1
|
Mascarenhas J, Maher K, Rampal R, Bose P, Podoltsev N, Hong J, Chai Y, Kye S, Method M, Harrison C. Selinexor plus ruxolitinib in JAK inhibitor treatment-naïve myelofibrosis: SENTRY Phase 3 study design. Future Oncol 2025; 21:807-813. [PMID: 39911057 PMCID: PMC11916360 DOI: 10.1080/14796694.2025.2461393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Selinexor is an investigational, selective oral XPO1 inhibitor that may inhibit myelofibrosis (MF)-relevant JAK/STAT and non-JAK/STAT pathways with potential synergy with ruxolitinib. SENTRY (XPORT-MF-034; NCT04562389) is a Phase 1/3 study evaluating safety and efficacy of selinexor plus ruxolitinib for treatment of patients with JAK inhibitor (JAKi) treatment-naïve MF. The Phase 1 open label portion of the study included a 3 + 3 dose escalation and dose expansion, with no dose limiting toxicities observed. Described here is the Phase 3 randomized, double-blind, placebo-controlled study designed to evaluate selinexor+ruxolitinib versus placebo+ruxolitinib in patients with JAKi treatment-naïve MF. Approximately 350 patients will be enrolled. Primary endpoints will evaluate spleen volume reduction ≥ 35% and absolute mean change in total symptom score from baseline to week 24.Clinical Trial Registration: NCT04562389 (ClinicalTrials.Gov).
Collapse
Affiliation(s)
- John Mascarenhas
- Internal Medicine Department, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Keri Maher
- Oncology Department, VCU Medical Center, Richmond, VA, USA
| | - Raajit Rampal
- Oncology Department, Memorial Sloan and Kettering Center, New York, NY, USA
| | - Prithviraj Bose
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Nikolai Podoltsev
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Junshik Hong
- Hemato Oncology, Seoul National University, Seoul, South Korea
| | - Yi Chai
- Department of Research, Karyopharm Therapeutics, Newton, MA, USA
| | - Steve Kye
- Department of Research, Karyopharm Therapeutics, Newton, MA, USA
| | - Michael Method
- Department of Research, Karyopharm Therapeutics, Newton, MA, USA
| | - Claire Harrison
- Department of Internal Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Bravaccini S, Boldrin E, Gurioli G, Tedaldi G, Piano MA, Canale M, Curtarello M, Ulivi P, Pilati P. The use of platelets as a clinical tool in oncology: opportunities and challenges. Cancer Lett 2024; 607:217044. [PMID: 38876385 DOI: 10.1016/j.canlet.2024.217044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Platelets are small circulating anucleated cells mainly involved in thrombosis and hemostasis processes. Moreover, platelets play an active role in tumorigenesis and cancer progression, stimulating angiogenesis and vascular remodelling, and protecting circulating cancer cells from shear forces and immune surveillance. Several reports indicate that platelet number in the blood circulation of cancer patients is associated with prognosis and response to treatment. However, the mechanisms of platelets "education" by cancer cells and the crosstalk between platelets and tumor are still unclear, and the role of "tumor educated platelets" (TEPs) is achieving growing interest in cancer research. TEPs are a biological source of cancer-derived biomarkers, especially RNAs that are protected by platelets membrane from circulating RNases, and could serve as a non-invasive tool for tumor detection, molecular profiling and evolution during therapy in clinical practice. Moreover, short platelet lifespan offers the possibility to get a snapshot assessment of cancer molecular profile, providing a real-time tool. We review and discuss the potential and the clinical utility, in terms of cancer diagnosis and monitoring, of platelet count together with other morphological parameters and of the more recent and innovative TEP profiling.
