1
|
Martynov I, Dhaka L, Wilke B, Hoyer P, Vahdad MR, Seitz G. Contemporary preclinical mouse models for pediatric rhabdomyosarcoma: from bedside to bench to bedside. Front Oncol 2024; 14:1333129. [PMID: 38371622 PMCID: PMC10869630 DOI: 10.3389/fonc.2024.1333129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignancy, characterized by high clinicalopathological and molecular heterogeneity. Preclinical in vivo models are essential for advancing our understanding of RMS oncobiology and developing novel treatment strategies. However, the diversity of scholarly data on preclinical RMS studies may challenge scientists and clinicians. Hence, we performed a systematic literature survey of contemporary RMS mouse models to characterize their phenotypes and assess their translational relevance. Methods We identified papers published between 01/07/2018 and 01/07/2023 by searching PubMed and Web of Science databases. Results Out of 713 records screened, 118 studies (26.9%) were included in the qualitative synthesis. Cell line-derived xenografts (CDX) were the most commonly utilized (n = 75, 63.6%), followed by patient-derived xenografts (PDX) and syngeneic models, each accounting for 11.9% (n = 14), and genetically engineered mouse models (GEMM) (n = 7, 5.9%). Combinations of different model categories were reported in 5.9% (n = 7) of studies. One study employed a virus-induced RMS model. Overall, 40.0% (n = 30) of the studies utilizing CDX models established alveolar RMS (aRMS), while 38.7% (n = 29) were embryonal phenotypes (eRMS). There were 20.0% (n = 15) of studies that involved a combination of both aRMS and eRMS subtypes. In one study (1.3%), the RMS phenotype was spindle cell/sclerosing. Subcutaneous xenografts (n = 66, 55.9%) were more frequently used compared to orthotopic models (n = 29, 24.6%). Notably, none of the employed cell lines were derived from primary untreated tumors. Only a minority of studies investigated disseminated RMS phenotypes (n = 16, 13.6%). The utilization areas of RMS models included testing drugs (n = 64, 54.2%), studying tumorigenesis (n = 56, 47.5%), tumor modeling (n = 19, 16.1%), imaging (n = 9, 7.6%), radiotherapy (n = 6, 5.1%), long-term effects related to radiotherapy (n = 3, 2.5%), and investigating biomarkers (n = 1, 0.8%). Notably, no preclinical studies focused on surgery. Conclusions This up-to-date review highlights the need for mouse models with dissemination phenotypes and cell lines from primary untreated tumors. Furthermore, efforts should be directed towards underexplored areas such as surgery, radiotherapy, and biomarkers.
Collapse
Affiliation(s)
- Illya Martynov
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Lajwanti Dhaka
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Benedikt Wilke
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Paul Hoyer
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - M. Reza Vahdad
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| |
Collapse
|
2
|
Sreenivas P, Wang L, Wang M, Challa A, Modi P, Hensch NR, Gryder B, Chou HC, Zhao XR, Sunkel B, Moreno-Campos R, Khan J, Stanton BZ, Ignatius MS. A SNAI2/CTCF Interaction is Required for NOTCH1 Expression in Rhabdomyosarcoma. Mol Cell Biol 2023; 43:547-565. [PMID: 37882064 PMCID: PMC10761179 DOI: 10.1080/10985549.2023.2256640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignancy of the muscle with characteristics of cells blocked in differentiation. NOTCH1 is an oncogene that promotes self-renewal and blocks differentiation in the fusion negative-RMS sub-type. However, how NOTCH1 expression is transcriptionally maintained in tumors is unknown. Analyses of SNAI2 and CTCF chromatin binding and HiC analyses revealed a conserved SNAI2/CTCF overlapping peak downstream of the NOTCH1 locus marking a sub-topologically associating domain (TAD) boundary. Deletion of the SNAI2-CTCF peak showed that it is essential for NOTCH1 expression and viability of FN-RMS cells. Reintroducing constitutively activated NOTCH1-ΔE in cells with the SNAI2-CTCF peak deleted restored cell-viability. Ablation of SNAI2 using CRISPR/Cas9 reagents resulted in the loss of majority of RD and SMS-CTR FN-RMS cells. However, the few surviving clones that repopulate cultures have recovered NOTCH1. Cells that re-establish NOTCH1 expression after SNAI2 ablation are unable to differentiate robustly as SNAI2 shRNA knockdown cells; yet, SNAI2-ablated cells continued to be exquisitely sensitive to ionizing radiation. Thus, we have uncovered a novel mechanism by which SNAI2 and CTCF maintenance of a sub-TAD boundary promotes rather than represses NOTCH1 expression. Further, we demonstrate that SNAI2 suppression of apoptosis post-radiation is independent of SNAI2/NOTCH1 effects on self-renewal and differentiation.
