1
|
Doxorubicin-Loaded Polymeric Micelles Conjugated with CKR- and EVQ-FLT3 Peptides for Cytotoxicity in Leukemic Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14102115. [PMID: 36297550 PMCID: PMC9610626 DOI: 10.3390/pharmaceutics14102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (Dox) is the standard chemotherapeutic agent for acute myeloblastic leukemia (AML) treatment. However, 40% of Dox-treated AML cases relapsed due to the presence of leukemic stem cells (LSCs). Thus, poloxamer 407 and CKR- and EVQ-FLT3 peptides were used to formulate Dox-micelles (DMs) and DM conjugated with peptides (CKR and EVQ) for improving AML-LSC treatment. Results indicated that DMs with a weight ratio of Dox to P407 of 1:200 had a particle size of 23.3 ± 1.3 nm with a high percentage of Dox entrapment. They were able to prolong drug release and maintain physicochemical stability. Following effective DM preparation, P407 was modified and conjugated with FLT3 peptides, CKR and EVQ to formulate DM-CKR, DM-EVQ, and DM-CKR+DM-EVQ. Freshly synthesized DMs displaying FLT3 peptides showed particle sizes smaller than 50 nm and a high drug entrapment level, comparable with DMs. DM-CKR+DM-EVQ was considerably more toxic to KG-1a (AML LSC-like cell model) than Dox-HCl. These FLT3-targeted DMs could increase drug uptake and induce apoptosis induction. Due to an increase in micelle-LSC binding and uptake, DMs displaying both peptides tended to improve the potency of Dox compared to a single peptide-coupled micelle.
Collapse
|
2
|
Chueahongthong F, Tima S, Chiampanichayakul S, Berkland C, Anuchapreeda S. Co-Treatments of Edible Curcumin from Turmeric Rhizomes and Chemotherapeutic Drugs on Cytotoxicity and FLT3 Protein Expression in Leukemic Stem Cells. Molecules 2021; 26:5785. [PMID: 34641328 PMCID: PMC8510311 DOI: 10.3390/molecules26195785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
This study aims to enhance efficacy and reduce toxicity of the combination treatment of a drug and curcumin (Cur) on leukemic stem cell and leukemic cell lines, including KG-1a and KG-1 (FLT3+ LSCs), EoL-1 (FLT3+ LCs), and U937 (FLT3- LCs). The cytotoxicity of co-treatments of doxorubicin (Dox) or idarubicin (Ida) at concentrations of the IC10-IC80 values and each concentration of Cur at the IC20, IC30, IC40, and IC50 values (conditions 1, 2, 3, and 4) was determined by MTT assays. Dox-Cur increased cytotoxicity in leukemic cells. Dox-Cur co-treatment showed additive and synergistic effects in several conditions. The effect of this co-treatment on FLT3 expression in KG-1a, KG-1, and EoL-1 cells was examined by Western blotting. Dox-Cur decreased FLT3 protein levels and total cell numbers in all the cell lines in a dose-dependent manner. In summary, this study exhibits a novel report of Dox-Cur co-treatment in both enhancing cytotoxicity of Dox and inhibiting cell proliferation via FLT3 protein expression in leukemia stem cells and leukemic cells. This is the option of leukemia treatment with reducing side effects of chemotherapeutic drugs to leukemia patients.
Collapse
Affiliation(s)
- Fah Chueahongthong
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (F.C.); (S.T.); (S.C.)
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (F.C.); (S.T.); (S.C.)
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (F.C.); (S.T.); (S.C.)
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (F.C.); (S.T.); (S.C.)