Collapse
Affiliation(s)
- Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Elisa Boldrin
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Gianluca Tedaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Maria Assunta Piano
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Matteo Canale
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Matteo Curtarello
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padova, Italy.
| |
Collapse
|
3
|
Zhao L, Zhang H, Chen J, Ma H, Liu B. Presence of triple positive driver mutations in JAK2, CALR and MPL in primary myelofibrosis: a case report and literature review. Hematology 2024; 29:2402106. [PMID: 39268974 DOI: 10.1080/16078454.2024.2402106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Primary myelofibrosis (PMF) is the most advanced subtype among the classic Philadelphia chromosomenegative myeloproliferative neoplasms (MPNs). A majority of patients carry one of three mutually-exclusive somatic driver mutations: JAK2 (60-65%), CALR (20-25%), or MPL (5%). Co-occurrence of these mutations is rarely reported. Here we report a case with a triple positive combination of JAK2, CALR and MPL driver mutations. CASE PRESENTATION A 69-year-old male was admitted to hospital for acute exacerbation of chronic obstructive pulmonary disease (COPD) and was found to have splenomegaly and leukocytosis. Nextgeneration revealed JAK2, CALR, MPL mutations, and additional variants in SF3B1, SRSF2, and STAG2. The patient was diagnosed with PMF and treated with ruxolitinib and COPD therapy. Due to nausea, the ruxolitinib dose was reduced. After therapy, spleen volume decreased and hematologic responses were poor. Another genetic mutation of ASXL1 was later found. After adjusting the medication and adding antiemetics, the patient's condition improved. CONCLUSIONS The rare coexistence of JAK2, CALR, and MPL mutations challenges the assumption of their mutual exclusivity. Further study of these mutations is essential for developing better treatment strategies.
Collapse
Affiliation(s)
- Long Zhao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Hao Zhang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Juan Chen
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Haizhen Ma
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Peroni E, Calistri E, Amato R, Gottardi M, Rosato A. Spatial-transcriptomic profiling: a new lens for understanding myelofibrosis pathophysiology. Cell Commun Signal 2024; 22:510. [PMID: 39434124 PMCID: PMC11492555 DOI: 10.1186/s12964-024-01877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
Myelofibrosis (MF) is a complex myeloproliferative neoplasm characterized by abnormal hematopoietic stem cell proliferation and subsequent bone marrow (BM) fibrosis. First documented in the late 19th century, MF has since been extensively studied to unravel its pathophysiology, clinical phenotypes, and therapeutic interventions. MF can be classified into primary and secondary forms, both driven by mutations in genes such as JAK2, CALR, and MPL, which activate the JAK-STAT signaling pathway. These driver mutations are frequently accompanied by additional non-driver mutations in genes like TET2, SRSF2, and TP53, contributing to disease complexity. The BM microenvironment, consisting of stromal cells, extracellular matrix, and cytokines such as TGF-β and TNF-α, plays a critical role in fibrosis and aberrant hematopoiesis. Clinically, MF manifests with symptoms ranging from anemia, splenomegaly, and fatigue to severe complications such as leukemic transformation. Splenomegaly, caused by extramedullary hematopoiesis, leads to abdominal discomfort and early satiety. Current therapeutic strategies include JAK inhibitors like Ruxolitinib, which target the JAK-STAT pathway, alongside supportive treatments such as blood transfusions, erythropoiesis-stimulating agents and developing combinatorial approaches. Allogeneic hematopoietic stem cell transplantation remains the only curative option, though it is limited to younger, high-risk patients. Recently approved JAK inhibitors, including Fedratinib, Pacritinib, and Momelotinib, have expanded the therapeutic landscape. Spatially Resolved Transcriptomics (SRT) has revolutionized the study of gene expression within the spatial context of tissues, providing unprecedented insights into cellular heterogeneity, spatial gene regulation, and microenvironmental interactions, including stromal-hematopoietic dynamics. SRT enables high-resolution mapping of gene expression in the BM and spleen, revealing molecular signatures, spatial heterogeneity, and pathological niches that drive disease progression. These technologies elucidate the role of the spleen in MF, highlighting its transformation into a site of abnormal hematopoietic activity, fibrotic changes, and immune cell infiltration, functioning as a "tumor surrogate." By profiling diverse cell populations and molecular alterations within the BM and spleen, SRT facilitates a deeper understanding of MF pathophysiology, helping identify novel therapeutic targets and biomarkers. Ultimately, integrating spatial transcriptomics into MF research promises to enhance diagnostic precision and therapeutic innovation, addressing the multifaceted challenges of this disease.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy.
