1
|
Nagata C, Wada K, Yamakawa M, Sugino M, Mori T, Ueyama J, Sumoto Y. Acrylamide exposure, sex hormones, and pubertal status in Japanese adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-10. [PMID: 39257043 DOI: 10.1080/09603123.2024.2401578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Acrylamide may affect sex hormone levels and the timing of sexual maturation. The present study cross-sectionally examined interrelationship between the urinary metabolite of acrylamide exposure, serum sex hormone levels, and pubertal status in 408 Japanese adolescents aged 13-14 years. Their caregivers completed a questionnaire concerning the health status of their children, including pubertal maturation, and the lifestyles of children and parents. Pubertal status was queried by the Pubertal Development Scale. A major metabolite of acrylamide, N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) in first-void urine samples. In male students, urinary AAMA was significantly inversely associated with testosterone, puberty stage, and facial hair growth after controlling for covariates. Serum testosterone and DHEAS were significantly positively associated with puberty stage. In female students, urinary AAMA was not associated with puberty stage, the indices, or any measured hormones. The data suggest that exposure to acrylamide may impact the pubertal development of boys through the effects on testosterone level.
Collapse
Affiliation(s)
- Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaaki Sugino
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoka Mori
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshio Sumoto
- Department of Social Studies Education, Graduate School of Education, Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Gupta D, Shrivastava S, Kumar S, Bhardwaj G, Jain C, Kumar S, Tonk R, Shukla S. Protective effect of rutin on acrylamide induced ovarian inflammation, oxidative stress, DNA damage, and hormonal changes: Based on in silico and in vivo study. J Biochem Mol Toxicol 2024; 38:e23784. [PMID: 39095945 DOI: 10.1002/jbt.23784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Acrylamide (AA) is a carcinogenic compound that affects people due to its frequent use in laboratories and industry as well as the high-temperature cooking of foods with high hydrocarbon content. AA is known to cause severe reproductive abnormalities. The main aim of this study is to evaluate the protective effect of rutin (RU), a phytoactive compound, against AA-induced reproductive toxicity in female rats. Initially, rats were exposed to AA (40 mg/kg for 10 days). Therapy of RU was given after AA intoxication consecutively for 3 days. After 24 h of the last treatment, all the animals were sacrificed. The study evaluated reproductive hormones, oxidative stress markers, membrane-bound enzymes, DNA damage, histological findings, and an in silico approach to determine the protective efficacy of RU. The results indicated that RU significantly protected against inflammation, oxidative stress, and DNA damage induced by AA, likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Divya Gupta
- Reproductive Biology and Toxicology Lab, UNESCO Trace Element and Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sadhana Shrivastava
- Reproductive Biology and Toxicology Lab, UNESCO Trace Element and Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Subodh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Gautam Bhardwaj
- School of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chakresh Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Suresh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Rajiv Tonk
- School of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Lab, UNESCO Trace Element and Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
3
|
Seify M, Abedpour N, Talebi SF, Hazari V, Mehrara M, Koohestanidehaghi Y, Shoorei H, Bhandari RK. Impacts of Acrylamide on testis and spermatozoa. Mol Biol Rep 2024; 51:739. [PMID: 38874886 DOI: 10.1007/s11033-024-09677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.
Collapse
Affiliation(s)
- Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | | | - Vajihe Hazari
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Mehrara
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Shoorei
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Arafah M, Aldawood N, Alrezaki A, Nahdi S, Alwasel S, Mansour L, Harrath AH. Prenatal exposure to acrylamide differently affected the sex ratio, aromatase and apoptosis in female adult offspring of two subsequent generations. Physiol Res 2023; 72:59-69. [PMID: 36545876 PMCID: PMC10069810 DOI: 10.33549/physiolres.934975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
In the present study, we investigated the effect of acrylamide (ACR) exposure during pregnancy on the ovary of female adult offspring of two subsequent generations. Sixty-day-old Wistar albino female rats were given different doses of ACR (2.5 and 10 mg/kg/day) from day 6 of pregnancy until giving birth. Females from the first generation (AF1) were fed ad libitum, and thereafter, a subgroup was euthanized at 8 weeks of age and ovary samples were obtained. The remaining females were maintained until they reached sexual maturity (50 days old) and then treated in the same way as the previous generation to obtain the second generation of females (AF2). The histopathological examination indicated a high frequency of corpora lutea along with an increased number of antral follicles that reached the selectable stage mainly at a dose of 2.5 mg/kg/day. Interestingly, ACR exposure significantly increased the mRNA levels of CYP19 gene and its corresponding CYP19 protein expression in AF1 females. The TUNEL assay showed a significantly high rate of apoptosis in stromal cells except for dose of 2.5 mg/kg/day. However, in AF2 females, ACR exposure significantly increased the number of degenerating follicles and cysts while the number of growing follicles was reduced. Moreover, in both ACR-treated groups, estradiol-producing enzyme CYP19A gene and its corresponding protein were significantly reduced, and an excessive apoptosis was produced. We concluded that the ovarian condition of AF1 females had considerable similarity to the typical early perimenopausal stage, whereas that of AF2 females was similar to the late perimenopausal stage in women.
Collapse
Affiliation(s)
- M Arafah
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Narii N, Kito K, Sobue T, Zha L, Kitamura T, Matsui Y, Matsuda T, Kotemori A, Nakadate M, Iwasaki M, Inoue M, Yamaji T, Tsugane S, Ishihara J, Sawada N. Acrylamide and Glycidamide Hemoglobin Adduct Levels and Breast Cancer Risk in Japanese Women: A Nested Case-Control Study in the JPHC. Cancer Epidemiol Biomarkers Prev 2023; 32:415-421. [PMID: 36535654 DOI: 10.1158/1055-9965.epi-22-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acrylamide (AA) is classified as "probably carcinogenic to humans (class 2A)" by the International Agency for Research on Cancer. AA causes cancer owing to its mutagenic and genotoxic metabolite, glycidamide (GA), and its effects on sex hormones. Both AA and GA can interact with hemoglobin to hemoglobin adducts (HbAA and HbGA, respectively), which are considered appropriate biomarkers of internal exposure of AA. However, few epidemiologic studies reported an association of HbAA and HbGA with breast cancer. METHODS We conducted a nested case-control study within the Japan Public Health Center-based Prospective Study cohort (125 cases and 250 controls). Cases and controls were categorized into tertiles (lowest, middle, and highest) using the distribution of HbAA or HbGA levels in the control group and estimated ORs and 95% confidence intervals (CI) using conditional logistic regression, adjusting for potential confounders. RESULTS No association was observed between HbAA (ORHighestvs.Lowest, 1.34; 95% CI, 0.69-2.59), HbGA (ORHighest vs. Lowest, 1.46; 95% CI, 0.79-2.69), their sum HbAA+HbGA (ORHighest vs. Lowest, 1.36; 95% CI, 0.72-2.58) and breast cancer; however, some evidence of positive association was observed between their ratio, HbGA/HbAA, and breast cancer (ORHighest vs. Lowest, 2.19; 95% CI, 1.11-4.31). CONCLUSIONS There was no association between biomarkers of AA and breast cancer. IMPACT It is unlikely that AA increases breast cancer risk; however, the association of AA with breast cancer may need to be evaluated, with a focus not only on the absolute amount of HbAA or HbGA but also on HbGA/HbAA and the activity of metabolic genes.
