1
|
Yadav P, Masroor M, Nandi K, Kaza RCM, Jain SK, Khurana N, Saxena A. Promoter Methylation of BRCA1, DAPK1 and RASSF1A is Associated with Increased Mortality among Indian Women with Breast Cancer. Asian Pac J Cancer Prev 2018; 19:443-448. [PMID: 29480000 PMCID: PMC5980932 DOI: 10.22034/apjcp.2018.19.2.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Promoter methylation has been observed for several genes in association with cancer development and progression. Hypermethylation mediated-silencing of tumor suppressor genes (TSGs) may contribute to breast cancer pathogenesis. The present study was conducted to investigate the promoter methylation status of BRCA1, DAPK1 and RASSF1A genes in Indian women with breast cancer. Materials and Methods: Promoter methylation was evaluated in DNA extracted from mononuclear cells (MNCs) in peripheral blood samples of 60 histopathologically confirmed newly diagnosed, untreated cases of breast cancer as well as 60 age and sex matched healthy controls using MS-PCR. Association of promoter methylation with breast cancer-specific mortality was analyzed with Cox proportional hazards models. Kaplan-Meier survival analysis was performed for overall survival of the breast cancer patients. Results: We observed a significant increase of BRCA1, DAPK1 and RASSF1A promoter methylation levels by 51.7% (P <0.001), 55.0% (P <0.001) and 46.6% (P <0.001), respectively, when compared to healthy controls. A strong correlation was noted between hypermethylation of the tumor suppressor genes BRCA1 (P= 0.009), DAPK1 (P= 0.008) and RASSF1A (P= 0.02)) with early and advanced stages of breast cancer patients. We also found that breast cancer-specific mortality was significantly associated with promoter methylation of BRCA1 [HR and 95% CI: 3.25 (1.448-7.317)] and DAPK1 [HR and 95% CI: 2.32 (1.05-5.11)], whereas limited significant link was evident with RASSF1A [HR and 95% CI: 1.54 (0.697-3.413]. Conclusion: Our results suggest that promoter methylation of BRCA1, DAPK1 and RASSF1A genes may be associated with disease progression and poor overall survival of Indian women with breast cancer.
Collapse
Affiliation(s)
- Prasant Yadav
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | | | | | | | | | | | | |
Collapse
|
2
|
Molecular profile of atypical hyperplasia of the breast. Breast Cancer Res Treat 2017; 167:9-29. [DOI: 10.1007/s10549-017-4488-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|
3
|
Breindel JL, Skibinski A, Sedic M, Wronski-Campos A, Zhou W, Keller PJ, Mills J, Bradner J, Onder T, Kuperwasser C. Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L. Stem Cell Reports 2017; 9:943-955. [PMID: 28781076 PMCID: PMC5599181 DOI: 10.1016/j.stemcr.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/04/2022] Open
Abstract
Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs) lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment. vHMECs arise through epigenetic modification of pre-existing human breast cells DNA methylation by DNMT3a is required for vHMEC formation Loss of DOT1L and active histone methylation marks accelerates vHMEC formation Loss of mammary identity requires changes in both DNA and histone methylation
Collapse
Affiliation(s)
- Jerrica L Breindel
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA; Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Adam Skibinski
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA; Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Maja Sedic
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Ania Wronski-Campos
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA; Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Wenhui Zhou
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA; Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Patricia J Keller
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Joslyn Mills
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - James Bradner
- Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA
| | - Tamer Onder
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
4
|
Cytologic atypia in the contralateral unaffected breast is related to parity and estrogen-related genes. Surg Oncol 2016; 25:449-456. [PMID: 26856771 DOI: 10.1016/j.suronc.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022]
Abstract
PURPOSE The contralateral unaffected breast (CUB) of women with unilateral breast cancer provides a model for the study of breast tissue-based risk factors. Using random fine needle aspiration (rFNA), we have investigated hormonal and gene expression patterns related to atypia in the CUBs of newly diagnosed breast cancer patients. METHODS 83 women underwent rFNA of the CUB. Cytologic analysis was performed using the Masood Score (MS), atypia was defined as MS > 14. RNA was extracted using 80% of the sample. The expression of 20 hormone related genes was quantified using Taqman Low Density Arrays. Statistical analysis was performed using 2-tailed t tests and linear regression. RESULTS Cytological atypia was more frequent in multiparous women (P = 0.0392), and was not associated with any tumor-related features in the affected breast. Masood Score was higher with shorter interval since last pregnancy (R = 0.204, P = 0.0417), higher number of births (R = 0.369, P = 0.0006), and estrogen receptor (ER) negativity of the index cancer (R = -0.203, P = 0.065). Individual cytologic features were associated with aspects of parity. Specifically, anisonucleosis was correlated with shorter interval since last pregnancy (R = 0.318, P = 0.0201), higher number of births (R = 0.382, P = 0.0004), and ER status (R = -0.314, P = 0.0038). Eight estrogen-regulated genes were increased in atypical samples (P < 0.005), including TFF1, AGT, PDZK1, PGR, GREB1, PRLR, CAMK2B, and CCND1. CONCLUSIONS Cytologic atypia, and particularly anisonucleosis, is associated with recent and multiple births and ER negative status of the index tumor. Atypical samples showed increased expression of estrogen-related genes, consistent with the role of estrogen exposure in breast cancer development.