| | - Elisabetta Calistri
- Onco-Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, 31033, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, 88100, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Michele Gottardi
- Onco-Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, 31033, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, 35122, Italy
| |
Collapse
|
5
|
Abu-Zeinah G, Qin A, Gill H, Komatsu N, Mascarenhas J, Shih WJ, Zagrijtschuk O, Sato T, Shimoda K, Silver RT, Mesa R. A randomized, double-blind, placebo-controlled phase 3 study to assess efficacy and safety of ropeginterferon alfa-2b in patients with early/lower-risk primary myelofibrosis. Ann Hematol 2024; 103:3573-3583. [PMID: 39145781 PMCID: PMC11358163 DOI: 10.1007/s00277-024-05912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Primary myelofibrosis (PMF) is the most aggressive of the myeloproliferative neoplasms and patients require greater attention and likely require earlier therapeutic intervention. Currently approved treatment options are limited in their selective suppression of clonal proliferation resulting from driver- and coexisting gene mutations. Janus kinase inhibitors are approved for symptomatic patients with higher-risk PMF. Additionally, most ongoing clinical studies focus on patients with higher-risk disease and/or high rates of transfusion dependency. Optimal treatment of early/lower-risk PMF remains to be identified and needs randomized clinical trial evaluations. Pegylated interferon alfa is recommended for symptomatic lower-risk PMF patients based on phase 2 non-randomized studies and expert opinion. Ropeginterferon alfa-2b (ropeg) is a new-generation pegylated interferon-based therapy with favorable pharmacokinetics and safety profiles, requiring less frequent injections than prior formulations. This randomized, double-blind, placebo-controlled phase 3 trial will assess its efficacy and safety in patients with "early/lower-risk PMF", defined as pre-fibrotic PMF or PMF at low or intermediate-1 risk according to Dynamic International Prognostic Scoring System-plus. Co-primary endpoints include clinically relevant complete hematologic response and symptom endpoint. Secondary endpoints include progression- or event-free survival, molecular response in driver or relevant coexisting gene mutations, bone marrow response, and safety. Disease progression and events are defined based on the International Working Group criteria and well-published reports. 150 eligible patients will be randomized in a 2:1 ratio to receive either ropeg or placebo. Blinded sample size re-estimation is designed. Ropeg will be administered subcutaneously with a tolerable, higher starting-dose regimen. The study will provide important data for the treatment of early/lower-risk PMF for which an anti-clonal, disease-modifying agent is highly needed.
Collapse
Affiliation(s)
- Ghaith Abu-Zeinah
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Norio Komatsu
- PharmaEssentia Japan K.K, Akasaka Center Building 12 F, Minato-Ku, Tokyo, 107-0051, Japan
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of of Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - John Mascarenhas
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | | | | | - Toshiaki Sato
- PharmaEssentia Japan K.K, Akasaka Center Building 12 F, Minato-Ku, Tokyo, 107-0051, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Richard T Silver
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ruben Mesa
- Atrium Health, Levine Cancer Institute, Wake Forest University School of Medicine, Cancer Programs, Charlotte, NC, USA.
| |
Collapse
|
6
|
Zhang H, Zhu H, Peng H, Sheng Y. Function of serine/arginine-rich splicing factors in hematopoiesis and hematopoietic malignancies. Cancer Cell Int 2024; 24:257. [PMID: 39034387 PMCID: PMC11265194 DOI: 10.1186/s12935-024-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The serine/arginine-rich splicing factors (SRSFs) play an important role in regulating the alternative splicing of precursor RNA (pre-RNA). During this procedure, introns are removed from the pre-RNA, while the exons are accurately joined together to produce mature mRNA. In addition, SRSFs also involved in DNA replication and transcription, mRNA stability and nuclear export, and protein translation. It is reported that SRSFs participate in hematopoiesis, development, and other important biological process. They are also associated with the development of several diseases, particularly cancers. While the basic physiological functions and the important roles of SRSFs in solid cancer have been extensively reviewed, a comprehensive summary of their significant functions in normal hematopoiesis and hematopoietic malignancies is currently absent. Hence, this review presents a summary of their roles in normal hematopoiesis and hematopoietic malignancies.
