1
|
Hayes MN, Cohen-Gogo S, Kee L, Xiong X, Weiss A, Layeghifard M, Ladumor Y, Valencia-Sama I, Rajaselvam A, Kaplan DR, Villani A, Shlien A, Morgenstern DA, Irwin MS. DNA damage response deficiency enhances neuroblastoma progression and sensitivity to combination PARP and ATR inhibition. Cell Rep 2025; 44:115537. [PMID: 40220294 DOI: 10.1016/j.celrep.2025.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Sequencing of neuroblastoma (NB) tumors has revealed genetic alterations in genes involved in DNA damage response (DDR) pathways. However, roles for specific alterations of DDR genes in pediatric solid tumors remain poorly understood. To address this, mutations in the DDR pathway including Brca2, Atm, and Palb2 were incorporated into an established zebrafish MYCN transgenic model (Tg(dbh:EGFP-MYCN)). These mutations enhance NB formation and metastasis and result in upregulation of cell-cycle checkpoint and DNA damage repair signatures, revealing molecular vulnerabilities in DDR-deficient NB. DDR gene knockdown in zebrafish and human NB cells increases sensitivity to the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, and this effect is enhanced by inhibition of the ataxia telangiectasia and rad3-related (ATR) kinase. This work provides in vivo evidence demonstrating that alterations in certain DDR-pathway genes promote aggressive NB and supports combination PARP + ATR inhibitor therapy for NB patients with tumors harboring specific genetic alterations in DDR.
Collapse
Affiliation(s)
- Madeline N Hayes
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xueting Xiong
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alex Weiss
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Layeghifard
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yagnesh Ladumor
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Anisha Rajaselvam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Pan X, Shi X, Zhang H, Chen Y, Zhou J, Shen F, Wang J, Jiang R. Exosomal miR-4516 derived from ovarian cancer stem cells enhanced cisplatin tolerance in ovarian cancer by inhibiting GAS7. Gene 2024; 927:148738. [PMID: 38955306 DOI: 10.1016/j.gene.2024.148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian cancer (OC) is a devastating disease for women, with chemotherapy resistance taking the lead. Cisplatin has been the first-line therapy for OC for a long time. However, the resistance of OC to cisplatin is an important impediment to its efficacy. Mounting studies showed that ovarian cancer stem cells (OCSCs) affected chemotherapy resistance by secreting exosomes. MicroRNAs (miRNAs) play important roles in exosomes secreted by OCSCs. Here, through the analysis of GEO database (GSE107155) combined with RT-qPCR of OC-related cells/clinical tissues, it was found that hsa-miR-4516 (miR-4516) was significantly up-regulated in OCSCs. Then, OCSCs-derived exosomes were isolated and identified, and it was observed the influence of exosomes on the chemoresistance in SKOV3/cisplatin (SKOV3/DDP) cells. These results manifested that OCSCs-mediated exosomes facilitated the chemoresistance of SKOV3/DDP cells by delivering miR-4516 into them. Growth arrest-specific 7 (GAS7), a downstream target of miR-4516, was determined by bioinformatics prediction combined with molecular biological detection. Next, we up-regulated GAS7 expression and discovered that the promotion of chemoresistance in SKOV3/DDP cells by OCSCs-derived exosomes was significantly impaired. Finally, the mice tumor model of SKOV3/DDP cells was built to estimate the effect of GAS7 over-expression on OC growth. The results showed that GAS7 inhibited the chemoresistance of OC in vivo. In conclusion, our experiments suggested that OCSCs-derived exosomes enhanced OC cisplatin resistance by suppressing GAS7 through the delivery of miR-4516. This study provides a possible target for the treatment of OC DDP resistance.
