1
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025; 33:817-836. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Jin Z, Cao J, Liu Z, Gao M, Liu H. Comprehensive profiling of candidate biomarkers and immune infiltration landscape in metabolic dysfunction-associated steatohepatitis. Metabol Open 2025; 26:100366. [PMID: 40292075 PMCID: PMC12032907 DOI: 10.1016/j.metop.2025.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Background The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing, with an incompletely understood pathophysiology involving multiple factors, particularly innate and adaptive immune responses. Given the limited pharmacological treatments available, identification of novel immune metabolic targets is urgently needed. In this study, we aimed to identify hub immune-related genes and potential biomarkers with diagnostic and predictive value for MASH patients. Methods The GSE164760 dataset from the Gene Expression Omnibus was utilized for analysis, and the R package was used to identify differentially expressed genes. Immune-related differentially expressed genes (IR-DEGs) were identified by comparing the overlap of differentially expressed genes with well-known immune-related genes. Furthermore, the biological processes and molecular functions of the IR-DEGs were analyzed. To characterize the hub IR-DEGs, we employed a protein-protein interaction network. The diagnostic and predictive values of these hub IR-DEGs in MASH were confirmed using GSE48452 and GSE63067 datasets. Finally, the significance of the hub IR-DEGs was validated using a mouse model of MASH. Results A total of 91 IR-DEGs were identified, with 61 upregulated and 30 downregulated genes. Based on the protein-protein interaction network, FN1, RHOA, FOS, PDGFRα, CCND1, PIK3R1, CSF1, and FGF3 were identified as the hub IR-DEGs. Moreover, we found that these hub genes are closely correlated with immune cells. Notably, the validation across two independent cohorts as well as a murine MASH model confirmed their high diagnostic potential. Conclusion The hub IR-DEGs, such as FN1, RHOA, FOS, PDGFRα, CCND1, PIK3R1, CSF1, and FGF3, may enhance the diagnosis and prognosis of MASH by modulating immune homeostasis.
Collapse
Affiliation(s)
- Zhangliu Jin
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jianyun Cao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410005, China
| | - Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Mei Gao
- Department of Pharmacy, Anhui Chest Hospital, Hefei, Anhui, 230000, China
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Chen X, Zhong X, Zhang F, Zhou X, Yue X, Li X. Molecular mechanisms and therapeutic targets in glioblastoma multiforme: network and single-cell analyses. Sci Rep 2025; 15:10558. [PMID: 40148380 PMCID: PMC11950307 DOI: 10.1038/s41598-025-92867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor associated with poor survival outcomes and is driven by a complex tumor microenvironment (TME) that promotes tumor progression and treatment resistance. To explore the role of the TME in GBM, we analyzed glioma-related microarray and single-cell RNA sequencing (scRNA-seq) datasets from the Gene Expression Omnibus (GEO). Functional enrichment and weighted gene coexpression network analyses revealed distinct immune profiles, metabolic alterations, and differences in chemotherapeutic drug sensitivity between the high-risk and low-risk patient groups. scRNA-seq data processed with the 'Seurat' package were used to identify differentially expressed genes in pericytes, endothelial cells, and glioma cells, particularly those involved in extracellular matrix (ECM) remodeling. A 17-gene prognostic signature developed through Cox regression and LASSO analyses revealed that key genes (COL1A1, COL4A1, and VIM) were significantly associated with survival outcomes in GBM patients. Drug sensitivity analyses using data from the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) identified potential targeted therapies for GBM, including SB-505,124, staurosporine, and AZD8186. This integrative study underscores the critical roles of the ECM and synaptic remodeling in GBM and suggests novel therapeutic targets to improve personalized treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Zhong
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Zhang
- Department of Blood Transfusion, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610021, Sichuan, China
| | - Xiaomei Zhou
- Sichuan Provincial Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, China
| | - Xiaofeng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Xueru Li
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
8
|
Yamazaki M, Ishimoto T. Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram? Cancer Sci 2025; 116:613-621. [PMID: 39745128 PMCID: PMC11875776 DOI: 10.1111/cas.16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth. Based on recent evidence, several simple strategies have been proposed to eliminate tumor-promoting CAFs and attenuate these features. In addition, attention has focused on the critical role that CAFs play in the immunosuppressive TME. Therefore, the functional reprogramming of CAFs in combination with immune checkpoint inhibitors has also been investigated as a possible therapeutic approach. However, although potential targets in CAFs have been widely characterized, the plasticity and heterogeneity of CAFs complicate the understanding of their properties and present difficulties for clinical application. Moreover, the identification of tumor-suppressive CAFs highlights the necessity for the development of therapeutic approaches that can distinguish and switch between tumor-promoting and tumor-suppressive CAFs in an appropriate manner. In this review, we introduce the origins and diversity of CAFs, their role in cancer, and current therapeutic strategies aimed at targeting CAFs, including ongoing clinical evaluations.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takatsugu Ishimoto
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
9
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
10
|
Minoura H, Okamoto R, Hiki N, Yamashita K. Cancer-Associated Fibroblasts Genes and Transforming Growth Factor Beta Pathway in Gastric Cancer for Novel Therapeutic Strategy. Cancers (Basel) 2025; 17:795. [PMID: 40075643 PMCID: PMC11899367 DOI: 10.3390/cancers17050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background-Objective: Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of gastric cancer (GC). Understanding the molecular characteristics of CAFs-associated genes (CAFGs) is essential for elucidating their role in tumor progression and prognosis. This review aims to summarize the current knowledge on CAFGs, highlighting their expression patterns, prognostic significance, and potential functional mechanisms. Methods: A comprehensive review of existing literature was conducted, focusing on molecular features of CAFGs in GC. Single-cell RNA sequencing (scRNA-seq) analyses were examined to assess the expression patterns of CAFGs in broad-sense CAFs, which include both CAFs and pericytes. Additionally, clinicopathological studies validating the prognostic significance of CAFGs were reviewed. Results: ScRNA-seq analyses revealed that CAFGs are not necessarily restricted to CAFs alone but may also reflect the activation status of surrounding cells. Several CAFGs, including SPARC, THBS2, COL1A1, COL3A1, INHBA, PDGFC, and SDC2, have been validated for their prognostic relevance in GC. However, compared with other cancers, the functional mechanisms of these genes in GC remain poorly understood. While CAFGs exhibit synchronized expression with TGFB1 in colorectal cancer (CRC), such patterns have yet to be confirmed in GC due to the limitations of available microdissected data. Conclusions: A comprehensive understanding of CAFGs and their interaction with the TGFB pathway, including LTBP family genes, may be critical for developing novel therapeutic strategies for GC. Further research is needed to elucidate their functional mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Hiroyuki Minoura
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; (H.M.); (R.O.)
