1
|
Guo W, Duan Z, Wu J, Zhou BP. Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis. Semin Cancer Biol 2025; 112:20-35. [PMID: 40058616 DOI: 10.1016/j.semcancer.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/05/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular de-differentiation process that provides cells with the increased plasticity and stem cell-like traits required during embryonic development, tissue remodeling, wound healing and metastasis. Morphologically, EMT confers tumor cells with fibroblast-like properties that lead to the rearrangement of cytoskeleton (loss of stiffness) and decrease of membrane rigidity by incorporating high level of poly-unsaturated fatty acids (PUFA) in their phospholipid membrane. Although large amounts of PUFA in membrane reduces rigidity and offers capabilities for tumor cells with the unbridled ability to stretch, bend and twist in metastasis, these PUFA are highly susceptible to lipid peroxidation, which leads to the breakdown of membrane integrity and, ultimately results in ferroptosis. To escape the ferroptotic risk, EMT also triggers the rewiring of metabolic program, particularly in lipid metabolism, to enforce the epigenetic regulation of EMT and mitigate the potential damages from ferroptosis. Thus, the interplay among EMT, lipid metabolism, and ferroptosis highlights a new layer of intricated regulation in cancer biology and metastasis. Here we summarize the latest findings and discuss these mutual interactions. Finally, we provide perspectives of how these interplays contribute to cellular plasticity and ferroptosis resistance in metastatic tumor cells that can be explored for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Wenzheng Guo
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Zhibing Duan
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Jingjing Wu
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
2
|
Borek WE, Nobre L, Pedicona SF, Campbell AE, Christopher JA, Nawaz N, Perkins DN, Moreno-Cardoso P, Kelsall J, Ferguson HR, Patel B, Gallipoli P, Arruda A, Ambinder AJ, Thompson A, Williamson A, Ghiaur G, Minden MD, Gribben JG, Britton DJ, Cutillas PR, Dokal AD. Phosphoproteomics predict response to midostaurin plus chemotherapy in independent cohorts of FLT3-mutated acute myeloid leukaemia. EBioMedicine 2024; 108:105316. [PMID: 39293215 PMCID: PMC11424955 DOI: 10.1016/j.ebiom.2024.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a bone marrow malignancy with poor prognosis. One of several treatments for AML is midostaurin combined with intensive chemotherapy (MIC), currently approved for FLT3 mutation-positive (FLT3-MP) AML. However, many patients carrying FLT3 mutations are refractory or experience an early relapse following MIC treatment, and might benefit more from receiving a different treatment. Development of a stratification method that outperforms FLT3 mutational status in predicting MIC response would thus benefit a large number of patients. METHODS We employed mass spectrometry phosphoproteomics to analyse 71 diagnosis samples of 47 patients with FLT3-MP AML who subsequently received MIC. We then used machine learning to identify biomarkers of response to MIC, and validated the resulting predictive model in two independent validation cohorts (n = 20). FINDINGS We identified three distinct phosphoproteomic AML subtypes amongst long-term survivors. The subtypes showed similar duration of MIC response, but different modulation of AML-implicated pathways, and exhibited distinct, highly-predictive biomarkers of MIC response. Using these biomarkers, we built a phosphoproteomics-based predictive model of MIC response, which we called MPhos. When applied to two retrospective real-world patient test cohorts (n = 20), MPhos predicted MIC response with 83% sensitivity and 100% specificity (log-rank p < 7∗10-5, HR = 0.005 [95% CI: 0-0.31]). INTERPRETATION In validation, MPhos outperformed the currently-used FLT3-based stratification method. Our findings have the potential to transform clinical decision-making, and highlight the important role that phosphoproteomics is destined to play in precision oncology. FUNDING This work was funded by Innovate UK grants (application numbers: 22217 and 10054602) and by Kinomica Ltd.
Collapse
Affiliation(s)
| | - Luis Nobre
- Kinomica Ltd, Alderley Park, Macclesfield, United Kingdom
| | | | - Amy E Campbell
- Kinomica Ltd, Alderley Park, Macclesfield, United Kingdom
| | | | - Nazrath Nawaz
- Kinomica Ltd, Alderley Park, Macclesfield, United Kingdom
| | | | | | - Janet Kelsall
- Kinomica Ltd, Alderley Park, Macclesfield, United Kingdom
| | | | - Bela Patel
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paolo Gallipoli
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alex J Ambinder
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, USA
| | | | | | - Gabriel Ghiaur
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Pedro R Cutillas
- Kinomica Ltd, Alderley Park, Macclesfield, United Kingdom; Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Arran D Dokal
- Kinomica Ltd, Alderley Park, Macclesfield, United Kingdom.