Collapse
Affiliation(s)
- Xin Pan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Xiu Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Hong Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - YouGuo Chen
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - JinHua Zhou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - FangRong Shen
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Juan Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Rong Jiang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China.
| |
Collapse
|
4
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
5
|
Møller MW, Andersen MS, Halle B, Pedersen CB, Boldt HB, Tan Q, Jurmeister PS, Herrgott GA, Castro AV, Petersen JK, Poulsen FR. Genome-Wide DNA Methylation Profiling as a Prognostic Marker in Pituitary Adenomas-A Pilot Study. Cancers (Basel) 2024; 16:2210. [PMID: 38927917 PMCID: PMC11201450 DOI: 10.3390/cancers16122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The prediction of the regrowth potential of pituitary adenomas after surgery is challenging. The genome-wide DNA methylation profiling of pituitary adenomas may separate adenomas into distinct methylation classes corresponding to histology-based subtypes. Specific genes and differentially methylated probes involving regrowth have been proposed, but no study has linked this epigenetic variance with regrowth potential and the clinical heterogeneity of nonfunctioning pituitary adenomas. This study aimed to investigate whether DNA methylation profiling can be useful as a clinical prognostic marker. METHODS A DNA methylation analysis by Illumina's MethylationEPIC array was performed on 54 pituitary macroadenomas from patients who underwent transsphenoidal surgery during 2007-2017. Twelve patients were excluded due to an incomplete postoperative follow-up, degenerated biobank-stored tissue, or low DNA methylation quality. For the quantitative measurement of the tumor regrowth rate, we conducted a 3D volumetric analysis of tumor remnant volume via annual magnetic resonance imaging. A linear mixed effects model was used to examine whether different DNA methylation clusters had different regrowth patterns. RESULTS The DNA methylation profiling of 42 tissue samples showed robust DNA methylation clusters, comparable with previous findings. The subgroup of 33 nonfunctioning pituitary adenomas of an SF1-lineage showed five subclusters with an approximately unbiased score of 86%. There were no overall statistically significant differences when comparing hazard ratios for regrowth of 100%, 50%, or 0%. Despite this, plots of correlated survival estimates suggested higher regrowth rates for some clusters. The mixed effects model of accumulated regrowth similarly showed tendencies toward an association between specific DNA methylation clusters and regrowth potential. CONCLUSION The DNA methylation profiling of nonfunctioning pituitary adenomas may potentially identify adenomas with increased growth and recurrence potential. Larger validation studies are needed to confirm the findings from this explorative pilot study.
Collapse
Affiliation(s)
- Morten Winkler Møller
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark; (B.H.); (C.B.P.); (F.R.P.)
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
| | - Marianne Skovsager Andersen
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
- Department of Endocrinology, Odense University Hospital, 5000 Odense, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark; (B.H.); (C.B.P.); (F.R.P.)
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark; (B.H.); (C.B.P.); (F.R.P.)
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
| | - Henning Bünsow Boldt
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Qihua Tan
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
- Department of Public Health, Odense University Hospital, 5000 Odense, Denmark
| | - Philipp Sebastian Jurmeister
- Institute of Pathology, Ludwig Maximilians University Hospital Munich, 80336 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Grayson A. Herrgott
- Omics Laboratory, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA; (G.A.H.); (A.V.C.)
| | - Ana Valeria Castro
- Omics Laboratory, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Health, Detroit, MI 48202, USA; (G.A.H.); (A.V.C.)
- Department of Physiology, College of Human Medicine, Michigan State University, E. Lansing, MI 48824, USA
| | - Jeanette K. Petersen
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark; (B.H.); (C.B.P.); (F.R.P.)