| | - Riku Okamoto
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; (H.M.); (R.O.)
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan;
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; (H.M.); (R.O.)
| |
Collapse
|
11
|
Kalfakakou D, Cameron DC, Kawaler EA, Tsuda M, Wang L, Jing X, Hajdu C, Tamayo DL, Shim Y, Ackermann A, Weissinger D, Zimny H, Hernandez R, Beier M, Dimartino D, Meyn P, Rice K, Selvaraj S, Loomis C, Heguy A, Lund AW, Sears RC, Welling TH, Dolgalev I, Tsirigos A, Simeone DM. Clonal Heterogeneity in Human Pancreatic Ductal Adenocarcinoma and Its Impact on Tumor Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637729. [PMID: 39990481 PMCID: PMC11844494 DOI: 10.1101/2025.02.11.637729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by profound desmoplasia and cellular heterogeneity, which cannot be fully resolved using traditional bulk sequencing approaches. To understand the contribution of this heterogeneity to PDAC biology, we analyzed a large cohort of primary human PDAC samples (n = 62), profiling 443,451 single cells and 53,236 spatial transcriptomic spots using a combined single-cell RNA sequencing and spatial transcriptomics approach. Our analysis revealed significant intratumoral heterogeneity, with multiple genetically distinct neoplastic clones co-existing within individual tumors. These clones exhibited diverse transcriptional states and subtype profiles, challenging the traditional binary classification of PDAC into basal and classical subtypes; instead, our findings support a transcriptional continuum influenced by clonal evolution and spatial organization. Additionally, these clones each interacted uniquely with surrounding cell types in the tumor microenvironment. Phylogenetic analysis uncovered a rare but consistent classical-to-basal clonal transition associated with MYC amplification and immune response depletion, which were validated experimentally, suggesting a mechanism driving the emergence of a more aggressive basal clonal phenotype. Spatial analyses further revealed dispersed clones enriched for epithelial-to-mesenchymal transition (EMT) activity and immune suppression, correlating with metastatic potential and colonization of lymph node niches. These dispersed clones tended to transition toward a basal phenotype, contributing to disease progression. Our findings highlight the critical role of clonal diversity, transcriptional plasticity, and TME interactions in shaping human PDAC biology. This work provides new insights into the molecular and spatial heterogeneity of PDAC and offers potential avenues for therapeutic intervention targeting clonal evolution and the mechanisms driving metastasis.