Collapse
Affiliation(s)
- Nobuhiro Narii
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kumiko Kito
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan.,Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Tomotaka Sobue
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ling Zha
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuhisa Kitamura
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuto Matsui
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Ayaka Kotemori
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Misako Nakadate
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Motoki Iwasaki
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Junko Ishihara
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Norie Sawada
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
6
|
Wang R, Deng X, Ma Q, Ma F. Association between acrylamide exposure and sex hormones among premenopausal and postmenopausal women: NHANES, 2013-2016. J Endocrinol Invest 2023:10.1007/s40618-022-01976-3. [PMID: 36602706 DOI: 10.1007/s40618-022-01976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Acrylamide (AA) is a potential carcinogen that mainly comes from fried, baked and roasted foods, and Hb adducts of AA (HbAA) and its metabolite glycidamide (HbGA) are the biomarkers of its exposure. Increasing evidence suggests that AA is associated with various hormone-related cancers. This study aims to explore the association of HbAA and HbGA with female serum sex hormone concentrations. METHODS 942 women from the National Health and Nutrition Examination Survey cycles (2013-2016) were included in this cross-sectional study. The associations between HbAA or HbGA or HbGA/HbAA and sex hormones were assessed by the multiple linear regression. Further stratified analyses were conducted to figure out the effects of menopausal status, BMI and smoking status on sex hormone levels. RESULTS Among all participants, 597 were premenopausal and 345 were postmenopausal. HbAA was positively associated with both two androgen indicators. Specifically, a ln-unit increase in HbAA was associated with 0.41 ng/dL higher ln(total testosterone, TT) (95% CI 0.00, 0.27) and 0.14 ng/dL higher ln(free testosterone) (95%CI 0.00, 0.28), respectively. However, HbGA concentrations had no association with sex hormones in the overall population. Additionally, HbGA/HbAA was negatively associated with TT and SHBG in the overall population as well as postmenopausal women. In stratified analysis, higher HbAA was associated with rising TT in postmenopausal women (β = 0.29, 95%CI 0.04, 0.53) and underweight/normal-weight women (β = 0.18, 95%CI 0.03, 0.33). Other indicators had no significant association detected in estradiol and sex hormone-binding globulin. CONCLUSION Our results revealed that HbAA was positively associated with androgen concentrations, especially in postmenopausal and BMI < 25 women.
Collapse
Affiliation(s)
- R Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - X Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Q Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - F Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
7
|
Castro Wersäll O, Razumova Z, Govorov I, Mints M. Dietary Habits and Daily Routines as Prognostic Factors in Endometrial Cancer: A Machine Learning Approach. Nutr Cancer 2022; 75:310-319. [PMID: 36104928 DOI: 10.1080/01635581.2022.2112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endometrial cancer (EC) is becoming more common worldwide, primarily due to an increase in life expectancy and obesity. As several modifiable factors may affect EC incidence and progression, we aimed to elucidate how dietary habits and daily routines influence recurrence and survival among women with EC, using a Random Survival Forest (RSF) approach. 481 women who previously underwent hysterectomy due to EC completed two extensive questionnaires on dietary habits and daily routines, and we used RSF to identify risky or protective variables. Among the 186 variables considered, consumption of sugar-sweetened beverages and fried potatoes increased the risk of EC recurrence and death, while physical activity decreased the risk of death. We conclude that RSF is a suitable approach to study survival in multivariable datasets.
Collapse
Affiliation(s)
- Ofra Castro Wersäll
- Division of Neonatology, Obstetrics and Gynaecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Zoia Razumova
- Division of Neonatology, Obstetrics and Gynaecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Igor Govorov
- Division of Neonatology, Obstetrics and Gynaecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Miriam Mints
- Division of Neonatology, Obstetrics and Gynaecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Timmermann CAG, Mølck SS, Kadawathagedara M, Bjerregaard AA, Törnqvist M, Brantsæter AL, Pedersen M. A Review of Dietary Intake of Acrylamide in Humans. TOXICS 2021; 9:155. [PMID: 34209352 PMCID: PMC8309717 DOI: 10.3390/toxics9070155] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
The dietary intake of acrylamide (AA) is a health concern, and food is being monitored worldwide, but the extent of AA exposure from the diet is uncertain. The aim of this review was to provide an overview of estimated dietary intake. We performed a PubMed search identifying studies that used dietary questionnaires and recalls to estimate total dietary AA intake. A total of 101 studies were included, corresponding to 68 original study populations from 26 countries. Questionnaires were used in 57 studies, dietary recalls were used in 33 studies, and 11 studies used both methods. The estimated median AA intake ranged from 0.02 to 1.53 μg/kg body weight/day between studies. Children were represented in 25 studies, and the body-weight-adjusted estimated AA intake was up to three times higher for children than adults. The majority of studies were from Europe (n = 65), Asia (n = 17), and the USA (n = 12). Studies from Asia generally estimated lower intakes than studies from Europe and the USA. Differences in methods undermine direct comparison across studies. The assessment of AA intake through dietary questionnaires and recalls has limitations. The integration of these methods with the analysis of validated biomarkers of exposure/internal dose would improve the accuracy of dietary AA intake exposure estimation. This overview shows that AA exposure is widespread and the large variation across and within populations shows a potential for reduced intake among those with the highest exposure.