- Department of Clinical Research and BRIDGE (Brain Research—Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense, Denmark; (M.S.A.); (H.B.B.); (Q.T.); (J.K.P.)
| |
Collapse
|
6
|
Yang Z, Hao J, Qiu M, Liu R, Mei H, Zhang Q, Gao Z, Pang W, Liu J, Pan W, Wang H, Gao M. The METTL3/miR-196a Axis Predicts Poor Prognosis in Non-small Cell Lung Cancer. J Cancer 2024; 15:1603-1612. [PMID: 38370374 PMCID: PMC10869973 DOI: 10.7150/jca.92968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background: METTL3 accelerates m6A modification to influence cancer progression including non-small cell lung cancer (NSCLC). To illustrate the role and underlying mechanism of METTL3 mediated miR-196a upregulation in NSCLC. Method: The global level of m6A modification was detected by qPCR, western blot and immumohistochemical staining. The TCGA, GEPIA, CPTAC and TIMER databases were used to explore the expression change of METTL3, miR-196a and GAS7 in NSCLC patients. Kaplan-Meier analysis was performed to analyze the prognostic value of miR-196a. NSCLC cells overexpressed or knockdown miR-196a were constructed and used for CCK8, colony formation assay, western blot and immunofluorescence in vitro. The effect of miR-196a on tumor growth was investigated in vivo. Result: We found that METTL3 mediated miR-196a were notably enhancive in NSCLC tissues and in NSCLC cells, which is markedly positively related with the serious TNM stage, the large tumor size, the distant metastasis, and the poor prognosis in patients of NSCLC. Further investigation showed that up-regulated miR-196a promoted cell viability and cell autophagy, while down-regulation of miR-196a revealed opposite results in H1299 and A549 cells. In terms of mechanism, we found that miR-196a interacted with GAS7. In addition, GAS7 expression in NSCLC patients may be positively related with the infiltration of immune cell subsets in tumor microenvironment (TME). Conclusion: The axis of METTL3-miR-196a-GAS7 might be a target for molecular targeted therapy, a potential and novel diagnostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Minghan Qiu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ruxue Liu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Hanwei Mei
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Qiaonan Zhang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Zhanhua Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wenwen Pang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jing Liu
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wenjie Pan
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Huaqing Wang
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| |
Collapse
|
7
|
Liu WF, Zhang QW, Quan B, Zhang F, Li M, Lu SX, Dong L, Yin X, Liu BB. Gas7 attenuates hepatocellular carcinoma progression and chemoresistance through the PI3K/Akt signaling pathway. Cell Signal 2023; 112:110908. [PMID: 37769891 DOI: 10.1016/j.cellsig.2023.110908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Growth arrest-specific gene 7 (Gas7) was involved in various cellular functions, although its specific roles and molecular mechanisms in hepatocellular carcinoma (HCC) remained unclear. So the current study was to investigate the role of Gas7 in HCC. Our findings revealed that Gas7 was downregulated in various HCC cell lines and low Gas7 expression was associated with decreased overall survival in patients with HCC. Additionally, our functional assays showed that Gas7 inhibited cell proliferation and migration, induced cell cycle arrest, apoptosis, and autophagy, and enhanced oxaliplatin sensitivity by inhibiting the PI3K/Akt signaling pathway. We also observed that transcription factorSp1 was responsible for inhibiting Gas7. These findings provide insights into the role and elucidated a potential mechanism of Gas7 in HCC progression and metastasis. It was also observed that the Sp1/Gas7/PI3K/Akt axis was critical for malignant phenotype and oxaliplatin sensitivity in HCC. Therefore, Gas7 can be considered as a prognostic predictor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Wen-Feng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Wei Zhang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Shen-Xin Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Bin-Bin Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
8
|