Collapse
Affiliation(s)
- Prethish Sreenivas
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Long Wang
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Meng Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Anil Challa
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Paulomi Modi
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Nicole Rae Hensch
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Xiang R. Zhao
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Benjamin Sunkel
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Rodrigo Moreno-Campos
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Javed Khan
- Pediatric Oncology Branch, NCI, NIH, Bethesda, Maryland, USA
| | - Benjamin Z. Stanton
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Myron S. Ignatius
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| |
Collapse
|
3
|
Andrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, et alAndrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science 2023; 380:eabn7930. [PMID: 37104580 DOI: 10.1126/science.abn7930] [Show More Authors] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Understanding the regulatory landscape of the human genome is a long-standing objective of modern biology. Using the reference-free alignment across 241 mammalian genomes produced by the Zoonomia Consortium, we charted evolutionary trajectories for 0.92 million human candidate cis-regulatory elements (cCREs) and 15.6 million human transcription factor binding sites (TFBSs). We identified 439,461 cCREs and 2,024,062 TFBSs under evolutionary constraint. Genes near constrained elements perform fundamental cellular processes, whereas genes near primate-specific elements are involved in environmental interaction, including odor perception and immune response. About 20% of TFBSs are transposable element-derived and exhibit intricate patterns of gains and losses during primate evolution whereas sequence variants associated with complex traits are enriched in constrained TFBSs. Our annotations illuminate the regulatory functions of the human genome.
Collapse
Affiliation(s)
- Gregory Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Henry E Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nishigandha Phalke
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Elinor K Karlsson
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Perrone C, Pomella S, Cassandri M, Pezzella M, Giuliani S, Gasperi T, Porrazzo A, Alisi A, Pastore A, Codenotti S, Fanzani A, Barillari G, Conti LA, De Angelis B, Quintarelli C, Mariottini P, Locatelli F, Marampon F, Rota R, Cervelli M. Spermine oxidase induces DNA damage and sensitizes fusion negative rhabdomyosarcoma cells to irradiation. Front Cell Dev Biol 2023; 11:1061570. [PMID: 36755974 PMCID: PMC9900442 DOI: 10.3389/fcell.2023.1061570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma that includes fusion-positive (FP) and fusion-negative (FN) molecular subtypes. FP-RMS expresses PAX3-FOXO1 fusion protein and often shows dismal prognosis. FN-RMS shows cytogenetic abnormalities and frequently harbors RAS pathway mutations. Despite the multimodal heavy chemo and radiation therapeutic regimens, high risk metastatic/recurrent FN-RMS shows a 5-year survival less than 30% due to poor sensitivity to chemo-radiotherapy. Therefore, the identification of novel targets is needed. Polyamines (PAs) such as putrescine (PUT), spermidine (SPD) and spermine (SPM) are low-molecular-mass highly charged molecules whose intracellular levels are strictly modulated by specific enzymes. Among the latter, spermine oxidase (SMOX) regulates polyamine catabolism oxidizing SPM to SPD, which impacts cellular processes such as apoptosis and DNA damage response. Here we report that low SMOX levels are associated with a worse outcome in FN-RMS, but not in FP-RMS, patients. Consistently, SMOX expression is downregulated in FN-RMS cell lines as compared to normal myoblasts. Moreover, SMOX transcript levels are reduced FN-RMS cells differentiation, being indirectly downregulated by the muscle transcription factor MYOD. Noteworthy, forced expression of SMOX in two cell lines derived from high-risk FN-RMS: 1) reduces SPM and upregulates SPD levels; 2) induces G0/G1 cell cycle arrest followed by apoptosis; 3) impairs anchorage-independent and tumor spheroids growth; 4) inhibits cell migration; 5) increases γH2AX levels and foci formation indicative of DNA damage. In addition, forced expression of SMOX and irradiation synergize at activating ATM and DNA-PKCs, and at inducing γH2AX expression and foci formation, which suggests an enhancement in DNA damage response. Irradiated SMOX-overexpressing FN-RMS cells also show significant decrease in both colony formation capacity and spheroids growth with respect to single approaches. Thus, our results unveil a role for SMOX as inhibitor of tumorigenicity of FN-RMS cells in vitro. In conclusion, our in vitro results suggest that SMOX induction could be a potential combinatorial approach to sensitize FN-RMS to ionizing radiation and deserve further in-depth studies.