Collapse
Affiliation(s)
| | - Signe Sonne Mølck
- Department of Public Health, University of Copenhagen, 1356 Copenhagen, Denmark;
| | - Manik Kadawathagedara
- Inserm, Institut de Recherche en Santé, Environnement et Travail, 35000 Rennes, France;
| | - Anne Ahrendt Bjerregaard
- Center for Clinical Research and Prevention, Bispebjerg & Frederiksberg Hospital, 2000 Frederiksberg, Denmark;
- Department of Epidemiology Research, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden;
| | - Anne Lise Brantsæter
- Department of Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway;
| | - Marie Pedersen
- Department of Public Health, University of Copenhagen, 1356 Copenhagen, Denmark;
| |
Collapse
|
9
|
Yin G, Liao S, Gong D, Qiu H. Association of acrylamide and glycidamide haemoglobin adduct levels with diabetes mellitus in the general population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116816. [PMID: 33667748 DOI: 10.1016/j.envpol.2021.116816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
The frequency and duration of exposure to acrylamide (AA) from the environment and diet are associated with a range of adverse health effects. However, whether long-term AA exposure is related to diabetes mellitus (DM) remains unknown. Data from 3577 adults in the National Health and Nutrition Examination Survey (NHANES) 2005-2006 and 2013-2016 aged ≥ 20 years was analysed. The main analyses applied multivariate logistic regression and restricted cubic spline models to investigate the associations between DM and AA haemoglobin biomarkers, including haemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA to HbAA (HbGA/HbAA) levels. After multivariable adjustment, the odds ratios (95% confidence intervals) for DM comparing the highest with the lowest AA haemoglobin biomarker quartiles were 0.71 (0.55, 0.93), 0.92 (0.71, 1.18), 0.80 (0.62, 1.03) and 1.95 (1.51, 2.51) for HbAA, HbGA, HbAA + HbGA and HbGA/HbAA, respectively. The restricted cubic spline model demonstrated that HbAA was linearly and inversely associated with risk of DM (P for trend = 0.013), while HbGA/HbAA was nonlinearly and positively associated with the prevalence of DM (P for trend <0.001). These results support for epidemiological evidence that the HbAA and HbGA/HbAA are significantly associated with DM. Further studies are warranted to infer the causal role of AA exposure in the prevalence of DM.
Collapse
Affiliation(s)
- Guangli Yin
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Dexing Gong
- Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, 510000, China
| | - Hongxia Qiu
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
10
|
Hutchcraft ML, Gallion HH, Kolesar JM. MUTYH as an Emerging Predictive Biomarker in Ovarian Cancer. Diagnostics (Basel) 2021; 11:84. [PMID: 33419231 PMCID: PMC7825630 DOI: 10.3390/diagnostics11010084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Approximately 18% of ovarian cancers have an underlying genetic predisposition and many of the genetic alterations have become intervention and therapy targets. Although mutations in MutY homolog (MUTYH) are best known for MUTYH associated polyposis and colorectal cancer, it plays a role in the development of ovarian cancer. In this review, we discuss the function of the MUTYH gene, mutation epidemiology, and its mechanism for carcinogenesis. We additionally examine its emerging role in the development of ovarian cancer and how it may be used as a predictive and targetable biomarker. MUTYH mutations may confer the risk of ovarian cancer by the failure of its well-known base excision repair mechanism or by failure to induce cell death. Biallelic germline MUTYH mutations confer a 14% risk of ovarian cancer by age 70. A monoallelic germline mutation in conjunction with a somatic MUTYH mutation may also contribute to the development of ovarian cancer. Resistance to platinum-based chemotherapeutic agents may be seen in tumors with monoallelic mutations, but platinum sensitivity in the biallelic setting. As MUTYH is intimately associated with targetable molecular partners, therapeutic options for MUTYH driven ovarian cancers include programed-death 1/programed-death ligand-1 inhibitors and poly-adenosine diphosphate ribose polymerase inhibitors. Understanding the function of MUTYH and its associated partners is critical for determining screening, risk reduction, and therapeutic approaches for MUTYH-driven ovarian cancers.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
| | - Holly H. Gallion
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
| | - Jill M. Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
- Department of Pharmacy Practice & Science, University of Kentucky College of Pharmacy, 567 Todd Building, 789 South Limestone Street, Lexington, KY 40539-0596, USA
| |
Collapse
|
11
|
Aldawood N, Alrezaki A, Alanazi S, Amor N, Alwasel S, Sirotkin A, Harrath AH. Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: An in vivo study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110595. [PMID: 32304918 DOI: 10.1016/j.ecoenv.2020.110595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Acrylamide (ACR) toxicity is quite common due to its widespread use in industry and due to the Maillard browning reaction that occurs in foods containing high concentrations of hydrocarbons subjected to high temperatures. This study aimed to elucidate the female reproductive toxicity of ACR in vivo. Fifty-day-old Wistar-Albino female rats were treated with different dosages of ACR (2.5, 10, and 50 mg/kg/day). After treatment, the animals were sacrificed, and serum and ovary samples were collected for histological examination, hormone analysis, TUNEL analysis, and RT-PCR studies. We found that ACR acts by significantly reducing ovarian weight and serum progesterone and estradiol concentrations. In addition, ACR treatment led to pyknotic, heterochromatic characteristics and nuclear fragmentation, as evidenced by hematoxylin staining. The TUNEL assay revealed that granulosa cells were affected after the oral administration of ACR, leading to the apoptosis of follicles at different stages of growth. Compared with the control condition, high doses of ACR (50 mg/kg/day) significantly induced the overexpression of INSL3, CYP17a, IGF1, ESR1, ESR2, ATG5, ATG12 and LC3 in the ovary. Moreover, LC3 mRNA levels significantly increased with increasing doses of ACR (2.5, 10 and 50 mg/kg/day), suggesting that ACR treatment induced autophagy. In conclusion, ACR induced ovarian dysfunction by affecting steroid hormone release, increasing apoptosis and mRNA levels of autophagy-related genes. The eventual correlation between apoptotic granulosa cell death and autophagy needs to be further explored.