| |
Collapse
|
3
|
Huang J, Bai X, Qiu Y, He X. Application of AI on cholangiocarcinoma. Front Oncol 2024; 14:1324222. [PMID: 38347839 PMCID: PMC10859478 DOI: 10.3389/fonc.2024.1324222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholangiocarcinoma, classified as intrahepatic, perihilar, and extrahepatic, is considered a deadly malignancy of the hepatobiliary system. Most cases of cholangiocarcinoma are asymptomatic. Therefore, early detection of cholangiocarcinoma is significant but still challenging. The routine screening of a tumor lacks specificity and accuracy. With the application of AI, high-risk patients can be easily found by analyzing their clinical characteristics, serum biomarkers, and medical images. Moreover, AI can be used to predict the prognosis including recurrence risk and metastasis. Although they have some limitations, AI algorithms will still significantly improve many aspects of cholangiocarcinoma in the medical field with the development of computing power and technology.
Collapse
Affiliation(s)
| | | | | | - Xiaodong He
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Chen W, Liao Y, Sun P, Tu J, Zou Y, Fang J, Chen Z, Li H, Chen J, Peng Y, Wen L, Xie X. Construction of an ER stress-related prognostic signature for predicting prognosis and screening the effective anti-tumor drug in osteosarcoma. J Transl Med 2024; 22:66. [PMID: 38229155 PMCID: PMC10792867 DOI: 10.1186/s12967-023-04794-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/09/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant primary bone tumor in infants and adolescents. The lack of understanding of the molecular mechanisms underlying osteosarcoma progression and metastasis has contributed to a plateau in the development of current therapies. Endoplasmic reticulum (ER) stress has emerged as a significant contributor to the malignant progression of tumors, but its potential regulatory mechanisms in osteosarcoma progression remain unknown. METHODS In this study, we collected RNA sequencing and clinical data of osteosarcoma from The TCGA, GSE21257, and GSE33382 cohorts. Differentially expressed analysis and the least absolute shrinkage and selection operator regression analysis were conducted to identify prognostic genes and construct an ER stress-related prognostic signature (ERSRPS). Survival analysis and time dependent ROC analysis were performed to evaluate the predictive performance of the constructed prognostic signature. The "ESTIMATE" package and ssGSEA algorithm were utilized to evaluate the differences in immune cells infiltration between the groups. Cell-based assays, including CCK-8, colony formation, and transwell assays and co-culture system were performed to assess the effects of the target gene and small molecular drug in osteosarcoma. Animal models were employed to assess the anti-osteosarcoma effects of small molecular drug. RESULTS Five genes (BLC2, MAGEA3, MAP3K5, STC2, TXNDC12) were identified to construct an ERSRPS. The ER stress-related gene Stanniocalcin 2 (STC2) was identified as a risk gene in this signature. Additionally, STC2 knockdown significantly inhibited osteosarcoma cell proliferation, migration, and invasion. Furthermore, the ER stress-related gene STC2 was found to downregulate the expression of MHC-I molecules in osteosarcoma cells, and mediate immune responses through influencing the infiltration and modulating the function of CD8+ T cells. Patients categorized by risk scores showed distinct immune status, and immunotherapy response. ISOX was subsequently identified and validated as an effective anti-osteosarcoma drug through a combination of CMap database screening and in vitro and in vivo experiments. CONCLUSION The ERSRPS may guide personalized treatment decisions for osteosarcoma, and ISOX holds promise for repurposing in osteosarcoma treatment.