Collapse
Affiliation(s)
- Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Giuliani
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy
| | - Tecla Gasperi
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy,Biostructures and Biosystems National Institute (INBB), Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy,Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Pastore
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Paolo Mariottini
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Rossella Rota, ; Manuela Cervelli,
| | - Manuela Cervelli
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy,*Correspondence: Rossella Rota, ; Manuela Cervelli,
| |
Collapse
|
5
|
Hensch NR, Bondra K, Wang L, Sreenivas P, Zhao XR, Modi P, Vaseva AV, Houghton PJ, Ignatius MS. Sensitization to Ionizing Radiation by MEK Inhibition Is Dependent on SNAI2 in Fusion-Negative Rhabdomyosarcoma. Mol Cancer Ther 2023; 22:123-134. [PMID: 36162055 PMCID: PMC10046682 DOI: 10.1158/1535-7163.mct-22-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 02/03/2023]
Abstract
In fusion-negative rhabdomyosarcoma (FN-RMS), a pediatric malignancy with skeletal muscle characteristics, >90% of high-risk patients have mutations that activate the RAS/MEK signaling pathway. We recently discovered that SNAI2, in addition to blocking myogenic differentiation downstream of MEK signaling in FN-RMS, represses proapoptotic BIM expression to protect RMS tumors from ionizing radiation (IR). As clinically relevant concentrations of the MEK inhibitor trametinib elicit poor responses in preclinical xenograft models, we investigated the utility of low-dose trametinib in combination with IR for the treatment of RAS-mutant FN-RMS. We hypothesized that trametinib would sensitize FN-RMS to IR through its downregulation of SNAI2 expression. While we observed little to no difference in myogenic differentiation or cell survival with trametinib treatment alone, robust differentiation and reduced survival were observed after IR. In addition, IR-induced apoptosis was significantly increased in FN-RMS cells treated concurrently with trametinib, as was increased BIM expression. SNAI2's role in these processes was established using overexpression rescue experiments, where overexpression of SNAI2 prevented IR-induced myogenic differentiation and apoptosis. Moreover, combining MEK inhibitor with IR resulted in complete tumor regression and a 2- to 4-week delay in event-free survival (EFS) in preclinical xenograft and patient-derived xenograft models. Our findings demonstrate that the combination of MEK inhibition and IR results in robust differentiation and apoptosis, due to the reduction of SNAI2, which leads to extended EFS in FN-RMS. SNAI2 thus is a potential biomarker of IR insensitivity and target for future therapies to sensitize aggressive sarcomas to IR.
Collapse
Affiliation(s)
- Nicole R. Hensch
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Kathryn Bondra
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Xiang R. Zhao
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Angelina V. Vaseva
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Peter J. Houghton
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Myron S. Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| |
Collapse
|
6
|
Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, Tomaciello M, Macioce G, Pedini F, Barillari G, Marchese C, Rota R, Cenci G, Tombolini M, Newman RA, Yang P, Codenotti S, Fanzani A, Megiorni F, Festuccia C, Minniti G, Gravina GL, Vulcano F, Milazzo L, Marampon F. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol 2022; 13:1071176. [DOI: 10.3389/fphar.2022.1071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.