Collapse
Affiliation(s)
- Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, P. R. China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, P. R. China.
| | - Hongkai Zhu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, P. R. China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, P. R. China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, P. R. China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, P. R. China.
| | - Yue Sheng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, P. R. China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, P. R. China.
| |
Collapse
|
7
|
Tefferi A, Pardanani A. Momelotinib for myelofibrosis: our 14 years of experience with 100 clinical trial patients and recent FDA approval. Blood Cancer J 2024; 14:47. [PMID: 38499521 PMCID: PMC10948874 DOI: 10.1038/s41408-024-01029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Tefferi A, Pardanani A, Gangat N. Momelotinib expands the therapeutic armamentarium for myelofibrosis: Impact on hierarchy of treatment choices. Am J Hematol 2024; 99:300-308. [PMID: 38164985 DOI: 10.1002/ajh.27163] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The primary objective of treatment in myelofibrosis (MF) is prolongation of life, which is currently accomplished only by allogeneic hematopoietic stem cell transplantation (AHSCT). Determination of optimal timing for AHSCT is facilitated by molecular risk stratification. Non-transplant treatment options in MF are palliative in scope and include Janus kinase 2 (JAK2) inhibitors (JAKi): momelotinib (FDA approved on September 15, 2023), ruxolitinib (November 16, 2011), fedratinib (August 16, 2019), and pacritinib (February 28, 2022); all four JAKi are effective in reducing spleen size and alleviating symptoms, considered a drug class effect and attributed to their canonical JAK-STAT inhibitory mechanism of action. In addition, momelotinib exhibits erythropoietic effect, attributed to alleviation of ineffective erythropoiesis through inhibition of activin A receptor type-I (ACVR1). In transplant-ineligible or deferred patients, the order of treatment preference is based on specific symptoms and individual assessment of risk tolerance. Because of drug-induced immunosuppression and other toxicities attributed to JAKi, we prefer non-JAKi drugs as initial treatment for MF-associated anemia that is not accompanied by treatment-requiring splenomegaly or constitutional symptoms. Otherwise, it is reasonable to consider momelotinib as the first-line JAKi treatment of choice, in order to target the triad of quality-of-life offenders in MF: anemia, splenomegaly, and constitutional symptoms/cachexia. For second-line therapy, we favor ruxolitinib, over fedratinib, based on toxicity profile. Pacritinib and fedratinib provide alternative options in the presence of severe thrombocytopenia or ruxolitinib-resistance/intolerance, respectively. Splenectomy remains a viable option for drug-resistant symptomatic splenomegaly and cytopenia.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Zhao Y, Guo J, Zhao S, Wang R, Wu D, Chang C. Incorporating mutations and bone marrow fibrosis into the revised international prognostic scoring system in myelodysplastic syndromes. Leuk Lymphoma 2024; 65:100-108. [PMID: 37865969 DOI: 10.1080/10428194.2023.2271593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
The independent prognostic significance of bone marrow fibrosis (BMF) in myelodysplastic syndromes (MDS) is challenged under currently molecular prognostic models. In this study, the clinical and genetic data from 438 MDS patients were analyzed retrospectively. The patients were randomly divided into training (n = 306) and validation (n = 132) cohorts. The independent significant prognostic factors included age, IPSS-R, BMF, TP53 and U2AF1. Using their weighted coefficients, we developed a simplified prognostic system. Four risk groups were produced: low, intermediate, high and very high. The new model yielded more clearly separated survival curves than the IPSS-R. In addition, our model achieved higher C-indexes (0.61 in the training cohort and 0.63 in the validation cohort) than the IPSS-RM model (0.59 and 0.58) and IPSS-R (0.57 and 0.56). In conclusion, BMF was an independent significant prognostic factor for MDS, and adding BMF into the IPSS-R improved its predictive capability.