Dai C, Dai SY, Gao Y, Yan T, Zhou QY, Liu SJ, Liu X, Deng DN, Wang DH, Qin QF, Zi D. Circ_0078607 increases platinum drug sensitivity via miR-196b-5p/GAS7 axis in ovarian cancer. Epigenetics 2023; 18:2175565. [PMID: 36908025 PMCID: PMC10026884 DOI: 10.1080/15592294.2023.2175565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Platinum-based chemotherapy is one of the predominant strategies for treating ovarian cancer (OC), however, platinum resistance greatly influences the therapeutic effect. Circular RNAs (circRNAs) have been found to participate in the pathogenesis of platinum resistance. Our aim was to explore the involvement of circ_0078607 in OC cell cisplatin (DDP) resistance and its potential mechanisms. Circ_0078607, miR-196b-5p, and growth arrest-specific 7 (GAS7) levels were assessed by qPCR. Circ_0078607 stability was assessed by ribonuclease R digestion and actinomycin D treatment. Cell viability of various conic of DDP treatment was measured by CCK-8. The cell proliferation was determined by CCK-8 and colony formation assay. Western blotting was performed for determining GAS7, ABCB1, CyclinD1 and Bcl-2 protein levels. The direct binding between miR-196b-5p and circ_0078607 or GAS7 was validated by dual-luciferase reporter and RIP assay. DDP resistance in vivo was evaluated in nude mice. Immunohistochemistry staining for detecting Ki67 expression in xenograft tumours. Circ_0078607 and GAS7 was down-regulated, but miR-196b-5p was up-regulated in OC samples and DDP-resistant cells. Overexpression of circ_0078607 inhibited DDP resistance, cell growth and induced apoptosis in DDP-resistant OC cells. Mechanistically, circ_0078607 sequestered miR-196b-5p to up-regulate GAS7. MiR-196b-5p mimics reversed circ_0078607 or GAS7 overexpression-mediated enhanced sensitivity. Finally, circ_0078607 improved the sensitivity of DDP in vivo. Circ_0078607 attenuates DDP resistance via miR-196b-5p/GAS7 axis, which highlights the therapeutic potential of circ_0078607 to counter DDP resistance in OC.
Collapse
Affiliation(s)
- Cheng Dai
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Shi-Yuan Dai
- Department of Medical Record Statistics and Management, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Yan Gao
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Ting Yan
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Qi-Yin Zhou
- Department of Gynecology, the Second Affiliated Hospital of Zunyi Medical University of Guizhou Province, Zunyi, P.R. China
| | - Shi-Jun Liu
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Xuan Liu
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Dan-Ni Deng
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Dong-Hong Wang
- Department of Gynecology, the Affiliated Hospital of Zunyi Medical University of Guizhou Province, Zunyi, P.R. China
| | - Qing-Feng Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| |
Collapse
|
9
|
Bhavsar SP. Metastasis in neuroblastoma: the MYCN question. Front Oncol 2023; 13:1196861. [PMID: 37274289 PMCID: PMC10233040 DOI: 10.3389/fonc.2023.1196861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Oncogenic drivers like MYCN in neuroblastoma subsets continues to present a significant challenge owing to its strong correlation with high-risk metastatic disease and poor prognosis. However, only a limited number of MYCN-regulatory proteins associated with tumor initiation and progression have been elucidated. In this minireview, I summarize the recent progress in understanding the functional role of MYCN and its regulatory partners in neuroblastoma metastasis.
Collapse
|
10
|
Zhang S, Jiang R, Yang M, Wang T, Chen H, Shi Y, Liu W, Huang M. Identification of a novel eighteen-gene signature of recurrent metastasis neuroblastoma. J Mol Med (Berl) 2023; 101:403-417. [PMID: 36856811 DOI: 10.1007/s00109-023-02299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma is the most common malignant tumor in childhood, and metastases occur in more than 30% patients. Recurrent metastasis is the main cause of poor prognosis and high mortality in neuroblastoma. In this regard, there is still a lack of sufficient biomarkers and effective therapies. Therefore, we performed a multi-omics analysis of neuroblastoma patients from Therapeutically Applicable Research To Generate Effective Treatments (TARGET). With clinical relapse site information, tumor samples derived from the primary site were divided into recurrent metastasis and primary tumor groups. The initial gene signature was obtained by comparing RNA-Seq and copy number variation differences. Survival data was used to further filter prognosis-related genes. This 18-gene signature consists of three clusters: tumor suppression, cell proliferation, and immunity. A super enhancer is involved in the enhanced expression of NCAPG in cluster2 together with IRF3. Based on the gene signature expression in primary neuroblastoma, it is possible to predict tumor metastasis before it occurs. According to the anticancer drug dataset of Genomics of Drug Sensitivity in Cancer (GDSC), vinorelbine and docetaxel were predicted to have high sensitivity against recurrent metastatic neuroblastoma. In conclusion, our study offers a novel metastasis biomarker and helps understand the mechanisms of tumor recurrent metastasis. KEY MESSAGES: We identified a novel eighteen-gene signature of recurrent metastasis neuroblastoma and build risk and classification models. We dissected the regulatory role of NCAPG in signatures. We found immune exhaustion and immunosuppression in recurrent metastasis neuroblastoma. Vinorelbine and docetaxel were predicted to have high sensitivity against recurrent metastatic neuroblastoma.