Collapse
|
12
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
13
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Xie J, Yang A, Liu Q, Deng X, Lv G, Ou X, Zheng S, Situ M, Yu Y, Liang J, Zou Y, Tang H, Zhao Z, Lin F, Liu W, Xiao W. Single-cell RNA sequencing elucidated the landscape of breast cancer brain metastases and identified ILF2 as a potential therapeutic target. Cell Prolif 2024; 57:e13697. [PMID: 38943472 PMCID: PMC11533045 DOI: 10.1111/cpr.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Distant metastasis remains the primary cause of morbidity in patients with breast cancer. Hence, the development of more efficacious strategies and the exploration of potential targets for patients with metastatic breast cancer are urgently needed. The data of six patients with breast cancer brain metastases (BCBrM) from two centres were collected, and a comprehensive landscape of the entire tumour ecosystem was generated through the utilisation of single-cell RNA sequencing. We utilised the Monocle2 and CellChat algorithms to investigate the interrelationships among each subcluster. In addition, multiple signatures were collected to evaluate key components of the subclusters through multi-omics methodologies. Finally, we elucidated common expression programs of malignant cells, and experiments were conducted in vitro and in vivo to determine the functions of interleukin enhancer-binding factor 2 (ILF2), which is a key gene in the metastasis module, in BCBrM progression. We found that subclusters in each major cell type exhibited diverse characteristics. Besides, our study indicated that ILF2 was specifically associated with BCBrM, and experimental validations further demonstrated that ILF2 deficiency hindered BCBrM progression. Our study offers novel perspectives on the heterogeneity of BCBrM and suggests that ILF2 could serve as a promising biomarker or therapeutic target for BCBrM.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qianwen Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangzhao Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaoquan Zheng
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Min‐Yi Situ
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Yu
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jie‐Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fuhua Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei Liu
- Department of Breast, Guangzhou Red Cross Hospital, Medical CollegeJinan UniversityGuangzhouGuangdongChina
| | - Weikai Xiao
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
15
|
Shu C, Wang X, Li C, Huang J, Xie X, Li H, Zhao J, Wang Z, He Y, Zhou Y. Revisiting the association between pretreatment thrombocytosis and cancer survival outcomes: an umbrella review of meta-analyses. BMC Cancer 2024; 24:1246. [PMID: 39385116 PMCID: PMC11462685 DOI: 10.1186/s12885-024-13027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Although associations have been reported linking pretreatment thrombocytosis to cancer survival outcomes, the validity and strength of existing observational evidence have been contested. This study aimed to conduct an umbrella review to comprehensively appraise the strength, validity and credibility of these reported associations. METHODS We searched Medline, Embase and Cochrane Database of Systematic Reviews from inception to 8 April 2023 to retrieve meta-analyses of observational studies. Meta-analyses were re-performed using a random-effect model and the strength of evidence was graded as convincing, highly suggestive, suggestive and weak according to seven pre-defined quantitative criteria reflecting statistical significance, amount of data, heterogeneity, and evidence of bias. The quality of review was appraised using the AMSTAR2 checklist. The umbrella review was reported adhering to the PRISMA guideline and was registered on PROSPERO (CRD42023455391). RESULTS A total of 21 unique meta-analyses investigating ten cancer subtypes were included. All meta-analyses reported inferior survival outcome in cancer patients with pretreatment thrombocytosis, and 18 of them (85.7%) yielded statistically significant results (P < 0.05). Consistent effects were observed across meta-analyses that adopted different cut-off values (i.e. platelet count > 300 or 400 × 109 /L) to define thrombocytosis. Although evidence appraisal did not identify convincing evidence (Class I), the associations of thrombocytosis with inferior overall survival of lung, gastric, colorectal cancer and malignant mesothelioma were classified as highly suggestive evidence (Class II). According to AMSTAR2 ratings, no meta-analysis was identified with high or moderate quality. CONCLUSIONS Our findings consolidated the association between pretreatment thrombocytosis and poor survival outcomes in various cancers. Nonetheless, the absence of convincing associations indicates a need for further large-scale, high-quality evidence to confirm whether platelets can serve as a prognostic predictor or a therapeutic target.
Collapse
Affiliation(s)
- Chi Shu
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Xiran Wang
- Graduate School of Life Sciences, Utrecht University, Utrecht, The Netherlands
| | - Changtao Li
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Jun Huang
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Xuan Xie
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Hong Li
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Jichun Zhao
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yazhou He
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Tian S, Liu Y, Liu P, Nomura S, Wei Y, Huang T. Development and Validation of a Comprehensive Prognostic and Depression Risk Index for Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:10776. [PMID: 39409106 PMCID: PMC11476876 DOI: 10.3390/ijms251910776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Depressive disorder contributes to the initiation and prognosis of patients with cancer, but the interaction between cancer and depressive disorder remains unclear. We generated a gastric adenocarcinoma patient-derived xenograft mice model, treated with chronic unpredictable mild stimulation. Based on the RNA-sequence from the mouse model, patient data from TCGA, and MDD-related (major depressive disorder) genes from the GEO database, 56 hub genes were identified by the intersection of differential expression genes from the three datasets. Molecular subtypes and a prognostic signature were generated based on the 56 genes. A depressive mouse model was constructed to test the key changes in the signatures. The signature was constructed based on the NDUFA4L2, ANKRD45, and AQP3 genes. Patients with high risk-score had a worse overall survival than the patients with low scores, consistent with the results from the two GEO cohorts. The comprehensive results showed that a higher risk-score was correlated with higher levels of tumor immune exclusion, higher infiltration of M0 macrophages, M2 macrophages, and neutrophils, higher angiogenetic activities, and more enriched epithelial-mesenchymal transition signaling pathways. A higher risk score was correlated to a higher MDD score, elevated MDD-related cytokines, and the dysfunction of neurogenesis-related genes, and parts of these changes showed similar trends in the animal model. With the Genomics of Drug Sensitivity in Cancer database, we found that the gastric adenocarcinoma patients with high risk-score may be sensitive to Pazopanib, XMD8.85, Midostaurin, HG.6.64.1, Elesclomol, Linifanib, AP.24534, Roscovitine, Cytarabine, and Axitinib. The gene signature consisting of the NDUFA4L2, ANKRD45, and AQP3 genes is a promising biomarker to distinguish the prognosis, the molecular and immune characteristics, the depressive risk, and the therapy candidates for gastric adenocarcinoma patients.