Collapse
Affiliation(s)
- Nouf Aldawood
- King Saud University, Department of Zoology, College of Science
| | | | - Shamsa Alanazi
- King Saud University, Department of Zoology, College of Science
| | - Nabil Amor
- King Saud University, Department of Zoology, College of Science
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science
| | - Alexander Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74, Nitra, Slovakia
| | | |
Collapse
|
12
|
Chu PL, Liu HS, Wang C, Lin CY. Association between acrylamide exposure and sex hormones in males: NHANES, 2003-2004. PLoS One 2020; 15:e0234622. [PMID: 32555690 PMCID: PMC7302712 DOI: 10.1371/journal.pone.0234622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Acrylamide is widely present in heat-processed food, cigarette smoke and environment. Reproductive toxicity was reported in animals treated with acrylamide, particularly in males. The reproductive toxicity of acrylamide and its active metabolite, glycidamide, was reported to be mainly mediated through DNA damage in spermatocytes. However, the effect of acrylamide on sex hormones in men is unknown. Methods There were 468 male subjects (age ≧ 12 years) enrolled to determine the relationships between hemoglobin adducts of acrylamide (HbAA) and hemoglobin adducts of glycidamide (HbGA) with several sex hormones using the National Health and Nutrition Examination Survey (NHANES), 2003 to 2004. All potential confounding variables in the data set were properly adjusted. Results We found that one unit increase in the natural log-transformed HbAA level was associated with an increase in natural log transformed serum inhibin B level by 0.10 (SE = 0.05; P = 0.046), and natural log transformed serum sex hormone binding globulin (SHBG) by 0.15 (SE = 0.15; P = 0.036). With respect to HbGA, one unit increase in the natural log-transformed HbGA level was associated with an increase in natural log transformed serum anti-Müllerian Hormone (AMH) level by 0.31 (SE = 0.00; P = 0.003). Conclusion In this representative cohort, we identified positive associations between acrylamide exposure and several sex hormones in men. The HbAA is positively associated with inhibin B and SHBG, and HbGA is positively associated with AMH. Other than genotoxicity, our findings suggested that altered sex hormones might also play a role in acrylamide-related reproductive toxicity in males.
Collapse
Affiliation(s)
- Pei-Lun Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Hui-Shan Liu
- Department of Gynecology and Obstetrics, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Yu D, Liu Q, Qiao B, Jiang W, Zhang L, Shen X, Xie L, Liu H, Zhang D, Yang B, Kuang H. Exposure to acrylamide inhibits uterine decidualization via suppression of cyclin D3/p21 and apoptosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121785. [PMID: 31818667 DOI: 10.1016/j.jhazmat.2019.121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Acrylamide (ACR), a neurotoxicity and carcinogenic chemical, has attracted considerable attention since it is present at high concentrations in thermally cooked carbohydrate-rich foods. ACR exposure significantly increased rate of fetal resorption, and decreased fetal body weights in mice. However, no detailed information is available about the effect of ACR on uterine decidualization, which is a vital process in the establishment of successful pregnancy. Thus, our aim of this study was to explore the effect and mechanism of ACR on uterine decidualization in vivo during mice pregnancy. Mice were gavaged with 0, 10, and 50 mg ACR /kg/day from gestational days (GD) 1 until GD 8, whereas pseudopregnant mice from pseudopregnant day (PPD) 4 until PPD 8. Results indicated ACR treatment dramatically reduced numbers of implanted embryos, and decreased the weights of implantation site and oil-induced uterus. Nevertheless, no significant difference was observed in the weights of no oil-induced uterus between control and ACR-treated group. Furthermore, ACR significantly reduced numbers of polyploidy and PCNA-positive decidual cells and expression of cyclin D3 and p21 proteins, and induced apoptosis of decidua, as presented by up-regulation of Bax and cleaved-caspase-3, and decreased Bcl-2 protein during normal pregnant and pseudopregnant process. In summary, ACR exposure significantly inhibited uterine endometrial decidualization via the apoptosis and suppression of cyclin D3/p21 in mice.
Collapse
Affiliation(s)
- Dainan Yu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Qingyun Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bo Qiao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Lixia Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Gynecology and Children, Jiaxing University, Jiaxing, Zhejiang, 314001, PR China.
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Liping Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
14
|
Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. Cancer Epidemiol Biomarkers Prev 2020; 29:1095-1106. [PMID: 32169997 DOI: 10.1158/1055-9965.epi-19-1628] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Acrylamide is a probable human carcinogen. Aside from occupational exposures and smoking, diet is the main source of exposure in humans. We performed a systematic review of the association between estimated dietary intake of acrylamide and risk of female breast, endometrial, and ovarian cancers in nonexperimental studies published through February 25, 2020, and conducted a dose-response meta-analysis. We identified 18 papers covering 10 different study populations: 16 cohort and two case-control studies. Acrylamide intake was associated with a slightly increased risk of ovarian cancer, particularly among never smokers. For endometrial cancer, risk was highest at intermediate levels of exposure, whereas the association was more linear and positive among never smokers. For breast cancer, we found evidence of a null or inverse relation between exposure and risk, particularly among never smokers and postmenopausal women. In a subgroup analysis limited to premenopausal women, breast cancer risk increased linearly with acrylamide intake starting at 20 μg/day of intake. High acrylamide intake was associated with increased risks of ovarian and endometrial cancers in a relatively linear manner, especially among never smokers. Conversely, little association was observed between acrylamide intake and breast cancer risk, with the exception of premenopausal women.
Collapse
Affiliation(s)
- Giorgia Adani
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Department of Epidemiology Research, Copenhagen, Denmark.,Unit for Nutrition Research, Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
15
|
Kotemori A, Ishihara J, Nakadate M, Sawada N, Iwasaki M, Sobue T, Tsugane S. Validity of a Self-administered Food Frequency Questionnaire for the Estimation of Acrylamide Intake in the Japanese Population: The JPHC FFQ Validation Study. J Epidemiol 2018; 28:482-487. [PMID: 29806636 PMCID: PMC6242785 DOI: 10.2188/jea.je20170186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acrylamide, a probable carcinogen to humans, forms during high temperature cooking. Dietary exposure to acrylamide among the Japanese population is unknown. We aimed to establish and validate a method to assess acrylamide exposure among the Japanese population using a food frequency questionnaire (FFQ) from the Japan Public Health Center-based prospective study. METHODS Validation studies for the FFQ were conducted in 1994 (Cohort I, n = 215) and 1996 (Cohort II, n = 350). The 28-day dietary records (DRs) were collected over 1 year. The FFQ was distributed before and after DR collection. Data for acrylamide exposure were based on reported measurements in Japan, and calculations considered the cooking process for specific vegetables in a home setting. Spearman's rank correlation and weighted kappa coefficients were calculated from energy-adjusted data. RESULTS Mean acrylamide intake levels estimated from DRs for Cohorts I and II were 6.78 (standard deviation [SD], 3.89) µg/day and 7.25 (SD, 3.33) µg/day, and corresponding levels estimated from the FFQ were 7.03 (SD, 4.30) µg/day and 7.14 (SD, 3.38) µg/day, respectively. Deattenuated correlation coefficients for men and women were 0.54 and 0.48 in Cohort I and 0.40 and 0.37 in Cohort II, respectively. Weighted kappa coefficients were over 0.80 in all cases. The main contributing food groups from DRs were beverages, confectioneries, vegetables, potatoes and starches, and cereals. CONCLUSIONS High kappa values validate the use of FFQ in epidemiological studies. The marked contribution of cooked vegetables indicates the importance of considering household cooking methods in assessing acrylamide intake levels in the Japanese population.