Collapse
Affiliation(s)
- Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengxiao Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ji Fang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuzhong Peng
- Macau University of Science and Technology, Macau, 999078, China
| | - Lili Wen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
侯 庆, 阚 淑, 张 明, 徐 峰, 刘 志, 蒋 松. [Inhibition of Histone Deacetylase 6 Ameliorates Podocyte Injury in Diabetic Kidney Disease in Mice]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1097-1104. [PMID: 38162083 PMCID: PMC10752790 DOI: 10.12182/20231160207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/03/2024]
Abstract
Objective To investigate the role of histone deacetylase 6 (HDAC6) in podocyte injury in diabetic kidney disease (DKD) in mice. Methods 1) The 8-week-old male CD-1 mice were selected to construct the model of DKD with streptozocin (STZ). After the model was established, the mice were intraperitoneally injected with HDAC6 inhibitor CAY10603 (5mg/kg/daily) or same volume vehicle as control. The mice were divided into four groups, control (CTL)+vehicle (Veh) (n=5), CLT+CAY10603 (n=3), STZ+Veh (n=9), and STZ+CAY10603 (n=7). Mice in STZ+Veh and STZ+CAY10603 groups developed DKD, while mice in the CTL+Veh and CTL+CAY10603 groups were served as normal controls. The therapeutic effect was evaluated through urine albumin-to-creatinine ratio (uACR) and renal pathology after the 2-week treatment with CAY10603. 2) Human podocytes were cultured in vitro and were divided into four groups as follows: CTL, transforming growth factor-β (TGFβ), TGFβ+CAY10603 (250 nmol/L), and TGFβ+CAY10603 (500 nmol/L) groups. The control group did not receive any treatment, the last three groups were given 36-h TGFβ treatment at 5 ng/µL, with or without CAY10603 as indicated for an additional 12 h. Western blot was performed to determine the inhibitory effect of CAY10603 on NLRP3 inflammasome. 3) HDAC6 knockout (KO) mice were generated and used to create STZ-induced model of DKD. The mice were divided into four groups: C57BL/6J wild type (WT) (n=6), HDAC6 KO (n=6), WT+STZ (n=10), and HDAC6 KO+STZ (n=9). Samples were collected 16 weeks after successful modeling and changes in uACR and renal pathology were evaluated accordingly. Results After 2 weeks of treatment, mice in the STZ+CAY10603 group exhibited reduction in uACR (P<0.05) and inhibition of glomerular mesangium expansion (P<0.05) compared with those of the mice in the STZ+Veh group. There was no statistically significant difference in the indicators between the CTL+Veh group and the CTL+CAY10603 group. In vitro cultured podocytes, compared with the control group, NLRP3 inflammasome activation was seen in the TGFβ group. CAY10603 treatment significantly inhibited the activation of NLRP3 in the dosage-dependent manner (P<0.05). Compared with those of the WT group, the WT+STZ group showed increased uACR (P<0.05), obvious glomerulosclerosis and loss of podocytes numbers. Compared with those of the WT+STZ group, the HDAC6 KO+STZ group showed effectively reduction of uACR (P<0.05) and improvement in the renal pathological changes in mice. There was no significant difference in these aspects between the WT and HDAC6 KO groups. Conclusion Inhibition of HDAC6 alleviates proteinuria and podocyte injury in the mouse model of DKD by suppressing the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- 庆 侯
- 东部战区总医院 国家肾脏疾病临床医学中心 (南京 210016)National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016, China
| | - 淑妍 阚
- 东部战区总医院 国家肾脏疾病临床医学中心 (南京 210016)National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016, China
| | - 明超 张
- 东部战区总医院 国家肾脏疾病临床医学中心 (南京 210016)National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016, China
| | - 峰 徐
- 东部战区总医院 国家肾脏疾病临床医学中心 (南京 210016)National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016, China
| | - 志红 刘
- 东部战区总医院 国家肾脏疾病临床医学中心 (南京 210016)National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016, China
| | - 松 蒋
- 东部战区总医院 国家肾脏疾病临床医学中心 (南京 210016)National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016, China
| |
Collapse
|
6
|
Chen Z, Shi W, Chen K, Lu C, Li X, Li Q. Elucidating the causal association between gut microbiota and intrahepatic cholangiocarcinoma through Mendelian randomization analysis. Front Microbiol 2023; 14:1288525. [PMID: 38033576 PMCID: PMC10682188 DOI: 10.3389/fmicb.2023.1288525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is an aggressive liver cancer with poor prognosis. The gut microbiota has been linked to ICC, but evidence for causality is lacking. Elucidating causal gut microbiota-ICC links could inform prevention and treatment strategies. Materials and methods We performed a bidirectional two-sample Mendelian randomization (MR) study to investigate causal associations between gut microbiota and ICC risk. Genome-wide significant single nucleotide polymorphisms (SNPs) associated with gut microbiota abundances were utilized as instrumental variables (IVs). Multiple methods assessed causality and sensitivity analyses evaluated result robustness. Bioinformatics analysis of genetic loci linked to gut microbiota and ICC examined potential mechanisms. Results Genetically predicted increases in Veillonellaceae, Alistipes, Enterobacteriales, and Firmicutes were suggestively associated with higher ICC risk, while increases in Anaerostipes, Paraprevotella, Parasutterella, and Verrucomicrobia appeared protective. Bioinformatics analysis revealed differentially expressed genes near gut microbiota-associated loci may influence ICC through regulating pathways and tumor immune microenvironment. Conclusion Our findings provide suggestive evidence for causal links between specific gut microbiota and ICC risk.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Weiguang Shi
- Department of Hepatobiliary Surgery, Shulan (Anji) Hospital, Anji, China
| | - Kailei Chen
- School of Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Chicheng Lu
- School of Medicine Zhejiang Chinese Medical University Zhejiang Shuren College, Hangzhou, China
| | - Xinyuan Li
- School of Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
7
|
Varshney N, Mishra AK. Deep Learning in Phosphoproteomics: Methods and Application in Cancer Drug Discovery. Proteomes 2023; 11:proteomes11020016. [PMID: 37218921 DOI: 10.3390/proteomes11020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Protein phosphorylation is a key post-translational modification (PTM) that is a central regulatory mechanism of many cellular signaling pathways. Several protein kinases and phosphatases precisely control this biochemical process. Defects in the functions of these proteins have been implicated in many diseases, including cancer. Mass spectrometry (MS)-based analysis of biological samples provides in-depth coverage of phosphoproteome. A large amount of MS data available in public repositories has unveiled big data in the field of phosphoproteomics. To address the challenges associated with handling large data and expanding confidence in phosphorylation site prediction, the development of many computational algorithms and machine learning-based approaches have gained momentum in recent years. Together, the emergence of experimental methods with high resolution and sensitivity and data mining algorithms has provided robust analytical platforms for quantitative proteomics. In this review, we compile a comprehensive collection of bioinformatic resources used for the prediction of phosphorylation sites, and their potential therapeutic applications in the context of cancer.