Collapse
Affiliation(s)
- Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|
17
|
Wang J, Xia G, Meng B, Guan X. Tumor-intrinsic kinase: A promising target for overcoming resistance to immune checkpoint blockade therapies. Mol Ther 2024; 32:3209-3210. [PMID: 39303710 PMCID: PMC11489534 DOI: 10.1016/j.ymthe.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Jianhui Wang
- Department of Internal Medicine, Wangqi Town Health Center, Jilin 132113, P.R. China
| | - Gaowei Xia
- Department of Traditional Chinese Medicine, Jilin Municipal Infectious Disease Hospital, Jilin 132013, P.R. China
| | - Bin Meng
- Department of Gastroenterology, Yongji County People's Hospital, Jilin 132299, P.R. China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou 318001, P.R. China.
| |
Collapse
|
18
|
Deshpande RP, Wu K, Wu SY, Tyagi A, Smith EC, Hunting J, Ruiz J, Li W, Watabe K. Tumor-intrinsic CDC42BPB confers resistance to anti-PD-1 immune checkpoint blockade in breast cancer. Mol Ther 2024; 32:3669-3682. [PMID: 39086134 PMCID: PMC11489557 DOI: 10.1016/j.ymthe.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/04/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Eleanor C Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - John Hunting
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wencheng Li
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
19
|
Zhu E, Xie Q, Huang X, Zhang Z. Application of spatial omics in gastric cancer. Pathol Res Pract 2024; 262:155503. [PMID: 39128411 DOI: 10.1016/j.prp.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.
Collapse
Affiliation(s)
- Erran Zhu
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Qi Xie
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan; Department of Pathology, Department of Pathology of Hengyang Medical College, University of South China; The First Affiliated Hospital of University of South China, China.
| |
Collapse
|
20
|
Tong X, Du J, Jiang Q, Wu Q, Zhao S, Chen S. Lenvatinib acts on platelet‑derived growth factor receptor β to suppress the malignant behaviors of gastric cancer cells. Oncol Lett 2024; 28:483. [PMID: 39170883 PMCID: PMC11338234 DOI: 10.3892/ol.2024.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Given the limited treatment options and high mortality rates associated with gastric cancer, there is a need to explore novel therapeutic options. The present study aimed to investigate the efficacy of lenvatinib, a multi-target tyrosine kinase inhibitor, in mitigating the progress of gastric cancer in vitro. Comprehensive analyses were conducted to assess the impact of lenvatinib on gastric cancer cells, focusing on the inhibition of viability, suppression of proliferation, induction of apoptosis and reduction of metastatic potential. The effects of lenvatinib on these activities were determined using 5-ethynyl-2'-deoxyuridine staining, colony formation assay, flow cytometry, western blotting, scratch assay and Transwell assay. In addition, bioinformatics analyses were employed to identify key regulatory targets of lenvatinib, with particular attention given to platelet-derived growth factor receptor β (PDGFRB). In addition, the effects of PDGFRB overexpression on the regulation of lenvatinib were explored. Lenvatinib demonstrated significant inhibitory effects on the viability, proliferation and metastatic capabilities of MKN45 and HGC27 gastric cancer cell lines. Bioinformatics analyses identified PDGFRB as a crucial target of lenvatinib, with its downregulation showing promise in enhancing overall survival rates of patients with gastric cancer. By contrast, PDGFRB overexpression reversed the effects of lenvatinib on cells. The present findings underscore the potential of lenvatinib as a promising therapeutic option in the treatment of gastric cancer. By elucidating its mechanism of action and identifying PDGFRB as a primary target, the present study may aid further clinical advancements.
Collapse
Affiliation(s)
- Xiaoyi Tong
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
- Department of Pharmacy, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Jun Du
- Department of Nursing, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Qiaoling Jiang
- Department of Clinical Laboratory, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Qiaoli Wu
- Department of Pharmacy, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Shuxia Zhao
- Department of Pharmacy, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Shuhang Chen
- Department of Gastroenterology, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| |
Collapse
|
21
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
22
|
Xie YQ, Li CC, Yu MR, Cao J. Immunosuppressive tumor microenvironment in gastric signet-ring cell carcinoma. World J Clin Oncol 2024; 15:1126-1131. [PMID: 39351457 PMCID: PMC11438843 DOI: 10.5306/wjco.v15.i9.1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Gastric signet-ring cell carcinoma (GSRCC) is a subtype of gastric cancer with distinct phenotype and high risk of peritoneal metastasis. Studies have shown that early GSRCC has a good prognosis, while advanced GSRCC is insensitive to radiotherapy, chemotherapy or immune checkpoint blockade therapy. With technological advancement of single-cell RNA sequencing analysis and cytometry by time of flight mass cytometry, more detailed atlas of tumor microenvironment (TME) in GSRCC and its association with prognosis could be investigated extensively. Recently, two single-cell RNA sequencing studies revealed that GSRCC harbored a unique TME, manifested as highly immunosuppressive, leading to high immune escape. The TME of advanced GSRCC was enriched for immunosuppressive factors, including the loss of CXCL13 +-cluster of differentiation 8+-Tex cells and declined clonal crosstalk among populations of T and B cells. In addition, GSRCC was mainly infiltrated by follicular B cells. The increased proportion of SRCC was accompanied by a decrease in mucosa-associated lymphoid tissue-derived B cells and a significant increase in follicular B cells, which may be one of the reasons for the poor prognosis of GSRCC. By understanding the relationship between immunosuppressive TME and poor prognosis in GSRCC and the underlying mechanism, more effective immunotherapy strategies and improved treatment outcomes of GSRCC can be anticipated.