Collapse
Affiliation(s)
- Ayaka Kotemori
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Junko Ishihara
- Department of Food and Life Science, Azabu University, Kanagawa, Japan
| | - Misako Nakadate
- Division of Nutrition Science, Graduate School of Sagami Women’s University, Kanagawa, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Tomotaka Sobue
- Department of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
16
|
Nagata C, Konishi K, Wada K, Tamura T, Goto Y, Koda S, Mizuta F, Iwasa S. Maternal Acrylamide Intake during Pregnancy and Sex Hormone Levels in Maternal and Umbilical Cord Blood and Birth Size of Offspring. Nutr Cancer 2018; 71:77-82. [PMID: 30426779 DOI: 10.1080/01635581.2018.1524018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure to acrylamide during pregnancy may disturb pregnancy hormones and the growth of the fetus. The present study aimed to examine the association of maternal acrylamide intake with maternal and cord sex hormone levels during pregnancy and at birth and birth size of offspring. The study subjects were 204 pregnant Japanese women and their newborn girls. Intake of acrylamide was assessed based on 5-day diet records at approximately the 29th week of pregnancy. The concentrations of estradiol, estriol, and testosterone were measured in maternal serum at the 29th weeks of pregnancy and at delivery and umbilical cord blood at delivery. Birth weight, length, and head circumference were measured at the delivery. After controlling for covariates, higher intake of acrylamide was significantly positively associated with higher level of umbilical cord estradiol at the delivery (p for trend = .01), but not with any hormone levels measured in maternal blood. A positive association between acrylamide intake and head circumference was of borderline significance (p for trend = .06). Overall, there were no consistent associations between maternal acrylamide intake and sex hormone levels during pregnancy. However, as this is the first study to examine these associations, additional studies are needed.
Collapse
Affiliation(s)
- Chisato Nagata
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Kie Konishi
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Keiko Wada
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Takashi Tamura
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan.,b Department of Preventive Medicine , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yuko Goto
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Sachi Koda
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Fumi Mizuta
- a Department of Epidemiology and Preventive Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | | |
Collapse
|
17
|
Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, Sobue T, Tsugane S. Dietary acrylamide intake and the risk of endometrial or ovarian cancers in Japanese women. Cancer Sci 2018; 109:3316-3325. [PMID: 30063274 PMCID: PMC6172050 DOI: 10.1111/cas.13757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022] Open
Abstract
A meta-analysis published in 2015 noted a marginally increased risk of endometrial and ovarian cancers in non-smoking women with dietary acrylamide intake, but only a few studies were included, and they were limited to Western countries. The aim of this study was to investigate the association between dietary acrylamide intake and endometrial or ovarian cancer risk in the Japan Public Health Center-based Prospective Study (JPHC Study). In this prospective cohort study, 47 185 participants aged 45-74 years at the follow-up starting point in the JPHC Study were enrolled. Dietary acrylamide intake was assessed using a validated food frequency questionnaire. Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (95%CI). In participants with endometrial and ovarian cancer, the average follow-up periods were 15.5 and 15.6 years, respectively, and 161 and 122 cases of endometrial and ovarian cancer were diagnosed, respectively. Energy-adjusted dietary acrylamide intake was negatively associated with endometrial cancer, but the association disappeared after adjusting for coffee consumption with an adjusted HR for the highest vs lowest tertile of 0.85 (95%CI: 0.54-1.33). No association was observed, however, for ovarian cancer (adjusted HR, 0.77; 95%CI: 0.49-1.23). Furthermore, after stratifying by smoking status, coffee consumption, alcohol consumption, body mass index, and menopause status, no association was observed. Dietary acrylamide intake was not associated with the risk of endometrial or ovarian cancer in Japanese women with a relatively lower dietary intake of acrylamide compared with Western populations.
Collapse
Affiliation(s)
- Ayaka Kotemori
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Junko Ishihara
- Department of Food and Life ScienceAzabu UniversityKanagawaJapan
| | - Ling Zha
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Rong Liu
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Norie Sawada
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Motoki Iwasaki
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Tomotaka Sobue
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Shoichiro Tsugane
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | | |
Collapse
|
18
|