Collapse
Affiliation(s)
- Neha Varshney
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, CA 93093, USA
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Abhinava K Mishra
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Higgins L, Gerdes H, Cutillas PR. Principles of phosphoproteomics and applications in cancer research. Biochem J 2023; 480:403-420. [PMID: 36961757 PMCID: PMC10212522 DOI: 10.1042/bcj20220220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Phosphorylation constitutes the most common and best-studied regulatory post-translational modification in biological systems and archetypal signalling pathways driven by protein and lipid kinases are disrupted in essentially all cancer types. Thus, the study of the phosphoproteome stands to provide unique biological information on signalling pathway activity and on kinase network circuitry that is not captured by genetic or transcriptomic technologies. Here, we discuss the methods and tools used in phosphoproteomics and highlight how this technique has been used, and can be used in the future, for cancer research. Challenges still exist in mass spectrometry phosphoproteomics and in the software required to provide biological information from these datasets. Nevertheless, improvements in mass spectrometers with enhanced scan rates, separation capabilities and sensitivity, in biochemical methods for sample preparation and in computational pipelines are enabling an increasingly deep analysis of the phosphoproteome, where previous bottlenecks in data acquisition, processing and interpretation are being relieved. These powerful hardware and algorithmic innovations are not only providing exciting new mechanistic insights into tumour biology, from where new drug targets may be derived, but are also leading to the discovery of phosphoproteins as mediators of drug sensitivity and resistance and as classifiers of disease subtypes. These studies are, therefore, uncovering phosphoproteins as a new generation of disruptive biomarkers to improve personalised anti-cancer therapies.
Collapse
Affiliation(s)
- Luke Higgins
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Henry Gerdes
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Pedro R. Cutillas
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
- Alan Turing Institute, The British Library, London, U.K
- Digital Environment Research Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
9
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
10
|
George PM, Reed A, Desai SR, Devaraj A, Faiez TS, Laverty S, Kanwal A, Esneau C, Liu MKC, Kamal F, Man WDC, Kaul S, Singh S, Lamb G, Faizi FK, Schuliga M, Read J, Burgoyne T, Pinto AL, Micallef J, Bauwens E, Candiracci J, Bougoussa M, Herzog M, Raman L, Ahmetaj-Shala B, Turville S, Aggarwal A, Farne HA, Dalla Pria A, Aswani AD, Patella F, Borek WE, Mitchell JA, Bartlett NW, Dokal A, Xu XN, Kelleher P, Shah A, Singanayagam A. A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae. Sci Transl Med 2022; 14:eabo5795. [PMID: 36383686 DOI: 10.1126/scitranslmed.abo5795] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.