Collapse
|
7
|
Pomella S, Porrazzo A, Cassandri M, Camero S, Codenotti S, Milazzo L, Vulcano F, Barillari G, Cenci G, Marchese C, Fanzani A, Megiorni F, Rota R, Marampon F. Translational Implications for Radiosensitizing Strategies in Rhabdomyosarcoma. Int J Mol Sci 2022; 23:13281. [PMID: 36362070 PMCID: PMC9656983 DOI: 10.3390/ijms232113281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2024] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence that includes FP-RMS, harboring the fusion oncoprotein PAX3/7-FOXO1 and FN-RMS, often mutant in the RAS pathway. Risk stratifications of RMS patients determine different prognostic groups and related therapeutic treatment. Current multimodal therapeutic strategies involve surgery, chemotherapy (CHT) and radiotherapy (RT), but despite the deeper knowledge of response mechanisms underpinning CHT treatment and the technological improvements that characterize RT, local failures and recurrence frequently occur. This review sums up the RMS classification and the management of RMS patients, with special attention to RT treatment and possible radiosensitizing strategies for RMS tumors. Indeed, RMS radioresistance is a clinical problem and further studies aimed at dissecting radioresistant molecular mechanisms are needed to identify specific targets to hit, thus improving RT-induced cytotoxicity.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonella Porrazzo
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, 25123 Brescia, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, 25123 Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Camero S, Cassandri M, Pomella S, Milazzo L, Vulcano F, Porrazzo A, Barillari G, Marchese C, Codenotti S, Tomaciello M, Rota R, Fanzani A, Megiorni F, Marampon F. Radioresistance in rhabdomyosarcomas: Much more than a question of dose. Front Oncol 2022; 12:1016894. [PMID: 36248991 PMCID: PMC9559533 DOI: 10.3389/fonc.2022.1016894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes.
Collapse
Affiliation(s)
- Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Qi J, Pan T, You T, Tang Y, Chu T, Chen J, Fan Y, Hu S, Yang F, Ruan C, Wu D, Han Y. Upregulation of HIF-1α contributes to complement activation in transplantation-associated thrombotic microangiopathy. Br J Haematol 2022; 199:603-615. [PMID: 35864790 DOI: 10.1111/bjh.18377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a severe complication of haematopoietic stem cell transplantation (HSCT). Complement activation is involved in the development of TA-TMA. However, the underlying mechanism is unclear. Therefore, 21 samples of TA-TMA and 1:1 matched controls were measured for hypoxia-inducible factor-1α (HIF-1α) and complement protein. The mechanism was investigated both in vitro and in vivo. In this study, we found that levels of HIF-1α were significantly higher in TA-TMA patients than that in non-TA-TMA controls. Upregulation of HIF-1α induced an increase in membrane-bound complement C3 and dysfunction of human umbilical vein endothelial cells (HUVECs) in vitro. Increasing HIF-1α in vivo led to C3 and C5b-9 deposition in the glomerular endothelial capillary complex, thrombocytopenia, anaemia, and increased serum lactate dehydrogenase (LDH) levels in wild-type (WT) but not in C3-/- mice subjected to HSCT. High platelet aggregation in peripheral blood and CD41-positive microthrombi in the kidney were also found in dimethyloxallyl glycine (DMOG)-treated mice, recapitulating the TA-TMA phenotype seen in patients. Comprehensive analysis, including DNA array, luciferase reporter assay, chromatin immunoprecipitation (ChIP)-seq, and quantitative polymerase chain reaction (PCR), revealed that HIF-1α interacted with the promoter of complement factor H (CFH) to inhibit its transcription. Decreased CFH led to complement activation in endothelial cells.