Huang M, Zhuang P, Jiao J, Wang J, Zhang Y. Association of acrylamide hemoglobin biomarkers with obesity, abdominal obesity and overweight in general US population: NHANES 2003-2006. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:589-596. [PMID: 29533795 DOI: 10.1016/j.scitotenv.2018.02.338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Exposure to chemical contaminants is considered as one of risk factors to the current epidemic of obesity. Acrylamide (AA) is a ubiquitous chemical contaminant in environmental waste, mainstream cigarette smoke and carbohydrate-rich foods, and widely used in industrial manufacturers and cosmetics. Few studies have highlighted the association of daily exposure to AA with obesity-related outcomes. We analyzed data from 8364 participants who aged 20-85years and were recruited in National Health and Nutrition Examination Surveys (NHANES) 2003-2006. We established the model of PROC Survey Logistic regressions via using AA biomarkers in blood, hemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), as the measure of internal exposure to AA, and assessing obesity, abdominal obesity and overweight with body mass index (BMI) or waist circumference (WC). After the adjustment of sociodemographic variables, lifestyle behaviors, and health-related factors, the ratio of HbGA to HbAA (HbGA/HbAA) was significantly associated with obesity (p for trend<0.0001). The odd ratios (ORs) with 95% confidence intervals (CIs) of HbGA/HbAA across increasing quartiles were 1.740 (1.413-2.144), 2.604 (2.157-3.144), and 2.863 (2.425-3.380) compared with the lowest quartile. HbGA was positively associated with obesity [OR (95% CI): 1.226 (1.041-1.443), 1.283 (1.121-1.468), and 1.398 (1.165-1.679); p for trend=0.0004], while HbAA was inversely associated with obesity [OR (95% CI): 0.839 (0.718-0.980), 0.713 (0.600-0.848), and 0.671 (0.554-0.811); p for trend<0.0001]. Negative associations were found between the sum of HbAA and HbGA (HbAA+HbGA) and the body weight outcomes. Similar associations were also observed between the hemoglobin biomarkers of AA and abdominal obesity as well as overweight. Thus, the hemoglobin adducts of AA as long-term internal exposure biomarkers are strongly associated with obesity-related outcomes in a population of US adults.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, Sobue T, Tsugane S. Dietary acrylamide intake and risk of breast cancer: The Japan Public Health Center-based Prospective Study. Cancer Sci 2018; 109:843-853. [PMID: 29288560 PMCID: PMC5834785 DOI: 10.1111/cas.13496] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 11/29/2022] Open
Abstract
Acrylamide forms during cooking and is classified as a probable carcinogen in humans, mandating the need for epidemiological studies of dietary acrylamide and cancers. However, the risk of dietary acrylamide exposure to breast cancer in Japanese women has not been assessed. We investigated the association between dietary acrylamide intake and risk of breast cancer in the Japan Public Health Center-based Prospective Study. The present study included 48 910 women aged 45-74 years who responded to a 5-year follow-up survey questionnaire. Dietary acrylamide intake was assessed using a validated food frequency questionnaire. Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. During an average of 15.4 years of follow up, 792 breast cancers were diagnosed. Energy-adjusted dietary acrylamide intake was not associated with the risk of breast cancer (adjusted hazard ratio for highest versus lowest tertile = .95, 95% confidence intervals: 0.79-1.14, P-trend = .58). Further, no significant associations were observed when stratified analyses were conducted by smoking status, coffee consumption, alcohol consumption, body mass index, menopausal status, estrogen receptor status, and progesterone receptor status. In conclusion, dietary acrylamide intake was not associated with the risk of breast cancer in this population-based prospective cohort study of Japanese women.
Collapse
Affiliation(s)
- Ayaka Kotemori
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Junko Ishihara
- Department of Food and Life ScienceAzabu UniversityKanagawaJapan
| | - Ling Zha
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Rong Liu
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Norie Sawada
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Motoki Iwasaki
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Tomotaka Sobue
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Shoichiro Tsugane
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | | |
Collapse
|
20
|
Liu ZM, Tse LA, Ho SC, Wu S, Chen B, Chan D, Wong SYS. Dietary acrylamide exposure was associated with increased cancer mortality in Chinese elderly men and women: a 11-year prospective study of Mr. and Ms. OS Hong Kong. J Cancer Res Clin Oncol 2017; 143:2317-2326. [PMID: 28726047 DOI: 10.1007/s00432-017-2477-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/15/2017] [Indexed: 12/26/2022]
Abstract
AIM Our study aims to investigate the association between dietary acrylamide exposure and cancer mortality among Chinese elderly. METHODS A prospective cohort of 4000 elderly men and women aged 65 years and above (Mr. and Ms. OS Hong Kong study) was recruited from local communities from 2001 to 2003. Dietary exposure to acrylamide was evaluated at baseline based on a validated food frequency questionnaire and an acrylamide database from the 1st Hong Kong Total Diet Study. Data on mortality statistics through March 2014 were obtained from the Death Registry of the Department of Health of Hong Kong with a median follow-up of 11.1 years. Cox proportional hazards models were used to examine the association between the acrylamide exposure and cancer mortality. Sex hormones were assessed in men. RESULTS During a median follow-up of 11.1 years (39,271 person-years), we ascertained 330 cancer deaths. Vegetables (43.7%) and cereals (28.9%) products were the major contributors to dietary acrylamide. Compared with the lowest quartile of acrylamide intake (<9.9 µg/day), the multivariable hazard ratios for the highest quartile (>17.1 µg/day) were 1.9 (95% CI 1.3-2.8; P trend < 0.01), 1.9 (95% CI 1.0-3.6; P trend = 0.05), and 2.0 (95% CI 1.0-4.0; P trend = 0.06) for the cancer mortality from overall, digestive and respiratory system, respectively. The associations were attenuated to null after further adjustment for circulating free estradiol in men. No statistically significant interactions were observed between acrylamide exposure and sex, obesity and overall lifestyle pattern scores. CONCLUSIONS The longitudinal data provided evidence that dietary acrylamide, in amounts that Chinese elderly are typically exposed to, was associated with increased cancer mortality. Circulating free estradiol may mediate the association in men.