Collapse
Affiliation(s)
- Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Jiang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Manqiu Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, 215123, China
| | - Hui Chen
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Yifan Shi
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wei Liu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
11
|
Tan K, Mo J, Li M, Dong Y, Han Y, Sun X, Ma Y, Zhu K, Wu W, Lu L, Liu J, Zhao K, Zhang L, Tang Y, Lv Z. SMAD9-MYCN positive feedback loop represents a unique dependency for MYCN-amplified neuroblastoma. J Exp Clin Cancer Res 2022; 41:352. [PMID: 36539767 PMCID: PMC9764568 DOI: 10.1186/s13046-022-02563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Mo
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Li
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Han
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Sun
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxuan Ma
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
13
|
Kristipati RR, Jose TG, Dhamodharan P, Chandrasekaran S, Arumugam M. Gene expression and network based study of colorectal adenocarcinoma reveals tankyrase, PIK3CB and cyclin G-associated kinase as potential target candidates. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Li R, Xia Y, Chen X, Li X, Huang G, Peng X, Liu K, Zhang C, Li M, Lin Y, Dong J, Ji L, Lai Y. Identification of a three-miRNA panel in serum for bladder cancer diagnosis by a diagnostic test. Transl Cancer Res 2022; 11:1005-1016. [PMID: 35706801 PMCID: PMC9189164 DOI: 10.21037/tcr-21-2611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/20/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bladder cancer (BC) is the tenth most common cancer in the world. Serum microRNA (miRNA) profiles previously have been reported as non-invasive biomarkers in cancer screening. The non-invasive and reliable diagnostic biomarkers are urgently needed for detecting BC, while cystoscopy is invasive. Our study aimed to identify candidate miRNAs in serum as potential diagnostic biomarkers for BC detection. METHODS This study was including the screening stage, training stage, and validation stage with 137 BC patients and 127 healthy controls (HCs). We identified the expression of 28 serum miRNAs from 5 BC pools and 3 HC pools in the initial screening stage. The other 112 BC patients and 112 HCs were randomly divided into training stage with 30 BC patients and 30 HCs and validation stages with 82 BC patients and 82 HCs. These HCs matched BC patients based on age and gender with P value >0.05. Identified dysregulated miRNAs were further confirmed in the training stage, and validation stages by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of miRNAs was assessed by receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC). Target genes of 3 candidate miRNAs were predicted by bioinformatic analysis. RESULTS Five miRNAs (miR-106a-5p, miR-145-5p, miR-132-3p, miR-7-5p and miR-148b-3p) in serum were obviously dysregulated in BC patients compared to HCs. The ability to diagnose BC of 3 candidate miRNAs was estimated by AUC, with miR-132-3p (AUC =0.781; sensitivity =68.29%, specificity =81.71%), miR-7-5p (AUC =0.778; sensitivity =59.76%, specificity =84.15%) and miR-148b-3p (AUC =0.837; sensitivity =81.71%, specificity =71.95%). Combined application of these candidate miRNAs with parallel test could improve the diagnostic value (AUC =0.922; sensitivity =90.24%, specificity =81.71%). BNC2, GAS7, and NTRK2, considered as target genes of the three-miRNA panel, may play an important role in the process of BC development. CONCLUSIONS A three-miRNA panel in serum was identified for BC diagnosis in our study, which HCs were used for differential diagnosis. The three-miRNA panel (miR-132-3p, miR-7-5p, and miR-148b-3p) might be performed as a non-invasive and convenient diagnostic tool for BC screening and diagnosis.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yong Xia