Collapse
|
5
|
Langevin SM, Pinney SM, Leung YK, Ho SM. Does epigenetic drift contribute to age-related increases in breast cancer risk? Epigenomics 2015; 6:367-9. [PMID: 25333845 DOI: 10.2217/epi.14.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
6
|
Otani Y, Miyake T, Kagara N, Shimoda M, Naoi Y, Maruyama N, Shimomura A, Shimazu K, Kim SJ, Noguchi S. BRCA1 promoter methylation of normal breast epithelial cells as a possible precursor for BRCA1-methylated breast cancer. Cancer Sci 2014; 105:1369-76. [PMID: 25155055 PMCID: PMC4462354 DOI: 10.1111/cas.12506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/30/2014] [Accepted: 08/16/2014] [Indexed: 01/26/2023] Open
Abstract
The breast cancer susceptibility gene 1 (BRCA1) and glutathione S-transferase P1 (GSTP1) promoters are reportedly often methylated in breast cancer tissues. Their methylation status in surrounding normal breast tissues has not been examined thoroughly although this may well be important for a better understanding of breast carcinogenesis. In this study, BRCA1 and GSTP1 promoter methylation was examined by methylation-specific PCR assay. Patients with BRCA1-methylated (n = 15) or BRCA1-unmethylated (n = 15) tumors and those with GSTP1-methylated (n = 9) or GSTP1-unmethylated (n = 11) tumors were included in the present study. Methylation status of manually micro-dissected normal epithelial cells from the formalin-fixed paraffin-embedded sections of normal breast tissues adjacent to and distant from the tumors was examined at multiple sites (n = 1–5). Of the 15 patients with BRCA1-methylated tumors, 9 harbored BRCA1 promoter methylation in at least one site of the normal breast tissues. However, no BRCA1 promoter methylation was observed at any site of the normal tissues of the 15 patients with BRCA1-unmethylated tumors. No GSTP1 promoter methylation was observed in the normal tissues regardless of the methylation status of the tumors. The presence of BRCA1 promoter methylation in the normal tissues was confirmed in the epithelial cells enriched with the magnetic-activated cell sorting method. Our findings suggest that a small proportion of normal breast epithelial cells with BRCA1 promoter methylation can be precursor cells from which BRCA1-methylated breast tumors may originate. This does not apply to GSTP1 promoter methylation.