Collapse
Affiliation(s)
- Yu-Qiong Xie
- Center for Basic and Translational Research, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Chun-Chun Li
- Center for Basic and Translational Research, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Mei-Rong Yu
- Center for Basic and Translational Research, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jiang Cao
- Center for Basic and Translational Research, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
23
|
Xu J, Yu B, Wang F, Yang J. Single-cell RNA sequencing to map tumor heterogeneity in gastric carcinogenesis paving roads to individualized therapy. Cancer Immunol Immunother 2024; 73:233. [PMID: 39271545 PMCID: PMC11399521 DOI: 10.1007/s00262-024-03820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Gastric cancer (GC) is a highly heterogeneous disease with a complex tumor microenvironment (TME) that encompasses multiple cell types including cancer cells, immune cells, stromal cells, and so on. Cancer-associated cells could remodel the TME and influence the progression of GC and therapeutic response. Single-cell RNA sequencing (scRNA-seq), as an emerging technology, has provided unprecedented insights into the complicated biological composition and characteristics of TME at the molecular, cellular, and immunological resolutions, offering a new idea for GC studies. In this review, we discuss the novel findings from scRNA-seq datasets revealing the origin and evolution of GC, and scRNA-seq is a powerful tool for investigating transcriptional dynamics and intratumor heterogeneity (ITH) in GC. Meanwhile, we demonstrate that the vital immune cells within TME, including T cells, B cells, macrophages, and stromal cells, play an important role in the disease progression. Additionally, we also overview that how scRNA-seq facilitates our understanding about the effects on individualized therapy of GC patients. Spatial transcriptomes (ST) have been designed to determine spatial distribution and capture local intercellular communication networks, enabling a further understanding of the relationship between the spatial background of a particular cell and its functions. In summary, scRNA-seq and other single-cell technologies provide a valuable perspective for molecular and pathological disease characteristics and hold promise for advancing basic research and clinical practice in GC.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China
| | - Fan Wang
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China.
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China.
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
24
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
25
|
Kaida A, Nojima H, Miura M. Estimating Impacts of p16 Status on Tumor Radiosensitivity in Head and Neck Cancer using Predictive Models. Radiat Res 2024; 202:605-609. [PMID: 39034035 DOI: 10.1667/rade-24-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 07/23/2024]
Abstract
The intrinsic radiosensitivity index (RSI) and genomic-adjusted radiation dose (GARD) were reported to be able to predict the surviving fraction at 2 Gy and therapeutic effect when delivering actual treatment doses using the gene expression profiles of clinical cases. Given the impact of p16 status, a surrogate marker of the human papillomavirus (HPV) infection, on radiosensitivity, we attempted to apply the RSI and GARD to estimate p16-associated radiosensitivity in head and neck squamous cell carcinoma (HNSC). For this purpose, The Cancer Genome Atlas (TCGA) dataset was employed. In the GARD calculation, we assumed that p16-positive patients received 60 Gy in 30 fractions, while p16-negative patients received 70 Gy in 35 fractions. p16 positivity was associated with favorable characteristics compared to negative patients. The RSI and GARD analyses demonstrated increased radiosensitivity and high therapeutic effect in p16-positive patients, compared to p16-negative patients. Additionally, tumor microenvironmental conditions predicted by other models were also significantly affected by p16 status. Collectively, the models used in this study could be a promising tool for estimating p16-associated radiosensitivity in HNSC.
Collapse
Affiliation(s)
| | - Hitomi Nojima
- Department of Dental Radiology and Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | | |
Collapse
|
26
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
27
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
28
|
Yasuda T, Wang YA. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Trends Cancer 2024; 10:627-642. [PMID: 38600020 PMCID: PMC11292672 DOI: 10.1016/j.trecan.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Although immunotherapy has revolutionized solid tumor treatment, durable responses in gastric cancer (GC) remain limited. The heterogeneous tumor microenvironment (TME) facilitates immune evasion, contributing to resistance to conventional and immune therapies. Recent studies have highlighted how specific TME components in GC acquire immune escape capabilities through cancer-specific factors. Understanding the underlying molecular mechanisms and targeting the immunosuppressive TME will enhance immunotherapy efficacy and patient outcomes. This review summarizes recent advances in GC TME research and explores the role of the immune-suppressive system as a context-specific determinant. We also provide insights into potential treatments beyond checkpoint inhibition.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Meng X, Liu Z, Deng L, Yang Y, Zhu Y, Sun X, Hao Y, He Y, Fu J. Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401269. [PMID: 38757665 PMCID: PMC11267370 DOI: 10.1002/advs.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Tumor microenvironment (TME) plays an important role in the tumor progression. Among TME components, cancer-associated fibroblasts (CAFs) show multiple tumor-promoting effects and can induce tumor immune evasion and drug-resistance. Regulating CAFs can be a potential strategy to augment systemic anti-tumor immunity. Here, the study observes that hydrogen treatment can alleviate intracellular reactive oxygen species of CAFs and reshape CAFs' tumor-promoting and immune-suppressive phenotypes. Accordingly, a controllable and TME-responsive hydrogen therapy based on a CaCO3 nanoparticles-coated magnesium system (Mg-CaCO3) is developed. The hydrogen therapy by Mg-CaCO3 can not only directly kill tumor cells, but also inhibit pro-tumor and immune suppressive factors in CAFs, and thus augment immune activities of CD4+ T cells. As implanted in situ, Mg-CaCO3 can significantly suppress tumor growth, turn the "cold" primary tumor into "hot", and stimulate systematic anti-tumor immunity, which is confirmed by the bilateral tumor transplantation models of "cold tumor" (4T1 cells) and "hot tumor" (MC38 cells). This hydrogen therapy system reverses immune suppressive phenotypes of CAFs, thus providing a systematic anti-tumor immune stimulating strategy by remodeling tumor stromal microenvironment.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Liang Deng