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xiqi Peng
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Kaihao Liu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Chunduo Zhang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Mingyang Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Lin
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Dong
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Ung CY, Levee TM, Zhang C, Correia C, Yeo KS, Li H, Zhu S. Gene utility recapitulates chromosomal aberrancies in advanced stage neuroblastoma. Comput Struct Biotechnol J 2022; 20:3291-3303. [PMID: 35832612 PMCID: PMC9251784 DOI: 10.1016/j.csbj.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Although only a few recurrent somatic mutations have been identified, chromosomal abnormalities, including the loss of heterozygosity (LOH) at the chromosome 1p and gains of chromosome 17q, are often seen in the high-risk cases. The biological basis and evolutionary forces that drive such genetic abnormalities remain enigmatic. Here, we conceptualize the Gene Utility Model (GUM) that seeks to identify genes driving biological signaling via their collective gene utilities and apply it to understand the impact of those differentially utilized genes on constraining the evolution of NB karyotypes. By employing a computational process-guided flow algorithm to model gene utility in protein–protein networks that built based on transcriptomic data, we conducted several pairwise comparative analyses to uncover genes with differential utilities in stage 4 NBs with distinct classification. We then constructed a utility karyotype by mapping these differentially utilized genes to their respective chromosomal loci. Intriguingly, hotspots of the utility karyotype, to certain extent, can consistently recapitulate the major chromosomal abnormalities of NBs and also provides clues to yet identified predisposition sites. Hence, our study not only provides a new look, from a gene utility perspective, into the known chromosomal abnormalities detected by integrative genomic sequencing efforts, but also offers new insights into the etiology of NB and provides a framework to facilitate the identification of novel therapeutic targets for this devastating childhood cancer.
Collapse
|
16
|
Oshima S, Asai S, Seki N, Minemura C, Kinoshita T, Goto Y, Kikkawa N, Moriya S, Kasamatsu A, Hanazawa T, Uzawa K. Identification of Tumor Suppressive Genes Regulated by miR-31-5p and miR-31-3p in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:6199. [PMID: 34201353 PMCID: PMC8227492 DOI: 10.3390/ijms22126199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Takashi Kinoshita
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| |
Collapse
|
17
|
Menard MJ. Loss of Gas7 Is a Key Metastatic Switch in Neuroblastoma. Cancer Res 2021; 81:2815-2816. [PMID: 34087781 DOI: 10.1158/0008-5472.can-21-0783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Metastatic spread to distant tissues and organs is responsible for most cancer-related mortalities. Changes in the invasiveness ability of metastatic tumor cells often come with significantly altered gene expression profiles compared with primary tumor cells. Identifying the main actors involved in the metastatic switch of tumor cells is key to proposed new therapeutic approaches. In this issue, the loss of growth-arrest specific 7 is described as one of the main events driving metastatic spread in neuroblastoma.See related article by Dong et al., p. 2995.
Collapse
Affiliation(s)
- Marie J Menard
- Department of Neurology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
18
|
Li S, Yeo KS, Levee TM, Howe CJ, Her ZP, Zhu S. Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells 2021; 10:cells10030580. [PMID: 33800887 PMCID: PMC8001113 DOI: 10.3390/cells10030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Taylor M. Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Cassie J. Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
- Correspondence:
| |
Collapse
|