Collapse
Affiliation(s)
- Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sida Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Roujia Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Tefferi A, Pardanani A, Gangat N. Momelotinib (JAK1/JAK2/ACVR1 inhibitor): mechanism of action, clinical trial reports, and therapeutic prospects beyond myelofibrosis. Haematologica 2023; 108:2919-2932. [PMID: 36861402 PMCID: PMC10620561 DOI: 10.3324/haematol.2022.282612] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Janus kinase (JAK) 2 inhibitors are now part of the therapeutic armamentarium for primary and secondary myelofibrosis (MF). Patients with MF endure shortened survival and poor quality of life. Allogeneic stem cell transplantation (ASCT) is currently the only treatment modality in MF with the potential to cure the disease or prolong survival. By contrast, current drug therapy in MF targets quality of life and does not modify the natural history of the disease. The discovery of JAK2 and other JAK-STAT activating mutations (i.e., CALR and MPL) in myeloproliferative neoplasms, including MF, has facilitated the development of several JAK inhibitors that are not necessarily specific to the oncogenic mutations themselves but have proven effective in countering JAK-STAT signaling, resulting in suppression of inflammatory cytokines and myeloproliferation. This non-specific activity resulted in clinically favorable effects on constitutional symptoms and splenomegaly and, consequently, approval by the Food and Drug Administration (FDA) of three small molecule JAK inhibitors: ruxolitinib, fedratinib, and pacritinib. A fourth JAK inhibitor, momelotinib, is poised for FDA approval soon and has been shown to provide additional benefit in alleviating transfusion-dependent anemia in MF. The salutary effect of momelotinib on anemia has been attributed to inhibition of activin A receptor, type 1 (ACVR1) and recent information suggests a similar effect from pacritinib. ACRV1 mediates SMAD2/3 signaling which contributes to upregulation of hepcidin production and iron-restricted erythropoiesis. Targeting ACRV1 raises therapeutic prospects in other myeloid neoplasms associated with ineffective erythropoiesis, such as myelodysplastic syndromes with ring sideroblasts or SF3B1 mutation, especially those with co-expression of a JAK2 mutation and thrombocytosis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
11
|
Tefferi A. Jaktinib and momelotinib for the treatment of myelofibrosis-Birds of a feather? Am J Hematol 2023; 98:1517-1519. [PMID: 37471656 DOI: 10.1002/ajh.27036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
13
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
14
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Abdelmagid MG, Al-Kali A, Begna KH, Hogan WJ, Litzow MR, Fleti F, Mangaonkar AA, Patnaik MS, Elliott MA, Alkhateeb H, Shi M, Howard MT, Reichard KK, Ketterling RP, Shah M, Pardanani A, Gangat N, Tefferi A. Blast phase myeloproliferative neoplasm with prior exposure to ruxolitinib: comparative analysis of mutations and survival. Haematologica 2023; 108:2542-2545. [PMID: 36794509 PMCID: PMC10483339 DOI: 10.3324/haematol.2022.282627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Min Shi
- Divisions of Hematopathology, Departments of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Matthew T Howard
- Divisions of Hematopathology, Departments of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Kaaren K Reichard
- Divisions of Hematopathology, Departments of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Rhett P Ketterling
- Divisions of Hematopathology, Departments of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
16
|
Pettersson H, Adamsson J, Johansson P, Nilsson S, Palmqvist L, Andréasson B, Asp J. The clinical relevance of broad mutational screening of myeloproliferative neoplasms at diagnosis. Front Oncol 2023; 13:1190305. [PMID: 37637067 PMCID: PMC10451068 DOI: 10.3389/fonc.2023.1190305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Myeloproliferative neoplasm (MPN) is a heterogenous group of hematological malignancies including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). JAK2V617F is the most frequent driver mutation in all three entities, but in PMF and ET mutations in CALR and MPL are also frequent. Mutations seen in additional genes are also often the same regardless of subtype of MPN. The aim of this study was to analyze a population based MPN cohort for genetic variants with prognostic value that can guide clinical decisions. Methods MPN patients from Western Sweden diagnosed between 2008-2013 (n=248) were screened for mutations in 54 genes associated with myeloid malignancy. Results Mutations in the genes SRSF2 and U2AF1 correlated significantly with impaired overall survival but did not correlate to increased risk for vascular events, neither before nor after diagnosis. Rather, mutations in these genes showed an association with disease transformation. Several recurrent gene variants with allele frequency close to 50% were confirmed to be germline. However, none of these variants was found to have an earlier onset of MPN. Discussion In conclusion, we identified gene mutations to be independent markers of impaired survival in MPN. This indicates the need for more individualized assessment and treatment of MPN patients and a wider gene mutation screening already at diagnosis. This could ensure the identification of patients with high-risk mutations early on. In addition, several genetic variants were also identified as germline in this study but gave no obvious clinical relevance. To avoid conclusions from non-informative genetic variants, a simultaneous analysis of normal cell DNA from patients at diagnosis should be considered.
