1
|
Chen J, Xia P, Liu Y, Kogan C, Cheng Z. Loss of Rbl2 (Retinoblastoma-Like 2) Exacerbates Myocardial Ischemia/Reperfusion Injury. J Am Heart Assoc 2022; 11:e024764. [PMID: 36129061 DOI: 10.1161/jaha.121.024764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The postmitotic state of adult cardiomyocytes, maintained by the cell cycle repressor Rbl2 (retinoblastoma-like 2), is associated with considerable resistance to apoptosis. However, whether Rbl2 regulates cardiomyocyte apoptosis remains unknown. Methods and Results Here, we show that ablation of Rbl2 increased cardiomyocyte apoptosis following acute myocardial ischemia/reperfusion injury, leading to diminished cardiac function and exaggerated ventricular remodeling in the long term. Mechanistically, ischemia/reperfusion induced expression of the proapoptotic protein BCL2 interacting protein 3 (Bnip3), which was augmented by deletion of Rbl2. Because the Bnip3 promoter contains an adenoviral early region 2 binding factor (E2F)-binding site, we further showed that loss of Rbl2 upregulated the transcriptional activator E2F1 but downregulated the transcriptional repressor E2F4. In cultured cardiomyocytes, treatment with H2O2 markedly increased the levels of E2F1 and Bnip3, resulting in mitochondrial depolarization and apoptosis. Depletion of Rbl2 significantly augmented H2O2-induced mitochondrial damage and apoptosis in vitro. Conclusions Rbl2 deficiency enhanced E2F1-mediated Bnip3 expression, resulting in aggravated cardiomyocyte apoptosis and ischemia/reperfusion injury. Our results uncover a novel antiapoptotic role for Rbl2 in cardiomyocytes, suggesting that the cell cycle machinery may directly regulate apoptosis in postmitotic cardiomyocytes. These findings may be exploited to develop new strategies to limit ischemia/reperfusion injury in the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Jingrui Chen
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Peng Xia
- Department of Pharmaceutical Sciences Washington State University Spokane Washington.,Cardiovascular Research Center, Department of Medicine Massachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Yuening Liu
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Clark Kogan
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| |
Collapse
|
2
|
Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 2016; 6:17873-90. [PMID: 26160835 PMCID: PMC4627222 DOI: 10.18632/oncotarget.4286] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/06/2015] [Indexed: 01/14/2023] Open
Abstract
Inactivation of the retinoblastoma (RB1) tumor suppressor is one of the most frequent and early recognized molecular hallmarks of cancer. RB1, although mainly studied for its role in the regulation of cell cycle, emerged as a key regulator of many biological processes. Among these, RB1 has been implicated in the regulation of apoptosis, the alteration of which underlies both cancer development and resistance to therapy. RB1 role in apoptosis, however, is still controversial because, depending on the context, the apoptotic cues, and its own status, RB1 can act either by inhibiting or promoting apoptosis. Moreover, the mechanisms whereby RB1 controls both proliferation and apoptosis in a coordinated manner are only now beginning to be unraveled. Here, by reviewing the main studies assessing the effect of RB1 status and modulation on these processes, we provide an overview of the possible underlying molecular mechanisms whereby RB1, and its family members, dictate cell fate in various contexts. We also describe the current antitumoral strategies aimed at the use of RB1 as predictive, prognostic and therapeutic target in cancer. A thorough understanding of RB1 function in controlling cell fate determination is crucial for a successful translation of RB1 status assessment in the clinical setting.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Immacolata Vocca
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| |
Collapse
|
3
|
Ajithkumar GS, Vinitha A, Binil Raj SS, Kartha CC. Drug Resistance of Endocardial Endothelial Cells is Related to Higher Endogenous ABCG2. Cardiovasc Toxicol 2015; 16:390-405. [PMID: 26661076 DOI: 10.1007/s12012-015-9351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Endocardial endothelial cells (EECs), when compared with endothelial cells of arteries and veins, possess higher resistance to apoptosis-inducing anticancer agents. The mechanism of this resistance property is unknown. We have investigated the molecular mechanism, which contributes to increased cell survival capacity in EECs. We explored whether the resistance to apoptosis is associated with the cellular expression of ATP-binding cassette transporters such as P-glycoprotein, MRP-1, and ABCG2. We used primary and immortalized porcine endocardial endothelial cells (PEECs and hTERT PEECs) and compared the results with that in porcine aortic endothelial cells (PAECs), left atrioventricular valve endothelial cells (PVECs), and human umbilical vein endothelial cell line (EA.hy926). FACS and immunoblot analysis revealed a significantly higher expression of ABCG2 in PEECs and hTERT PEECs compared to PAECs, PVECs, and EA.hy926. Using apoptosis-inducing anticancer agents such as doxorubicin and camptothecin, through chromatin condensation assay and immunoblot analysis, we demonstrated a higher resistance to apoptosis in EECs compared to PAECs, PVECs, and EA.hy926. Interestingly, resistance in EECs reversed in presence of ABCG2 specific inhibitor, fumitremorgin C. Our observations suggest that an inherently high expression of ABCG2 in EECs protects them against apoptosis in presence of anticancer agents.