Collapse
Affiliation(s)
- Yoko Otani
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bu D, Lewis CM, Sarode V, Chen M, Ma X, Lazorwitz AM, Rao R, Leitch M, Moldrem A, Andrews V, Gazdar A, Euhus D. Identification of Breast Cancer DNA Methylation Markers Optimized for Fine-Needle Aspiration Samples. Cancer Epidemiol Biomarkers Prev 2013; 22:2212-21. [DOI: 10.1158/1055-9965.epi-13-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Wang J, Scholtens D, Holko M, Ivancic D, Lee O, Hu H, Chatterton RT, Sullivan ME, Hansen N, Bethke K, Zalles CM, Khan SA. Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer. Cancer Prev Res (Phila) 2013; 6:321-30. [PMID: 23512947 DOI: 10.1158/1940-6207.capr-12-0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER-) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects [15 ER-positive (ER+) and 15 ER- cases matched for age, race and menopausal status] were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER- and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER- case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS2, HMGCS2, HPGD and ACSL3) was observed in ER- cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hoffman A, Pellenberg R, Drendall CI, Seewaldt V. Comparison of Random Periareolar Fine Needle Aspirate versus Ductal Lavage for Risk Assessment and Prevention of Breast Cancer. CURRENT BREAST CANCER REPORTS 2012; 4:180-187. [PMID: 22924092 PMCID: PMC3410022 DOI: 10.1007/s12609-012-0081-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Random periareolar fine needle aspiration (RPFNA) and ductal lavage (DL) are research techniques developed to (1) assess short-term breast cancer risk in asymptomatic women who are at increased risk for breast cancer and (2) track cytological response to risk reduction strategies. RPFNA and DL provide minimally invasive methods to repeatedly sample epithelial cells and research tools to investigate the biological origins of breast cancer in high-risk women. This review gives an overview of the strengths and limitations of both RPFNA and DL for risk assessment and breast cancer prevention in asymptomatic high-risk women.
Collapse
Affiliation(s)
- Abigail Hoffman
- Duke University Medical Center, Box 2628, Durham, NC 27710 USA
| | - Rod Pellenberg
- Duke University Medical Center, Box 3090, Durham, NC 27710 USA
| | | | | |
Collapse
|
10
|
Abstract
Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person's genetic background and environmental exposure, and because epigenetic events occur early in cancer development. This chapter describes epigenetic biomarkers that are being used to study the epidemiology of different types of cancer. Because epigenetic alterations can be reversed by chemicals and activate gene expression, epigenetic biomarkers potentially have numerous clinical applications in cancer intervention and treatment and significant implications in public health. This review discusses cancer biomarkers, the characteristics of an ideal biomarker for cancer, and technologies for biomarker detection.
Collapse
|
11
|
Pilot and feasibility study: prospective proteomic profiling of mammary epithelial cells from high-risk women provides evidence of activation of pro-survival pathways. Breast Cancer Res Treat 2011; 132:487-98. [PMID: 21647677 DOI: 10.1007/s10549-011-1609-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Normal mammary gland homeostasis requires the coordinated regulation of protein signaling networks. However, we have little prospective information on whether activation of protein signaling occurs in premalignant mammary epithelial cells, as represented by cells with cytological atypia from women who are at high risk for breast cancer. This information is critical for understanding the role of deregulated signaling pathways in the initiation of breast cancer and for developing targeted prevention and/or treatment strategies for breast cancer in the future. In this pilot and feasibility study, we examined the expression of 52 phosphorylated, total, and cleaved proteins in 31 microdissected Random Periareolar Fine Needle Aspiration (RPFNA) samples by high-throughput Reverse Phase Protein Microarray. Unsupervised hierarchical clustering analysis indicated the presence of four clusters of proteins that represent the following signaling pathways: (1) receptor tyrosine kinase/Akt/mammalian target of rapamycin (RTK/Akt/mTOR), (2) RTK/Akt/extracellular signal-regulated kinase (RTK/Akt/ERK), (3) mitochondrial apoptosis, and (4) indeterminate. Clusters 1 through 3 comprised moderately to highly expressed proteins, while Cluster 4 comprised proteins that are lowly expressed in a majority of RPFNA samples. Our exploratory study showed that the interlinked components of mitochondrial apoptosis pathway are highly expressed in all mammary epithelial cells obtained from high-risk women. In particular, the expression levels of anti-apoptotic Bcl-xL and pro-apoptotic Bad are positively correlated in both non-atypical and atypical samples (unadjusted P < 0.0001), suggesting a delicate balance between the pro-apoptotic and anti-apoptotic regulation of cell proliferation during the early steps of mammary carcinogenesis. Our feasibility study suggests that the activation of key proteins along the RTK/Akt pathway may tip this balance to cell survival. Taken together, our results demonstrate the feasibility of mapping proteomic signaling networks in limited RPFNA samples obtained from high-risk women and the promise of developing rational drug targets or preventative strategies for breast cancer in future proteomic studies with a larger cohort of high-risk women.