Collapse
Affiliation(s)
- Peter M George
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anna Reed
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Sujal R Desai
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anand Devaraj
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Tasnim Shahridan Faiez
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Sarah Laverty
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Amama Kanwal
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Camille Esneau
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael K C Liu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - William D-C Man
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, UK
| | - Sundeep Kaul
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Suveer Singh
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Georgia Lamb
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Fatima K Faizi
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Michael Schuliga
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jane Read
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Thomas Burgoyne
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andreia L Pinto
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Jake Micallef
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Emilie Bauwens
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Julie Candiracci
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Mhammed Bougoussa
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Marielle Herzog
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Lavanya Raman
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- Chest and Allergy Department, St Mary's Hospital, Imperial College NHS Trust, London W2 1NY, UK
| | - Alessia Dalla Pria
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
| | - Andrew D Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Santersus AG, Buckhauserstrasse 34, Zurich 8048, Switzerland
| | - Francesca Patella
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Weronika E Borek
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Nathan W Bartlett
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arran Dokal
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Xiao-Ning Xu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Peter Kelleher
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
- Immunology of Infection Section, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of Infection and Immunity Sciences, North West London Pathology NHS Trust, London W2 1NY, UK
| | - Anand Shah
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
11
|
Lu Y, Li X, Zhao K, Shi Y, Deng Z, Yao W, Wang J. Proteomic and Phosphoproteomic Profiling Reveals the Oncogenic Role of Protein Kinase D Family Kinases in Cholangiocarcinoma. Cells 2022; 11:cells11193088. [PMID: 36231050 PMCID: PMC9562908 DOI: 10.3390/cells11193088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy in the hepatobiliary system, with dysregulated protein expression and phosphorylation signaling. However, the protein and phosphorylation signatures of CCAs are little-known. Here, we performed the proteomic and phosphoproteomic profiling of tumors and normal adjacent tissues (NATs) from patients with CCA and predicted eleven PKs high-potentially related to CCA with a comprehensive inference of the functional protein kinases (PKs) (CifPK) pipeline. Besides the two known CCA-associated PKs, we screened the remaining candidates and uncovered five PKs as novel regulators in CCA. Specifically, the protein kinase D (PKD) family members, including PRKD1, PRKD2, and PRKD3, were identified as critical regulators in CCA. Moreover, the pan-inhibitor of the PKD family, 1-naphthyl PP1 (1-NA-PP1), was validated as a potent agent for inhibiting the proliferation, migration, and invasion ability of CCA cells. This study reveals new PKs associated with CCA and suggests PRKD kinases as novel treatment targets for CCA.
Collapse
Affiliation(s)
- Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.Y.); (J.W.); Tel./Fax: +86-27-8366-5395 (J.W.)
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Affiliated Tianyou Hospital, University of Science & Technology, Wuhan 430064, China
- Correspondence: (W.Y.); (J.W.); Tel./Fax: +86-27-8366-5395 (J.W.)
| |
Collapse
|
12
|
Hirano H, Abe Y, Nojima Y, Aoki M, Shoji H, Isoyama J, Honda K, Boku N, Mizuguchi K, Tomonaga T, Adachi J. Temporal dynamics from phosphoproteomics using endoscopic biopsy specimens provides new therapeutic targets in stage IV gastric cancer. Sci Rep 2022; 12:4419. [PMID: 35338158 PMCID: PMC8956597 DOI: 10.1038/s41598-022-08430-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Phosphoproteomic analysis expands our understanding of cancer biology. However, the feasibility of phosphoproteomic analysis using endoscopically collected tumor samples, especially with regards to dynamic changes upon drug treatment, remains unknown in stage IV gastric cancer. Here, we conducted a phosphoproteomic analysis using paired endoscopic biopsy specimens of pre- and post-treatment tumors (Ts) and non-tumor adjacent tissues (NATs) obtained from 4 HER2-positive gastric cancer patients who received trastuzumab-based treatment and from pre-treatment Ts and NATs of 4 HER2-negative gastric cancer patients. Our analysis identified 14,622 class 1 phosphosites with 12,749 quantified phosphosites and revealed molecular changes by HER2 positivity and treatment. An inhibitory signature of the ErbB signaling was observed in the post-treatment HER2-positive T group compared with the pre-treatment HER2-positive T group. Phosphoproteomic profiles obtained by a case-by-case review using paired pre- and post-treatment HER2-positive T could be utilized to discover predictive or resistant biomarkers. Furthermore, these data nominated therapeutic kinase targets which were exclusively activated in the patient unresponded to the treatment. The present study suggests that a phosphoproteomic analysis of endoscopic biopsy specimens provides information on dynamic molecular changes which can individually characterize biologic features upon drug treatment and identify therapeutic targets in stage IV gastric cancer.
Collapse
Affiliation(s)
- Hidekazu Hirano
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan.,Department of Medicine, Keio University Graduate School of Medicine, Tokyo, 160-8582, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yosui Nojima
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Center for Mathematical Modeling and Data Science, Osaka University, Osaka, 560-8531, Japan
| | - Masahiko Aoki
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan.,Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirokazu Shoji
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Department of Bioregulation, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Narikazu Boku
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan.,Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
| |
Collapse
|