Collapse
Affiliation(s)
- G S Ajithkumar
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India.
| | - A Vinitha
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India
| | - S S Binil Raj
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India
| | - C C Kartha
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India.
| |
Collapse
|
4
|
Rho SB, Byun HJ, Kim BR, Kim IS, Lee JH, Yoo R, Park ST, Park SH. GABAA receptor-binding protein promotes sensitivity to apoptosis induced by chemotherapeutic agents. Int J Oncol 2013; 42:1807-14. [PMID: 23545901 DOI: 10.3892/ijo.2013.1866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/08/2013] [Indexed: 11/06/2022] Open
Abstract
In the present study, the expression of human γ-aminobutyrate type A (GABAA) receptor-binding protein (GABARBP) is downregulated in ovarian cancer cell lines and tissues. We also found that the specific function of GABAPBP was that of a novel pro-apoptotic protein. Both GABARBP and cisplatin suppressed cancer cell proliferation in a concentration-dependent manner. The combined treatment of GABARBP and cisplatin was more effective in inhibiting cell growth, as well as cell migration, than with either drug treatment alone. At the same time, the treatment combination is correlated with the downregulation of cyclin D1 and CDK4, arrested cell cycle progression in the G₀-G₁ phase and enhancing p53 expression, while also reducing Bcl-2 and Bcl-xL expression. The p53 and p21 promoter luciferase activities were induced by GABARBP, whereas there was no effect on the p53-/- and p21-/- system. In addition, p53 activity was validated with UV irradiation and siGABARBP. Taken together, our results indicate that GABARBP can regulate the pro-apoptotic activity of cisplatin via the upregulation of p53 expression.
Collapse
Affiliation(s)
- Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Maney SK, Johnson AM, Sampath Kumar A, Nair V, Santhosh Kumar TR, Kartha CC. Effect of Apoptosis-Inducing Antitumor Agents on Endocardial Endothelial Cells. Cardiovasc Toxicol 2011; 11:253-62. [DOI: 10.1007/s12012-011-9119-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Grygoryev D, Moskalenko O, Zimbrick JD. Non-linear effects in the formation of DNA damage in medaka fish fibroblast cells caused by combined action of cadmium and ionizing radiation. Dose Response 2007; 6:283-98. [PMID: 19020653 PMCID: PMC2564760 DOI: 10.2203/dose-response.07-012.grygoryev] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ionizing radiation-induced formation of genomic DNA damage can be modulated by nearby chemical species such as heavy metal ions, which can lead to non-linear dose response. To investigate this phenomenon, we studied cell survival and formation of 8-hydroxyguanine (8-OHG) base modifications and double strand breaks (DSB) caused by combined action of cadmium (Cd) and gamma radiation in cultured medaka fish (Oryzias latipes) fibroblast cells. Our data show that the introduction of Cd leads to a significant decrease in the fraction of surviving cells and to increased sensitivity of cells to ionizing radiation (IR). Cd also appears to cause non-linear increases in radiation-induced yields of 8-OHG and DSB as dose-yield plots of these lesions exhibit non-linear S-shaped curves with a sharp increase in the yields of lesions in the 10-20 microM range of Cd concentrations. The combined action of ionizing radiation and Cd leads to increased DNA damage formation compared to the effects of the individual stressors. These results are consistent with a hypothesis that the presence of Cd modulates the efficiency of DNA repair systems thus causing increases in radiation-induced DNA damage formation and decreases in cell survival.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Oleksandr Moskalenko
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - John D. Zimbrick
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|
7
|
Sharma A, Comstock CE, Knudsen ES, Cao KH, Hess-Wilson JK, Morey LM, Barrera J, Knudsen KE. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res 2007; 67:6192-203. [PMID: 17616676 PMCID: PMC4133940 DOI: 10.1158/0008-5472.can-06-4424] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The retinoblastoma tumor suppressor protein (RB), a critical mediator of cell cycle progression, is functionally inactivated in the majority of human cancers, including prostatic adenocarcinoma. The importance of RB tumor suppressor function in this disease is evident because 25% to 50% of prostatic adenocarcinomas harbor aberrations in RB pathway. However, no previous studies challenged the consequence of RB inactivation on tumor cell proliferation or therapeutic response. Here, we show that RB depletion facilitates deregulation of specific E2F target genes, but does not confer a significant proliferative advantage in the presence of androgen. However, RB-deficient cells failed to elicit a cytostatic response (compared with RB proficient isogenic controls) when challenged with androgen ablation, AR antagonist, or combined androgen blockade. These data indicate that RB deficiency can facilitate bypass of first-line hormonal therapies used to treat prostate cancer. Given the established effect of RB on DNA damage checkpoints, these studies were then extended to determine the impact of RB depletion on the response to cytotoxic agents used to treat advanced disease. In this context, RB-deficient prostate cancer cells showed enhanced susceptibility to cell death induced by only a selected subset of cytotoxic agents (antimicrotubule agents and a topoisomerase inhibitor). Combined, these data indicate that RB depletion dramatically alters the cellular response to therapeutic intervention in prostate cancer cells and suggest that RB status could potentially be developed as a marker for effectively directing therapy.