Collapse
|
12
|
Pirouzpanah S, Taleban FA, Atri M, Abadi AR, Mehdipour P. The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer. Cancer Causes Control 2010; 21:2101-2111. [PMID: 20711807 DOI: 10.1007/s10552-010-9629-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/30/2010] [Indexed: 02/08/2023]
Abstract
Epigenetic silencing of retinoic acid receptor-beta2 (RARbeta2) and estrogen receptor-alpha (ERalpha) expressions have been revealed to be important in the development of approaches for diagnosis and therapy of breast cancer. We aimed to explore the correlation of some potential factors with the hypermethylation status of RARbeta2 and ERalpha genes among Iranian breast cancer patients. The hypermethylation status was investigated in 137 dissected tissues from primary breast cancer patients through methylation-specific PCR. Overall, the methylation frequencies of RARbeta2 and ERalpha genes were observed in 36.5 and 51.1% of participants, respectively. The hypermethylated RARbeta2 was associated with younger age at diagnosis and negative family history of breast cancer. The hypermethylation of ERalpha was correlated positively with smoking, duration of estradiol exposure, ER-negativity in tumors and body mass index (at 5 years ago). The plasma levels of folate and vitamin B(12) were inversely related to the hypermethylation status of ERalpha, after controlling for covariates. The risk of ERalpha hypermethylation was increased with high plasma level of total homocysteine. In conclusion, our data provide new insights into the possible effect of some lifestyle-related factors on the aberrant methylation drift of ERalpha and RARbeta2 genes in breast cancer.
Collapse
Affiliation(s)
- Saeed Pirouzpanah
- Department of Human Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University M.C., Tehran 19395-4741, Iran.
| | | | | | | | | |
Collapse
|
13
|
Dumitrescu RG, Marian C, Krishnan SS, Spear SL, Kallakury BVS, Perry DJ, Convit JR, Seillier-Moiseiwitsch F, Yang Y, Freudenheim JL, Shields PG. Familial and racial determinants of tumour suppressor genes promoter hypermethylation in breast tissues from healthy women. J Cell Mol Med 2009; 14:1468-75. [PMID: 19799643 PMCID: PMC3829013 DOI: 10.1111/j.1582-4934.2009.00924.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To determine the hypermethylation status of the promoter regions of tumour suppressor genes in breast tissues from healthy women and identify the determinants of these epigenetic changes. Questionnaires and breast tissues were collected from healthy women without a history of cancer and undergoing reduction mammoplasty (N= 141). Methylation for p16INK4, BRCA1, ERα and RAR-β promoter regions from breast tissues were determined by methylation specific PCR. Associations were examined with chi-square and Fisher’s exact test as well as logistic regression. All statistical tests were two-sided. p16INK4, BRCA1, ERα and RAR-β hypermethylation were identified in 31%, 17%, 9% and 0% of the women, respectively. Women with BRCA1 hypermethylation had an eight-fold increase in the risk of ERα hypermethylation (P= 0.007). p16INK4 hypermethylation was present in 28% of African-Americans, but 65% in European-Americans (P= 0.02). There was an increased likelihood of p16INK4 or BRCA1 hypermethylation for women with family history of cancer (OR 2.3; 95%CI: 1.05–4.85 and OR 5.0; 95%CI: 1.55–15.81, respectively). ERα hypermethylation was associated with family history of breast cancer (OR 6.6; 95%CI: 1.58–27.71). After stratification by race, p16INK4 in European-Americans and BRCA1 hypermethylation in African-Americans were associated with family history of cancer (OR 3.8; 95%CI: 1.21–12.03 and OR 6.5; 95%CI: 1.33–31.32, respectively). Gene promoter hypermethylation was commonly found in healthy breast tissues from women without cancer, indicating that these events are frequent and early lesions. Race and family history of cancer increase the likelihood of these early events.