Collapse
Affiliation(s)
- Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tao You
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tiantian Chu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Shuhong Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Fei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chiu HY, Loh AHP, Taneja R. Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 2022; 13:419. [PMID: 35490194 PMCID: PMC9056521 DOI: 10.1038/s41419-022-04835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractEmbryonal rhabdomyosarcoma (ERMS) is characterised by a failure of cells to complete skeletal muscle differentiation. Although ERMS cells are vulnerable to oxidative stress, the relevance of mitochondrial calcium homoeostasis in oncogenesis is unclear. Here, we show that ERMS cell lines as well as primary tumours exhibit elevated expression of the mitochondrial calcium uniporter (MCU). MCU knockdown resulted in impaired mitochondrial calcium uptake and a reduction in mitochondrial reactive oxygen species (mROS) levels. Phenotypically, MCU knockdown cells exhibited reduced cellular proliferation and motility, with an increased propensity to differentiate in vitro and in vivo. RNA-sequencing of MCU knockdown cells revealed a significant reduction in genes involved in TGFβ signalling that play prominent roles in oncogenesis and inhibition of myogenic differentiation. Interestingly, modulation of mROS production impacted TGFβ signalling. Our study elucidates mechanisms by which mitochondrial calcium dysregulation promotes tumour progression and suggests that targeting the MCU complex to restore mitochondrial calcium homoeostasis could be a therapeutic avenue in ERMS.
Collapse
|
11
|
Ghilu S, Morton CL, Vaseva AV, Zheng S, Kurmasheva RT, Houghton PJ. Approaches to identifying drug resistance mechanisms to clinically relevant treatments in childhood rhabdomyosarcoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:80-89. [PMID: 35450020 PMCID: PMC8992598 DOI: 10.20517/cdr.2021.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
Aim Despite aggressive multiagent protocols, patients with metastatic rhabdomyosarcoma (RMS) have poor prognosis. In a recent high-risk trial (ARST0431), 25% of patients failed within the first year, while on therapy and 80% had tumor progression within 24 months. However, the mechanisms for tumor resistance are essentially unknown. Here we explore the use of preclinical models to develop resistance to complex chemotherapy regimens used in ARST0431. Methods A Single Mouse Testing (SMT) protocol was used to evaluate the sensitivity of 34 RMS xenograft models to one cycle of vincristine, actinomycin D, cyclophosphamide (VAC) treatment. Tumor response was determined by caliper measurement, and tumor regression and event-free survival (EFS) were used as endpoints for evaluation. Treated tumors at regrowth were transplanted into recipient mice, and the treatment was repeated until tumors progressed during the treatment period (i.e., became resistant). At transplant, tumor tissue was stored for biochemical and omics analysis. Results The sensitivity to VAC of 34 RMS models was determined. EFS varied from 3 weeks to > 20 weeks. Tumor models were classified as having intrinsic resistance, intermediate sensitivity, or high sensitivity to VAC therapy. Resistance to VAC was developed in multiple models after 2-5 cycles of therapy; however, there were examples where sensitivity remained unchanged after 3 cycles of treatment. Conclusion The SMT approach allows for in vivo assessment of drug sensitivity and development of drug resistance in a large number of RMS models. As such, it provides a platform for assessing in vivo drug resistance mechanisms at a "population" level, simulating conditions in vivo that lead to clinical resistance. These VAC-resistant models represent "high-risk" tumors that mimic a preclinical phase 2 population and will be valuable for identifying novel agents active against VAC-resistant disease.
Collapse
Affiliation(s)
- Samson Ghilu
- Department of Molecular Medicine, Greehey Children’s Cancer Research Institute, UT Health, San Antonio, TX 78229, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Angelina V. Vaseva
- Department of Molecular Medicine, Greehey Children’s Cancer Research Institute, UT Health, San Antonio, TX 78229, USA
| | - Siyuan Zheng
- Department of Epidemiology and Biostatistics, Greehey Children’s Cancer Research Institute, UT Health, San Antonio, TX 78229, USA
| | - Raushan T. Kurmasheva
- Department of Molecular Medicine, Greehey Children’s Cancer Research Institute, UT Health, San Antonio, TX 78229, USA
| | - Peter J. Houghton
- Department of Molecular Medicine, Greehey Children’s Cancer Research Institute, UT Health, San Antonio, TX 78229, USA
| |
Collapse
|