Collapse
Affiliation(s)
- Helna Pettersson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Jenni Adamsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Johansson
- Hematology and Coagulation Section, Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Andréasson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Julia Asp
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Takizawa H, Araki Y, Fujishiro M, Tomita S, Kishikawa S, Hashizume A, Mitsumori T, Nitta H, Iizuka-Honma H, Sawada T, Okubo M, Sekiguchi Y, Ando M, Noguchi M. Role of TGF-beta1 and TNF-alpha1 produced by neoplastic cells in the pathogenesis of fibrosis in patients with hematologic neoplasms. J Clin Exp Hematop 2023; 63:83-89. [PMID: 37121717 PMCID: PMC10410624 DOI: 10.3960/jslrt.22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/02/2023] Open
Abstract
We conducted this study with the objective of elucidating the mechanism of development of fibrosis in hematologic neoplasms and develop treatments for these patients. Among the suggested mechanisms of development of fibrosis is cases of hematologic neoplasms is the production of TGF-beta1 (transforming growth factor-beta-1) and TNF-alpha1 (tumor necrotizing factor-alpha-1) by the tumor cells, both of which are fibrosis-stimulating cytokines that act on fibroblasts to promote fibrosis. However, there are few reports based on human clinical pathology studies. We conducted an immunohistochemical study on paraffin-embedded formalin-fixed specimens obtained from 104 patients with various pathologic conditions (acute leukemia, malignant lymphoma, inflammation, cancer, etc.). The association of tissue fibrosis with positive immunohistochemistry for TGF- beta1 and/or TNF-alpha1, TGF-beta1 was found to be strongly associated with tissue fibrosis, and in cases with positive immunohistochemistry for TGF-beta1, the odds ratio for fibrosis was 12.8, which was significantly high. Combined positivity for TGF-beta1 and TNF-alpha1 was also associated with a significant odds ratio for fibrosis of 3.4, suggesting that TGF-beta1 expression is an important prerequisite. TGF-beta1 has been suggested as playing a relatively important role in tissue fibrosis. Future clinical application of these cytokines for both diagnosis and treatment is expected.
Collapse
|
18
|
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol 2023; 13:1196817. [PMID: 37284191 PMCID: PMC10239955 DOI: 10.3389/fonc.2023.1196817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Knowledge on the myeloproliferative neoplasms (MPNs) - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) - has accumulated since the discovery of the JAK/STAT-activating mutations associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL and CALR mutations, found in ET and PMF. The intriguing lack of disease specificity of these mutations, and of the chronic inflammation associated with MPNs, triggered a quest for finding what precisely determines that MPN patients develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have been extensively studied, as well as the role played by these mutations in inflammation, and several pathogenic models have been proposed. In parallel, different types of drugs have been tested in MPNs (JAK inhibitors, interferons, hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review aims to present current, detailed knowledge on the pathogenic mechanisms specifically associated with PV, ET or PMF that may pave the way for the development of novel, curative therapies.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
19
|
Melo-Cardenas J, Crispino JD. CALR goes rogue. Blood 2023; 141:818-820. [PMID: 36821187 DOI: 10.1182/blood.2022018788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
20
|
Thiele J, Kvasnicka HM, Orazi A, Gianelli U, Gangat N, Vannucchi AM, Barbui T, Arber DA, Tefferi A. The international consensus classification of myeloid neoplasms and acute Leukemias: myeloproliferative neoplasms. Am J Hematol 2023; 98:166-179. [PMID: 36200127 DOI: 10.1002/ajh.26751] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 02/04/2023]
Abstract
A group of international experts, including hematopathologists, oncologists, and geneticists were recently summoned (September 2021, Chicago, IL, USA) to update the 2016/17 World Health Organization classification system for hematopoietic tumors. After careful deliberation, the group introduced the new International Consensus Classification (ICC) for Myeloid Neoplasms and Acute Leukemias. This current in-depth review focuses on the ICC-2022 category of JAK2 mutation-prevalent myeloproliferative neoplasms (MPNs): essential thrombocythemia, polycythemia vera, primary myelofibrosis, and MPN, unclassifiable. The ICC MPN subcommittee chose to preserve the primary role of bone marrow morphology in disease classification and diagnostics, while also acknowledging the complementary role of genetic markers for establishing clonality, facilitating MPN subtype designation, and disease prognostication.