Collapse
Affiliation(s)
- R G Dumitrescu
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC 20057-1465, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Orlando FA, Brown KD. Unraveling breast cancer heterogeneity through transcriptomic and epigenomic analysis. Ann Surg Oncol 2009; 16:2270-9. [PMID: 19452229 DOI: 10.1245/s10434-009-0500-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/31/2009] [Accepted: 04/19/2009] [Indexed: 12/31/2022]
Abstract
Breast cancer diversity is histologically evident as various proliferative benign lesions, in situ carcinomas, and invasive carcinomas that may develop into distant metastases. Breast tumor molecular subtypes have been defined by genome-wide expression microarray technology and reveal associations between genetic alterations and the malignant phenotype. Early work has been conducted to use subtype-specific biomarkers to elucidate targeted treatment options early in the course of breast cancer progression. Additionally, DNA methylation is an epigenetic modification that contributes to breast cancer progression by transcriptionally silencing certain tumor suppressor genes. Among the genes characterized as targets for silencing are well-established tumor suppressors such as RASSF1A, RARB, SFN, and TGM2. Measuring elevated gene copy number and aberrant gene promoter methylation can further facilitate characterization of breast tumor molecular subtype; however, profiling of breast tumors based on epigenetic criteria has yet to be established. Epigenomic analysis has been investigated for clinical applicability, and it has great promise when used in combination with minimally invasive techniques for both diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Frank A Orlando
- Department of Surgery, University of Florida College of Medicine and UF Shands Cancer Center, Gainesville, FL, USA.
| | | |
Collapse
|
15
|
Ibarra-Drendall C, Wilke LG, Zalles C, Scott V, Archer LE, Lem S, Yee LD, Lester J, Kulkarni S, Murekeyisoni C, Wood M, Wilson K, Garber J, Gentry C, Stouder A, Broadwater G, Baker JC, Vasilatos SN, Owens E, Rabiner S, Barron AC, Seewaldt VL. Reproducibility of random periareolar fine needle aspiration in a multi-institutional Cancer and Leukemia Group B (CALGB) cross-sectional study. Cancer Epidemiol Biomarkers Prev 2009; 18:1379-85. [PMID: 19383884 DOI: 10.1158/1055-9965.epi-08-1210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Random periareolar fine needle aspiration (RPFNA) is a research technique developed to assess short-term breast cancer risk in women at increased risk of breast cancer. Although there is increasing acceptance of RPFNA, neither the reproducibility nor the inter-institutional compatibility of RPFNA has been established. To address these key limitations, the Cancer and Leukemia Group B (CALGB) Prevention Group tested the reproducibility of RPFNA in a multi-institutional cross-sectional study. METHODS Sixty-three high-risk women from five CALGB institutions (Duke, Ohio State, Roswell Park, Dana Farber, and Vermont) underwent RPFNA from July 1, 2007 to June 30, 2008. Duplicate bilateral RPFNA was performed on each woman by a single investigator on a single day. Masood Cytology Index score was assessed by a single blinded cytopathologist. RESULTS There was a high degree of statistical agreement in the Masood Cytology Index scores of duplicate RPFNA samples from the same breast, with a Spearman correlation coefficient of 0.8312 (P < 0.0001). Importantly, although there was agreement in duplicate samples from the same breast, there was lack of agreement between duplicate samples from the opposite breast. CONCLUSIONS This multi-institutional study shows that RPFNA is a highly reproducible measure of breast cytology in a cooperative group cross-sectional trial. RPFNA did not show a high degree of agreement between breasts, suggesting that breast cancer risk and progression may occur at different rates in individual breasts from a single woman. These studies provide proof-of-principle for future RPFNA-based cooperative group prevention studies.