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| | - Yangzi Yang
- Department of Orthopedic SurgerySpine CenterChangzheng HospitalNavy Medical UniversityNo. 415 Fengyang RoadShanghai200003P. R. China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating MaterialsShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xiaoying Sun
- College of SciencesShanghai UniversityShanghai200444P. R. China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Jingke Fu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| |
Collapse
|
30
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
31
|
Rhodes JD, Goldenring JR, Lee SH. Regulation of metaplasia and dysplasia in the stomach by the stromal microenvironment. Exp Mol Med 2024; 56:1322-1330. [PMID: 38825636 PMCID: PMC11263556 DOI: 10.1038/s12276-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
Research on the microenvironment associated with gastric carcinogenesis has focused on cancers of the stomach and often underestimates premalignant stages such as metaplasia and dysplasia. Since epithelial interactions with T cells, macrophages, and type 2 innate lymphoid cells (ILC2s) are indispensable for the formation of precancerous lesions in the stomach, understanding the cellular interactions that promote gastric precancer warrants further investigation. Although various types of immune cells have been shown to play important roles in gastric carcinogenesis, it remains unclear how stromal cells such as fibroblasts influence epithelial transformation in the stomach, especially during precancerous stages. Fibroblasts exist as distinct populations across tissues and perform different functions depending on the expression patterns of cell surface markers and secreted factors. In this review, we provide an overview of known microenvironmental components in the stroma with an emphasis on fibroblast subpopulations and their roles during carcinogenesis in tissues including breast, pancreas, and stomach. Additionally, we offer insights into potential targets of tumor-promoting fibroblasts and identify open areas of research related to fibroblast plasticity and the modulation of gastric carcinogenesis.
Collapse
Affiliation(s)
- Jared D Rhodes
- Program in Cancer Biology, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Program in Cancer Biology, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Nashville, TN, USA.
- Nashville VA Medical Center, Nashville, TN, USA.
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
| |
Collapse
|
32
|
Masuda M, Nakagawa R, Kondo T. Harnessing the potential of reverse-phase protein array technology: Advancing precision oncology strategies. Cancer Sci 2024; 115:1378-1387. [PMID: 38409909 PMCID: PMC11093203 DOI: 10.1111/cas.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
The last few decades have seen remarkable strides in the field of cancer therapy. Precision oncology coupled with comprehensive genomic profiling has become routine clinical practice for solid tumors, the advent of immune checkpoint inhibitors has transformed the landscape of oncology treatment, and the number of cancer drug approvals has continued to increase. Nevertheless, the application of genomics-driven precision oncology has thus far benefited only 10%-20% of cancer patients, leaving the majority without matched treatment options. This limitation underscores the need to explore alternative avenues with regard to selecting patients for targeted therapies. In contrast with genomics-based approaches, proteomics-based strategies offer a more precise understanding of the intricate biological processes driving cancer pathogenesis. This perspective underscores the importance of integrating complementary proteomic analyses into the next phase of precision oncology to establish robust biomarker-drug associations and surmount challenges related to drug resistance. One promising technology in this regard is the reverse-phase protein array (RPPA), which excels in quantitatively detecting protein modifications, even with limited amounts of sample. Its cost-effectiveness and rapid turnaround time further bolster its appeal for application in clinical settings. Here, we review the current status of genomics-driven precision oncology, as well as its limitations, with an emphasis on drug resistance. Subsequently, we explore the application of RPPA technology as a catalyst for advancing precision oncology. Through illustrative examples drawn from clinical trials, we demonstrate its utility for unraveling the molecular mechanisms underlying drug responses and resistance.
Collapse
Affiliation(s)
- Mari Masuda
- Department of ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Riko Nakagawa
- Department of ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Tadashi Kondo
- Division of Rare Cancer ResearchNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
33
|
Fang X, Chen D, Yang X, Cao X, Cheng Q, Liu K, Xu P, Wang Y, Xu J, Zhao S, Yan Z. Cancer associated fibroblasts-derived SULF1 promotes gastric cancer metastasis and CDDP resistance through the TGFBR3-mediated TGF-β signaling pathway. Cell Death Discov 2024; 10:111. [PMID: 38438372 PMCID: PMC10912303 DOI: 10.1038/s41420-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
SULF1 has been implicated in a number of malignancies. The function of SULF1 in gastric cancer is disputed. The objective of this study was to examine the role and underlying molecular mechanisms of SULF1 in the context of gastric cancer. We found that the expression of SULF1 was increased in gastric cancer, especially in cancer-associated fibroblasts. The overexpression of SULF1 was found to be significantly correlated with unfavorable prognosis among individuals diagnosed with gastric cancer. Functionally, cancer-associated fibroblasts-derived SULF1 served as a oncogenic molecule which facilitated gastric cancer cells metastasis and CDDP resistance. Mechanistically, SULF1 regulated the communication between gastric cancer cells and cancer-associated fibroblasts in tumor microenvironment as a signaling molecule. Cancer-associated fibroblasts-secreted SULF1 interfered with the interaction between TGF-β1 and TGFBR3 by combining with TGFBR3 on gastric cancer cell membrane, subsequently activated TGF-β signaling pathway. In conclusion, our findings have presented novel approaches for potential treatment and prognosis prediction in individuals diagnosed with gastric cancer through the targeting of the CAFs-SULF1-TGFBR3-TGF-β1 signaling axis.