Collapse
Affiliation(s)
- Ankur Sharma
- Departments of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Clay E.S. Comstock
- Departments of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Erik S. Knudsen
- Departments of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Barrett Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Khanh H. Cao
- Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Janet K. Hess-Wilson
- Departments of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa M. Morey
- Departments of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jason Barrera
- Departments of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Karen E. Knudsen
- Departments of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Barrett Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
8
|
Gabellini C, Pucci B, Valdivieso P, D'Andrilli G, Tafani M, De Luca A, Masciullo V. p27kip1 overexpression promotes paclitaxel-induced apoptosis in pRb-defective SaOs-2 cells. J Cell Biochem 2006; 98:1645-52. [PMID: 16598766 DOI: 10.1002/jcb.20900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
p27kip1 is a cyclin-dependent kinase (CDK) inhibitor, which controls several cellular processes in strict collaboration with pRb. We evaluated the role of p27kip1 in paclitaxel-induced apoptosis in the pRb-defective SaOs-2 cells. Following 48 h of exposure of SaOs-2 cells to 100 nM paclitaxel, we observed an increase in p27kip1 expression caused by the decrease of the ubiquitin-proteasome activity. Such increase was not observed in SaOs-2 cells treated with the caspase inhibitors Z-VAD-FMK, suggesting that p27kip1 enhancement at 48 h is strictly related to apoptosis. Finally, we demonstrated that SaOs-2 cells transiently overexpressing the p27kip1 protein are more susceptible to paclitaxel-induced apoptosis than SaOs-2 cells transiently transfected with the empty vector. Indeed, after 48 h of paclitaxel treatment, 41.8% of SaOs-2 cells transiently transfected with a pcDNA3-p27kip1 construct were Annexin V-positive compared to 30.6% of SaOs-2 cells transfected with the empty vector (P < 0.05). In conclusion, we demonstrated that transfection of the pRb-defective SaOs-2 cells with the p27kip1 gene via plasmid increases their susceptibility to paclitaxel-induced apoptosis. The promoting effect of p27kip1 overexpression on apoptosis makes p27kip1 and proteasomal inhibitors interesting tools for therapy in patients with pRb-defective cancers.
Collapse
Affiliation(s)
- Chiara Gabellini
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Scambia G, Lovergine S, Masciullo V. RB family members as predictive and prognostic factors in human cancer. Oncogene 2006; 25:5302-8. [PMID: 16936751 DOI: 10.1038/sj.onc.1209620] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinoblastoma family members--pRb, pRb2/p130 and p107--are tumor suppressor genes involved in controlling four major cellular processes: growth arrest, apoptosis, differentiation and angiogenesis. Molecular genetic studies have identified abnormalities of these tumor suppressor genes in a large proportion of human cancers. These genetic alterations have emerged as significant factors in the pathogenesis and progression of many types of tumors and are therefore likely to provide relevant information to assess risk in cancer patients. There is a pressing clinical need to identify prognostic and predictive factors for patients with cancer, because there is an undeniable importance in being able to determine which patients will have a favorable outcome without further therapy (prognostic factor) and which will need some additional treatment (predictive factor). This review examines the predictive and/or prognostic role of each retinoblastoma family member in human cancer.
Collapse
Affiliation(s)
- G Scambia
- Division of Gynecologic Oncology, Catholic University, Rome, Italy
| | | | | |
Collapse
|