Collapse
|
16
|
Vasilatos SN, Broadwater G, Barry WT, Baker JC, Lem S, Dietze EC, Bean GR, Bryson AD, Pilie PG, Goldenberg V, Skaar D, Paisie C, Torres-Hernandez A, Grant TL, Wilke LG, Ibarra-Drendall C, Ostrander JH, D'Amato NC, Zalles C, Jirtle R, Weaver VM, Seewaldt VL. CpG island tumor suppressor promoter methylation in non-BRCA-associated early mammary carcinogenesis. Cancer Epidemiol Biomarkers Prev 2009; 18:901-14. [PMID: 19258476 DOI: 10.1158/1055-9965.epi-08-0875] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Only 5% of all breast cancers are the result of BRCA1/2 mutations. Methylation silencing of tumor suppressor genes is well described in sporadic breast cancer; however, its role in familial breast cancer is not known. METHODS CpG island promoter methylation was tested in the initial random periareolar fine-needle aspiration sample from 109 asymptomatic women at high risk for breast cancer. Promoter methylation targets included RARB (M3 and M4), ESR1, INK4a/ARF, BRCA1, PRA, PRB, RASSF1A, HIN-1, and CRBP1. RESULTS Although the overall frequency of CpG island promoter methylation events increased with age (P<0.0001), no specific methylation event was associated with age. In contrast, CpG island methylation of RARB M4 (P=0.051), INK4a/ARF (P=0.042), HIN-1 (P=0.044), and PRA (P=0.032), as well as the overall frequency of methylation events (P=0.004), was associated with abnormal Masood cytology. The association between promoter methylation and familial breast cancer was tested in 40 unaffected premenopausal women in our cohort who underwent BRCA1/2 mutation testing. Women with BRCA1/2 mutations had a low frequency of CpG island promoter methylation (15 of 15 women had <or=4 methylation events), whereas women without a mutation showed a high frequency of promoter methylation events (24 of 25 women had 5-8 methylation events; P<0.0001). Of women with a BRCA1/2 mutation, none showed methylation of HIN-1 and only 1 of 15 women showed CpG island methylation of RARB M4, INK4a/ARF, or PRB promoters. CONCLUSIONS This is the first evidence of CpG island methylation of tumor suppressor gene promoters in non-BRCA1/2 familial breast cancer.
Collapse
Affiliation(s)
- Shauna N Vasilatos
- Department of Medicine, Duke University Medical Center, Box 2628, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Baker JC, Ostrander JH, Lem S, Broadwater G, Bean GR, D'Amato NC, Goldenberg VK, Rowell C, Ibarra-Drendall C, Grant T, Pilie PG, Vasilatos SN, Troch MM, Scott V, Wilke LG, Paisie C, Rabiner SM, Torres-Hernandez A, Zalles CM, Seewaldt VL. ESR1 promoter hypermethylation does not predict atypia in RPFNA nor persistent atypia after 12 months tamoxifen chemoprevention. Cancer Epidemiol Biomarkers Prev 2008; 17:1884-90. [PMID: 18708376 DOI: 10.1158/1055-9965.epi-07-2696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Currently, we lack biomarkers to predict whether high-risk women with mammary atypia will respond to tamoxifen chemoprevention. EXPERIMENTAL DESIGN Thirty-four women with cytologic mammary atypia from the Duke University High-Risk clinic were offered tamoxifen chemoprevention. We tested whether ESR1 promoter hypermethylation and/or estrogen receptor (ER) protein expression by immunohistochemistry predicted persistent atypia in 18 women who were treated with tamoxifen for 12 months and in 16 untreated controls. RESULTS We observed a statistically significant decrease in the Masood score of women on tamoxifen chemoprevention for 12 months compared with control women. This was a significant interaction effect of time (0, 6, and 12 months) and treatment group (tamoxifen versus control) P = 0.0007. However, neither ESR1 promoter hypermethylation nor low ER expression predicted persistent atypia in Random Periareolar Fine Needle Aspiration after 12 months tamoxifen prevention. CONCLUSIONS Results from this single institution pilot study provide evidence that, unlike for invasive breast cancer, ESR1 promoter hypermethylation and/or low ER expression is not a reliable marker of tamoxifen-resistant atypia.