Collapse
Affiliation(s)
- Zhao-Min Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Lap Ah Tse
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Suzanne C Ho
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Suyang Wu
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dicken Chan
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Samuel Yeung-Shan Wong
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
21
|
Obón-Santacana M, Lujan-Barroso L, Freisling H, Cadeau C, Fagherazzi G, Boutron-Ruault MC, Kaaks R, Fortner RT, Boeing H, Ramón Quirós J, Molina-Montes E, Chamosa S, Castaño JMH, Ardanaz E, Khaw KT, Wareham N, Key T, Trichopoulou A, Lagiou P, Naska A, Palli D, Grioni S, Tumino R, Vineis P, De Magistris MS, Bueno-de-Mesquita HB, Peeters PH, Wennberg M, Bergdahl IA, Vesper H, Riboli E, Duell EJ. Dietary and lifestyle determinants of acrylamide and glycidamide hemoglobin adducts in non-smoking postmenopausal women from the EPIC cohort. Eur J Nutr 2017; 56:1157-1168. [PMID: 26850269 PMCID: PMC5576523 DOI: 10.1007/s00394-016-1165-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE Acrylamide was classified as 'probably carcinogenic' to humans in 1994 by the International Agency for Research on Cancer. In 2002, public health concern increased when acrylamide was identified in starchy, plant-based foods, processed at high temperatures. The purpose of this study was to identify which food groups and lifestyle variables were determinants of hemoglobin adduct concentrations of acrylamide (HbAA) and glycidamide (HbGA) in 801 non-smoking postmenopausal women from eight countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Biomarkers of internal exposure were measured in red blood cells (collected at baseline) by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) . In this cross-sectional analysis, four dependent variables were evaluated: HbAA, HbGA, sum of total adducts (HbAA + HbGA), and their ratio (HbGA/HbAA). Simple and multiple regression analyses were used to identify determinants of the four outcome variables. All dependent variables (except HbGA/HbAA) and all independent variables were log-transformed (log2) to improve normality. Median (25th-75th percentile) HbAA and HbGA adduct levels were 41.3 (32.8-53.1) pmol/g Hb and 34.2 (25.4-46.9) pmol/g Hb, respectively. RESULTS The main food group determinants of HbAA, HbGA, and HbAA + HbGA were biscuits, crackers, and dry cakes. Alcohol intake and body mass index were identified as the principal determinants of HbGA/HbAA. The total percent variation in HbAA, HbGA, HbAA + HbGA, and HbGA/HbAA explained in this study was 30, 26, 29, and 13 %, respectively. CONCLUSIONS Dietary and lifestyle factors explain a moderate proportion of acrylamide adduct variation in non-smoking postmenopausal women from the EPIC cohort.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | - Claire Cadeau
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Guy Fagherazzi
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114/116, 14558, Nuthetal, Germany
| | - J Ramón Quirós
- Public Health and Participation Directorate, Ciriaco Miguel Vigil 9, 33009, Asturias, Spain
| | - Esther Molina-Montes
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Cuesta del Observatorio, 4, Campus Universitario de Cartuja, 18080, Granada, Spain
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
| | - Saioa Chamosa
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, Avda. Navarra, 4, 20013, San Sebastián, Spain
| | - José María Huerta Castaño
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Authority, Ronda de Levante, 11, 30008, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
- Navarre Public Health Institute, Polígono de Landaben C/F, 31012, Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge, CB2 0SR, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, 184 Hills Road, Cambridge, CB2 8PQ, UK
| | - Tim Key
- Cancer Epidemiology Unit, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Androniki Naska
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Ponte Nuovo, Via delle Oblate n.2, 50141, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P.Arezzo" Hospital, Via Civile, 97100, Ragusa, Italy
| | - Paolo Vineis
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126, Turin, Italy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Maria Santucci De Magistris
- Department of Clinical and Experimental Medicine, Federico II University, Corso Umberto I, 40bis, 80138, Naples, Italy
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Petra H Peeters
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Huispost Str. 6.131, 3508GA, Utrecht, The Netherlands
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Umeå University, 1A, 9 tr, Kirurgcentrum, 952, 901 85, Umeå, Sweden
| | - Ingvar A Bergdahl
- Department of Biobank Research, Umeå University, 1A, 9 tr, Kirurgcentrum, 952, 901 85, Umeå, Sweden
| | - Hubert Vesper
- Centers for Disease Control and Prevention, MS F25, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
22
|
Chu PL, Lin LY, Chen PC, Su TC, Lin CY. Negative association between acrylamide exposure and body composition in adults: NHANES, 2003-2004. Nutr Diabetes 2017; 7:e246. [PMID: 28287631 PMCID: PMC5380889 DOI: 10.1038/nutd.2016.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Acrylamide is present in mainstream cigarette smoke and in some food prepared at high temperature. Animal studies have shown that acrylamide exposure reduces body weight. Prenatal exposure to acrylamide also has been linked to reduced birth weight in human. Whether acrylamide exposure is associated with altered body compositions in adults is not clear. SUBJECTS/METHODS We selected 3623 subjects (aged ⩾20 years) from a National Health and Nutrition Examination Survey (NHANES) in 2003-2004 to determine the relationship among hemoglobin adducts of acrylamide (HbAA), hemoglobin adducts of glycidamide (HbGA) and body composition (body measures, bioelectrical impedance analysis (BIA), dual energy x-ray absorptiometry (DXA)). Data were adjusted for potential confounding variables. RESULTS The geometric means and 95% CI concentrations of HbAA and HbGA were 60.48 (59.32-61.65) pmol/g Hb and 55.64 (54.40-56.92) pmol/g Hb, respectively. After weighting for sampling strategy, we identified that one-unit increase in natural log-HbAA, but not HbGA, was associated with reduction in body measures (body weight, body mass index (BMI), subscapular/triceps skinfold), parameters of BIA (fat-free mass, fat mass, percent body fat, total body water) and parameters of DXA (android fat mass, android percent fat, gynoid fat/lean mass, gynoid percent mass, android to gynoid ratio). Subgroup analysis showed that these associations were more evident in subjects at younger age, male gender, whites, lower education level, active smokers and those with lower BMI. CONCLUSIONS Higher concentrations of HbAA are associated with a decrease in body composition in the US general population. Further studies are warranted to clarify this association.
Collapse
Affiliation(s)
- P-L Chu
- Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - L-Y Lin
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - P-C Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - T-C Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C-Y Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
23
|
Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct 2016; 6:1752-72. [PMID: 25989363 DOI: 10.1039/c5fo00320b] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
24
|