Collapse
Affiliation(s)
- Xingchao Fang
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Damin Chen
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Xinyu Yang
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Xiaogang Cao
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiafeng Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Siguo Zhao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zhengyuan Yan
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Takei S, Tanaka Y, Lin YT, Koyama S, Fukuoka S, Hara H, Nakamura Y, Kuboki Y, Kotani D, Kojima T, Bando H, Mishima S, Ueno T, Kojima S, Wakabayashi M, Sakamoto N, Kojima M, Kuwata T, Yoshino T, Nishikawa H, Mano H, Endo I, Shitara K, Kawazoe A. Multiomic molecular characterization of the response to combination immunotherapy in MSS/pMMR metastatic colorectal cancer. J Immunother Cancer 2024; 12:e008210. [PMID: 38336371 PMCID: PMC10860060 DOI: 10.1136/jitc-2023-008210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) combinations represent an emerging treatment strategies in cancer. However, their efficacy in microsatellite stable (MSS) or mismatch repair-proficient (pMMR) colorectal cancer (CRC) is variable. Here, a multiomic characterization was performed to identify predictive biomarkers associated with patient response to ICI combinations in MSS/pMMR CRC for the further development of ICI combinations. METHODS Whole-exome sequencing, RNA sequencing, and multiplex fluorescence immunohistochemistry of tumors from patients with MSS/pMMR CRC, who received regorafenib plus nivolumab (REGONIVO) or TAS-116 plus nivolumab (TASNIVO) in clinical trials were conducted. Twenty-two and 23 patients without prior ICI from the REGONIVO and TASNIVO trials were included in this study. A biomarker analysis was performed using samples from each of these studies. RESULTS The epithelial-mesenchymal transition pathway and genes related to cancer-associated fibroblasts were upregulated in the REGONIVO responder group, and the G2M checkpoint pathway was upregulated in the TASNIVO responder group. The MYC pathway was upregulated in the REGONIVO non-responder group. Consensus molecular subtype 4 was significantly associated with response (p=0.035) and longer progression-free survival (p=0.006) in the REGONIVO trial. CD8+ T cells, regulatory T cells, and M2 macrophages density was significantly higher in the REGONIVO trial responders than in non-responders. Mutations in the POLE gene and patient response were significantly associated in the TASNIVO trial; however, the frequencies of other mutations or tumor mutational burden were not significantly different between responders and non-responders in either trial. CONCLUSIONS We identified molecular features associated with the response to the REGONIVO and TASNIVO, particularly those related to tumor microenvironmental factors. These findings are likely to contribute to the development of biomarkers to predict treatment efficacy for MSS/pMMR CRC and future immunotherapy combinations for treatment.
Collapse
Affiliation(s)
- Shogo Takei
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yi-Tzu Lin
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Shota Fukuoka
- Department of Gastroenterology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masashi Wakabayashi
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
- Department of Genetic Medicine and Services, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center-Hospital East, Kashiwa, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| |
Collapse
|
35
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
36
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Mao D, Zhou Z, Chen H, Liu X, Li D, Chen X, He Y, Liu M, Zhang C. Pleckstrin-2 promotes tumour immune escape from NK cells by activating the MT1-MMP-MICA signalling axis in gastric cancer. Cancer Lett 2023; 572:216351. [PMID: 37591356 DOI: 10.1016/j.canlet.2023.216351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Immune escape is a major challenge in tumour immunotherapy. Pleckstrin-2(PLEK2) plays a critical role in tumour progression, but its role in immune escape in gastric cancer (GC) remains uncharacterized. RNA sequencing was used to explore the differentially expressed genes in a GC cell line that was resistant to the antitumor effect of Natural killer (NK) cells. Apoptosis and the expression of IFN-γ and TNF-α were detected by flow cytometry (FCM). PLEK2 expression was examined by Western blotting and immunohistochemistry (IHC). PLEK2 was upregulated in MGC803R cells that were resistant to the antitumor effect of NK cells. PLEK2 knockout increased the sensitivity of GC cells to NK cell killing. PLEK2 expression was negatively correlated with MICA and positively correlated with MT1-MMP expression both in vitro and in vivo. PLEK2 promoted Sp1 phosphorylation through the PI3K-AKT pathway, thereby upregulating MT1-MMP expression, which ultimately led to MICA shedding. In mouse xenograft models, PLEK2 knockout inhibited intraperitoneal metastasis of GC cells and promoted NK cell infiltration. In summary, PLEK2 suppressed NK cell immune surveillance by promoting MICA shedding, which serves as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Deli Mao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xinran Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Dongsheng Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
39
|