Collapse
|
18
|
DNA Methylation in Benign Breast Epithelium in Relation to Age and Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev 2008; 17:1051-9. [DOI: 10.1158/1055-9965.epi-07-2582] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Bean GR, Bryson AD, Pilie PG, Goldenberg V, Baker JC, Ibarra C, Brander DMU, Paisie C, Case NR, Gauthier M, Reynolds PA, Dietze E, Ostrander J, Scott V, Wilke LG, Yee L, Kimler BF, Fabian CJ, Zalles CM, Broadwater G, Tlsty TD, Seewaldt VL. Morphologically normal-appearing mammary epithelial cells obtained from high-risk women exhibit methylation silencing of INK4a/ARF. Clin Cancer Res 2008; 13:6834-41. [PMID: 18006786 DOI: 10.1158/1078-0432.ccr-07-0407] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE p16(INK4a) has been appreciated as a key regulator of cell cycle progression and senescence. Cultured human mammary epithelial cells that lack p16(INK4a) activity have been shown to exhibit premalignant phenotypes, such as telomeric dysfunction, centrosomal dysfunction, a sustained stress response, and, most recently, a dysregulation of chromatin remodeling and DNA methylation. These data suggest that cells that lack p16(INK4a) activity would be at high risk for breast cancer development and may exhibit an increased frequency of DNA methylation events in early cancer. EXPERIMENTAL DESIGN To test this hypothesis, the frequencies of INK4a/ARF promoter hypermethylation, as well as four additional selected loci, were tested in the initial random periareolar fine needle aspiration samples from 86 asymptomatic women at high risk for development of breast cancer, stratified using the Masood cytology index. RESULTS INK4a/ARF promoter hypermethylation was observed throughout all early stages of intraepithelial neoplasia and, importantly, in morphologically normal-appearing mammary epithelial cells; 29 of 86 subjects showed INK4a/ARF promoter hypermethylation in at least one breast. Importantly, INK4a/ARF promoter hypermethylation was not associated with atypia, and the frequency of hypermethylation did not increase with increasing Masood cytology score. The frequency of INK4a/ARF promoter hypermethylation was associated with the combined frequency of promoter hypermethylation of retinoic acid receptor-beta2, estrogen receptor-alpha, and breast cancer-associated 1 genes (P = 0.001). CONCLUSIONS Because INK4a/ARF promoter hypermethylation does not increase with age but increases with the frequency of other methylation events, we predict that INK4a/ARF promoter hypermethylation may serve as a marker of global methylation dysregulation.
Collapse
|
20
|
Mirza S, Sharma G, Prasad CP, Parshad R, Srivastava A, Gupta SD, Ralhan R. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 2007; 81:280-7. [PMID: 17599361 DOI: 10.1016/j.lfs.2007.05.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/04/2007] [Accepted: 05/14/2007] [Indexed: 01/29/2023]
Abstract
Breast cancer is fast emerging as the leading cancer amongst females, especially in younger age group in India; a large proportion of these tumors are often aggressive and ER and/or PR negative. Promoter methylation of genes involved in DNA repair and hormonal regulation may, in part, account for this behavior. To test this hypothesis methylation status of tumor suppressor genes TMS1, BRCA1, ERalpha and PRB was determined in invasive ductal carcinoma of breast and paired serum DNA. Of the 50 breast cancer patients investigated, 36/50 (72%) tumors and 32/50 (64%) paired sera showed methylation of at least one of these genes, while 17/50 (34%) tumors and 12/50 (24%) sera showed methylation of three genes. Methylation frequencies ranged from 24% for TMS1 to 63% for ERalpha. Significant association was observed between ERalpha and PRB methylation (p< or =0.001) and there was concordance between DNA methylation in tumor and serum for each gene. Immunohistochemical analysis showed no detectable expression of ERalpha, PRB and BRCA1 in 21/36 (58%), 20/36 (56%) and 23/36 (64%) tumors respectively; significant correlation was observed between promoter methylation and loss of protein expression confirming our hypothesis that promoter methylation is an important mechanism for transcriptional silencing of these genes in breast cancer in this population. This study also underscores the potential utility of DNA methylation based screening of serum (a surrogate for tumor DNA methylation) as a tool for detection of breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- BRCA1 Protein/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Breast Neoplasms/blood
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- CARD Signaling Adaptor Proteins
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cohort Studies
- Cytoskeletal Proteins/metabolism
- DNA Methylation
- DNA, Neoplasm/blood
- Epigenesis, Genetic
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Middle Aged
- Promoter Regions, Genetic/genetics
- Receptors, Progesterone/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|