Collapse
|
12
|
Keller L, Tardy C, Ligat L, Gilhodes J, Filleron T, Bery N, Rochaix P, Aquilina A, Bdioui S, Roux T, Trinquet E, Favre G, Olichon A. Nanobody-Based Quantification of GTP-Bound RHO Conformation Reveals RHOA and RHOC Activation Independent from Their Total Expression in Breast Cancer. Anal Chem 2021; 93:6104-6111. [PMID: 33825439 DOI: 10.1021/acs.analchem.0c05137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 μg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.
Collapse
Affiliation(s)
- Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France.,Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31037, France
| | - Claudine Tardy
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France
| | - Laetitia Ligat
- Le Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, plateau de protéomique, Toulouse 31037, France
| | - Julia Gilhodes
- Service de Biostatistiques, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31059, France
| | - Thomas Filleron
- Service de Biostatistiques, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31059, France
| | - Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France
| | - Philippe Rochaix
- Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31037, France
| | | | | | | | | | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France.,Laboratoire de Biologie Médicale Oncologique, Institut Claudius Regaud, IUCT-Oncopôle, Toulouse 31037, France
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse 31037, France.,INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion 97487, France
| |
Collapse
|
13
|
Tumor suppressor gene DLC1: Its modifications, interactive molecules, and potential prospects for clinical cancer application. Int J Biol Macromol 2021; 182:264-275. [PMID: 33836193 DOI: 10.1016/j.ijbiomac.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Deleted in liver cancer 1 (DLC1) is a recognized tumor suppressor gene that negatively regulates Rho family proteins by hydrolyzing the active GTP-bound state to its inactive GDP-bound state. Active Rho proteins play a positive role in tumorigenesis. Numerous in vitro and in vivo experiments have shown that DLC1 is downregulated or inactivated in various solid tumors, which may be due to the following five reasons: genomic deletion, epigenetic modification and ubiquitin-dependent proteasomal degradation may cause DLC1 underexpression; phosphorylation at the post-translation level may cause DLC1 inactivation; and failure to localize at focal adhesions (FAs) may prevent DLC1 from exerting full activity. All of the causes could be attributed to molecular binding. Experimental evidence suggests that direct or indirect targeting of DLC1 is feasible for cancer treatment. Therefore, elucidating the interaction of DLC1 with its binding partners might provide novel targeted therapies for cancer. In this review, we summarized the binding partners of DLC1 at both the gene and protein levels and expounded a variety of anticancer drugs targeting DLC1 to provide information about DLC1 as a cancer diagnostic indicator or therapeutic target.
Collapse
|
14
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
15
|
Identifying Cancer-Relevant Mutations in the DLC START Domain Using Evolutionary and Structure-Function Analyses. Int J Mol Sci 2020; 21:ijms21218175. [PMID: 33142932 PMCID: PMC7662654 DOI: 10.3390/ijms21218175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
Rho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the deleted in liver cancer (DLC) family of bona fide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor-suppressive capabilities. This pan-cancer analysis shows that conserved residues of both START domains are highly overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Furthermore, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high-priority candidates for development of novel therapeutics that target their START domain.
Collapse
|