Collapse
Affiliation(s)
- Jürgen Thiele
- Institute of Pathology, University of Cologne, Cologne, Germany
| | | | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Umberto Gianelli
- Department of Health Sciences and S.C. Anatomia Patologica, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Naseema Gangat
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessandro M Vannucchi
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Azienda Ospedaliera-Universitaria Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziano Barbui
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
The Manifestation of a Patient With Myelofibrosis in 68Ga-DOTA-FAPI-04 PET/CT Mimicking "Super Bone Imaging". Clin Nucl Med 2022; 47:1056-1058. [PMID: 36342793 DOI: 10.1097/rlu.0000000000004427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACT Primary myelofibrosis is a chronic inflammatory disease of the bone marrow. It progresses from an early robust inflammatory state to a more advanced fibrotic response, representing the advanced stage of the disease. We report a 50-year-old woman who was diagnosed with primary myelofibrosis. 18F-FDG PET/CT showed mild uptake in diffuse sclerotic lesions in the bone matrix, whereas 68Ga-DOTA-FAPI-04 showed intense uptake at the whole skeleton.
Collapse
|
22
|
Tefferi A, Gangat N, Pardanani A. Jaktinib (JAK1/2 inhibitor): A momelotinib derivative with similar activity and optimized dosing schedule. Am J Hematol 2022; 97:1507-1509. [PMID: 36057765 DOI: 10.1002/ajh.26712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Ayalew Tefferi
- Divisions of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Naseema Gangat
- Divisions of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
23
|
Mutant CALR's "sweet tooth". Blood 2022; 140:1187-1189. [PMID: 36107460 PMCID: PMC9479035 DOI: 10.1182/blood.2022017448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
|
24
|
Galka-Marciniak P, Kanduła Z, Tire A, Wegorek W, Gwozdz-Bak K, Handschuh L, Giefing M, Lewandowski K, Kozlowski P. Mutations in the miR-142 gene are not common in myeloproliferative neoplasms. Sci Rep 2022; 12:10924. [PMID: 35764886 PMCID: PMC9240003 DOI: 10.1038/s41598-022-15162-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Recent data indicate that MIR142 is the most frequently mutated miRNA gene and one of the most frequently mutated noncoding elements in all cancers, with mutations occurring predominantly in blood cancers, especially diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. Functional analyses show that the MIR142 alterations have profound consequences for lympho- and myelopoiesis. Furthermore, one of the targets downregulated by miR-142-5p is CD274, which encodes PD-L1 that is elevated in many cancer types, including myeloproliferative neoplasms (MPNs). To extend knowledge about the occurrence of MIR142 mutations, we sequenced the gene in a large panel of MPNs [~ 700 samples, including polycythemia vera, essential thrombocythemia, primary myelofibrosis (PMF), and chronic myeloid leukemia], neoplasm types in which such mutations have never been tested, and in panels of acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL). We identified 3 mutations (one in a PMF sample and two others in one CLL sample), indicating that MIR142 mutations are rare in MPNs. In summary, mutations in MIR142 are rare in MPNs; however, in specific subtypes, such as PMF, their frequency may be comparable to that observed in CLL or AML.
Collapse
Affiliation(s)
| | - Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Adrian Tire
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wladyslaw Wegorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Kinga Gwozdz-Bak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|