Fejza A, Camicia L, Carobolante G, Poletto E, Paulitti A, Schinello G, Di Siena E, Cannizzaro R, Iozzo RV, Baldassarre G, Andreuzzi E, Spessotto P, Mongiat M. Emilin2 fosters vascular stability by promoting pericyte recruitment. Matrix Biol 2023; 122:18-32. [PMID: 37579864 DOI: 10.1016/j.matbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Angiogenesis, the formation of the new blood vessels from pre-existing vasculature, is an essential process occurring under both normal and pathological conditions, such as inflammation and cancer. This complex process is regulated by several cytokines, growth factors and extracellular matrix components modulating endothelial cell and pericyte function. In this study, we discovered that the extracellular matrix glycoprotein Elastin Microfibril Interfacer 2 (Emilin2) plays a prominent role in pericyte physiology. This work was originally prompted by the observations that tumor-associated vessels from Emilin2-/- mice display less pericyte coverage, impaired vascular perfusion, and reduced drug efficacy, suggesting that Emilin2 could promote vessel maturation and stabilization affecting pericyte recruitment. We found that Emilin2 affects different mechanisms engaged in pericyte recruitment and vascular stabilization. First, human primary endothelial cells challenged with recombinant Emilin2 synthesized and released ∼ 2.1 and 1.2 folds more PDGF-BB and HB-EGF, two cytokines known to promote pericyte recruitment. We also discovered that Emilin2, by directly engaging α5β1 and α6β1 integrins, highly expressed in pericytes, served as an adhesion substrate and haptotactic stimulus for pericytes. Moreover, Emilin2 evoked increased NCadherin expression via the sphingosine-1-phosphate receptor, leading to enhanced vascular stability by fostering interconnection between endothelial cells and pericytes. Finally, restoring pericyte coverage in melanoma and ovarian tumor vessels developed in Emilin2-/- mice improved drug delivery to the tumors. Collectively, our results implicate Emilin2 as a prominent regulator of pericyte function and suggest that Emilin2 expression could represent a promising maker to predict the clinical outcome of patients with melanoma, ovarian, and potentially other forms of cancer.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina 10000, Kosovo
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; VivaBioCell S.P.A., Udine, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gustavo Baldassarre
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste 34137, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy.
| |
Collapse
|
40
|
Hong Z, Xie W, Zhuo H, Wei X, Wang K, Cheng J, Lin L, Hou J, Chen X, Cai J. Crosstalk between Cancer Cells and Cancer-Associated Fibroblasts Mediated by TGF-β1-IGFBP7 Signaling Promotes the Progression of Infiltrative Gastric Cancer. Cancers (Basel) 2023; 15:3965. [PMID: 37568781 PMCID: PMC10417438 DOI: 10.3390/cancers15153965] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with infiltrative-type gastric cancer (GC) (Ming's classification) have a poor prognosis due to more metastasis and recurrence. Cancer-associated fibroblasts (CAFs) in infiltrative-type extracellular matrix (ECM) have specific characteristics compared with those of expansive types with respect to metastasis, but the mechanism is still unclear. Based on our proteomics data, TCGA data analysis, and immunohistochemical staining results, significantly higher expression of IGFBP7 was observed in GC, especially in the infiltrative type, and was associated with a poor prognosis. Combining single-cell transcriptome data from GEO and multiple immunofluorescence staining on tissue showed that the differential expression of IGFBP7 mainly originated from myofibroblastic CAFs, the subgroup with higher expression of PDGFRB and α-SMA. After treating primary normal fibroblasts (NFs) with conditional medium or recombined protein, it was demonstrated that XGC-1-derived TGF-β1 upregulated the expression of IGFBP7 in the cells and its secretion via the P-Smad2/3 pathway and mediated its activation with higher FAP, PDGFRB, and α-SMA expression. Then, either conditional medium from CAFs with IGFBP7 overexpression or recombined IGFBP7 protein promoted the migration, invasion, colony formation, and sphere growth ability of XGC-1 and MGC-803, respectively. Moreover, IGFBP7 induced EMT in XGC-1. Therefore, our study clarified that in the tumor microenvironment, tumor-cell-derived TGF-β1 induces the appearance of the IGFBP7+ CAF subgroup, and its higher IGFBP7 extracellular secretion level accelerates the progression of tumors.
Collapse
Affiliation(s)
- Zhijun Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Wen Xie
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Xujin Wei
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
- The Graduate School, Fujian Medical University, Fuzhou 350004, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Lingyun Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Xin Chen
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
- The Graduate School, Fujian Medical University, Fuzhou 350004, China
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
- The Graduate School, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
41
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
42
|
Zhou S, Zhao Z, Zhong H, Ren Z, Li Y, Wang H, Qiu Y. The role of myeloid-derived suppressor cells in liver cancer. Discov Oncol 2023; 14:77. [PMID: 37217620 DOI: 10.1007/s12672-023-00681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
MDSCs are immature myeloid immune cells, which accumulate in models of liver cancer to reduce effector immune cell activity, contribute to immune escape and treatment resistance. The accumulation of MDSCs suppresses the role of CTL and the killing effects of NK cells, induces the accumulation of Treg cells, and blocks the antigen presentation of DCs, thus promoting the progression of liver cancer. Recently, immunotherapy has emerged a valuable approach following chemoradiotherapy in the therapy of advanced liver cancer. A considerable increasing of researches had proved that targeting MDSCs has become one of the therapeutic targets to enhance tumor immunity. In preclinical study models, targeting MDSCs have shown encouraging results in both alone and in combination administration. In this paper, we elaborated immune microenvironment of the liver, function and regulatory mechanisms of MDSCs, and therapeutic approaches to target MDSCs. We also expect these strategies to supply new views for future immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hao Zhong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Zehao Ren
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuye Li
- Binhai New Area Hospital of TCM, Tianjin, 300451, China.
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|