Obón-Santacana M, Freisling H, Peeters PH, Lujan-Barroso L, Ferrari P, Boutron-Ruault MC, Mesrine S, Baglietto L, Turzanski-Fortner R, Katzke VA, Boeing H, Quirós JR, Molina-Portillo E, Larrañaga N, Chirlaque MD, Barricarte A, Khaw KT, Wareham N, Travis RC, Merritt MA, Gunter MJ, Trichopoulou A, Lagiou P, Naska A, Palli D, Sieri S, Tumino R, Fiano V, Galassom R, Bueno-de-Mesquita HBA, Onland-Moret NC, Idahl A, Lundin E, Weiderpass E, Vesper H, Riboli E, Duell EJ. Acrylamide and glycidamide hemoglobin adduct levels and endometrial cancer risk: A nested case-control study in nonsmoking postmenopausal women from the EPIC cohort. Int J Cancer 2016; 138:1129-38. [PMID: 26376083 PMCID: PMC4716289 DOI: 10.1002/ijc.29853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Acrylamide, classified in 1994 by IARC as "probably carcinogenic to humans," was discovered in 2002 in some heat-treated, carbohydrate-rich foods. Four prospective studies have evaluated the association between dietary acrylamide intake and endometrial cancer (EC) risk with inconsistent results. The purpose of this nested case-control study, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, was to evaluate, for the first time, the association between hemoglobin adducts of acrylamide (HbAA) and glycidamide (HbGA) and the risk of developing EC in non-smoking postmenopausal women. Hemoglobin adducts were measured in red blood cells by HPLC/MS/MS. Four exposure variables were evaluated: HbAA, HbGA, their sum (HbAA+HbGA), and their ratio (HbGA/HbAA). The association between hemoglobin adducts and EC was evaluated using unconditional multivariable logistic regression models, and included 383 EC cases (171 were type-I EC), and 385 controls. Exposure variables were analyzed in quintiles based on control distributions. None of the biomarker variables had an effect on overall EC (HRHbAA;Q5vsQ1 : 0.84, 95%CI: 0.49-1.48; HRHbGA;Q5vsQ1 : 0.94, 95%CI: 0.54-1.63) or type-I EC risk. Additionally, none of the subgroups investigated (BMI < 25 vs. ≥25 kg m(-2) , alcohol drinkers vs. never drinkers, oral contraceptive users vs. non-users) demonstrated effect measure modification. Hemoglobin adducts of acrylamide or glycidamide were not associated with EC or type-I EC risk in 768 nonsmoking postmenopausal women from the EPIC cohort.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Pietro Ferrari
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | - Marie-Christine Boutron-Ruault
- Inserm, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Villejuif, France
- Universite Paris Sud, Villejuif, France
- Institut Gustave-Roussy (IGR), Villejuif, France
| | - Sylvie Mesrine
- Inserm, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Villejuif, France
- Universite Paris Sud, Villejuif, France
- Institut Gustave-Roussy (IGR), Villejuif, France
| | - Laura Baglietto
- Cancer Council of Victoria, Cancer Epidemiology Centre, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Elena Molina-Portillo
- Escuela Andaluza De Salud Pública, Instituto De Investigación Biosanitaria Ibs, GRANADA, Hospitales Universitarios De Granada/Universidad De Granada, Granada, Spain
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - Nerea Larrañaga
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
- Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Gipuzkoa, Spain
| | - María-Dolores Chirlaque
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
- Department of Epidemiology, Regional Health Council, Murcia, Spain
- Department of Health and Social Sciences, Murcia University, Murcia, Spain
| | - Aurelio Barricarte
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nick Wareham
- Nuffield Department of Population Health University of Oxford, Cancer Epidemiology Unit, Oxford, United Kingdom
| | - Ruth C Travis
- Nuffield Department of Population Health University of Oxford, Cancer Epidemiology Unit, Oxford, United Kingdom
| | - Melissa A Merritt
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Androniki Naska
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, Italy
| | - Valentina Fiano
- Department of Medical Sciences University of Turin, Unit of Cancer Epidemiology-CERMS, Turin, Italy
| | - Rocco Galassom
- Biostatistics and Cancer Registry, IRCCS Centro Di Riferimento Oncologico Di Basilicata, Unit of Clinical Epidemiology, Rionero in Vulture, Potenza, Italy
| | - H B As Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Nutritional Research Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Nutritional Research Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology Umeå University, Umeå, Sweden
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, the Arctic University of Norway, University of Tromsø, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Hubert Vesper
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| |
Collapse
|
25
|
Obón-Santacana M, Lujan-Barroso L, Travis RC, Freisling H, Ferrari P, Severi G, Baglietto L, Boutron-Ruault MC, Fortner RT, Ose J, Boeing H, Menéndez V, Sánchez-Cantalejo E, Chamosa S, Castaño JMH, Ardanaz E, Khaw KT, Wareham N, Merritt MA, Gunter MJ, Trichopoulou A, Papatesta EM, Klinaki E, Saieva C, Tagliabue G, Tumino R, Sacerdote C, Mattiello A, Bueno-de-Mesquita HB, Peeters PH, Onland-Moret NC, Idahl A, Lundin E, Weiderpass E, Vesper HW, Riboli E, Duell EJ. Acrylamide and Glycidamide Hemoglobin Adducts and Epithelial Ovarian Cancer: A Nested Case-Control Study in Nonsmoking Postmenopausal Women from the EPIC Cohort. Cancer Epidemiol Biomarkers Prev 2016; 25:127-34. [PMID: 26598536 PMCID: PMC5699214 DOI: 10.1158/1055-9965.epi-15-0822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Acrylamide was classified as "probably carcinogenic to humans (group 2A)" by the International Agency for Research on Cancer. Epithelial ovarian cancer (EOC) is the fourth cause of cancer mortality in women. Five epidemiological studies have evaluated the association between EOC risk and dietary acrylamide intake assessed using food frequency questionnaires, and one nested case-control study evaluated hemoglobin adducts of acrylamide (HbAA) and its metabolite glycidamide (HbGA) and EOC risk; the results of these studies were inconsistent. METHODS A nested case-control study in nonsmoking postmenopausal women (334 cases, 417 controls) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Unconditional logistic regression models were used to estimate ORs and 95% confidence intervals (CI) for the association between HbAA, HbGA, HbAA+HbGA, and HbGA/HbAA and EOC and invasive serous EOC risk. RESULTS No overall associations were observed between biomarkers of acrylamide exposure analyzed in quintiles and EOC risk; however, positive associations were observed between some middle quintiles of HbGA and HbAA+HbGA. Elevated but nonstatistically significant ORs for serous EOC were observed for HbGA and HbAA+HbGA (ORQ5vsQ1, 1.91; 95% CI, 0.96-3.81 and ORQ5vsQ1, 1.90; 95% CI, 0.94-3.83, respectively); however, no linear dose-response trends were observed. CONCLUSION This EPIC nested case-control study failed to observe a clear association between biomarkers of acrylamide exposure and the risk of EOC or invasive serous EOC. IMPACT It is unlikely that dietary acrylamide exposure increases ovarian cancer risk; however, additional studies with larger sample size should be performed to exclude any possible association with EOC risk.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | - Pietro Ferrari
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | | | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council of Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Marie-Christine Boutron-Ruault
- Inserm, CESP Centre for Research in Epidemiology and Population Health, U1018, Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. Gustave Roussy, Villejuif, France
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Jennifer Ose
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Emilio Sánchez-Cantalejo
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Saioa Chamosa
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, San Sebastian, Spain
| | - José María Huerta Castaño
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Navarra Public Health Institute, Pamplona, Spain. IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nick Wareham
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Melissa A Merritt
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece. WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
| | | | | | - Calogero Saieva
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Torino, Italy
| | - Amalia Mattiello
- Dipartamiento di Medicina Clinica e Chirurgia Federico II University, Naples, Italy
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H Peeters
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology Nutritional Research Umeå University, Umeå, Sweden. Department of Public Health and Clinical Medicine, Nutritional Research Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology Umeå University, Umeå, Sweden
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Hubert W Vesper
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain.
| |
Collapse
|
26
|
|