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends Cancer 2020; 6:960-973. [PMID: 32540455 DOI: 10.1016/j.trecan.2020.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Understanding genetic and epigenetic changes that underlie abnormal proliferation of hematopoietic stem and progenitor cells is critical for development of new approaches to monitor and treat leukemia. The unfolded protein response (UPR) is a conserved adaptive signaling pathway that governs protein folding, secretion, and energy production and serves to maintain protein homeostasis in various cellular compartments. Deregulated UPR signaling, which often occurs in hematopoietic stem cells and leukemia, defines the degree of cellular toxicity and perturbs protein homeostasis, and at the same time, offers a novel therapeutic target. Here, we review current knowledge related to altered UPR signaling in leukemia and highlight possible strategies for exploiting the UPR as treatment for this disease.
Collapse
Affiliation(s)
- Ali Khateb
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Jang JE, Eom JI, Jeung HK, Chung H, Kim YR, Kim JS, Cheong JW, Min YH. PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells. J Exp Clin Cancer Res 2020; 39:66. [PMID: 32293500 PMCID: PMC7158163 DOI: 10.1186/s13046-020-01565-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The histone methyltransferase G9a has recently been identified as a potential target for epigenetic therapy of acute myeloid leukemia (AML). However, the effect of G9a inhibition on leukemia stem cells (LSCs), which are responsible for AML drug resistance and recurrence, is unclear. In this study, we investigated the underlying mechanisms of the LSC resistance to G9a inhibition. METHODS We evaluated the effects of G9a inhibition on the unfolded protein response and autophagy in AML and LSC-like cell lines and in primary CD34+CD38- leukemic blasts from patients with AML and investigated the underlying mechanisms. The effects of treatment on cells were evaluated by flow cytometry, western blotting, confocal microscopy, reactive oxygen species (ROS) production assay. RESULTS The G9a inhibitor BIX-01294 effectively induced apoptosis in AML cell lines; however, the effect was limited in KG1 LSC-like cells. BIX-01294 treatment or siRNA-mediated G9a knockdown led to the activation of the PERK/NRF2 pathway and HO-1 upregulation in KG1 cells. Phosphorylation of p38 and intracellular generation of reactive oxygen species (ROS) were suppressed. Pharmacological or siRNA-mediated inhibition of the PERK/NRF2 pathway synergistically enhanced BIX-01294-induced apoptosis, with suppressed HO-1 expression, increased p38 phosphorylation, and elevated ROS generation, indicating that activated PERK/NRF2 signaling suppressed ROS-induced apoptosis in KG1 cells. By contrast, cotreatment of normal hematopoietic stem cells with BIX-01294 and a PERK inhibitor had no significant proapoptotic effect. Additionally, G9a inhibition induced autophagy flux in KG1 cells, while autophagy inhibitors significantly increased the BIX-01294-induced apoptosis. This prosurvival autophagy was not abrogated by PERK/NRF2 inhibition. CONCLUSIONS PERK/NRF2 signaling plays a key role in protecting LSCs against ROS-induced apoptosis, thus conferring resistance to G9a inhibitors. Treatment with PERK/NRF2 or autophagy inhibitors could overcome resistance to G9a inhibition and eliminate LSCs, suggesting the potential clinical utility of these unique targeted therapies against AML.
Collapse
Affiliation(s)
- Ji Eun Jang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-In Eom
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hoi-Kyung Jeung
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Haerim Chung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Ri Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Rahimian A, Mahdavi M, Rahbarghazi R, Charoudeh HN. 4t-CHQ a Spiro-Quinazolinone Benzenesulfonamide Derivative Induces G 0/G 1 Cell Cycle arrest and Triggers Apoptosis Through Down-Regulation of Survivin and Bcl2 in the Leukemia Stem-Like KG1-a Cells. Anticancer Agents Med Chem 2020; 19:1340-1349. [PMID: 30868965 DOI: 10.2174/1871520619666190313165130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Many experiments have revealed the anti-tumor activity of spiro-quinazolinone derivatives on different cell types. Exposing KG1-a cells to N-(4- tert- butyl- 4'- oxo- 1'H- spiro [cyclohexane- 1, 2'- quinazoline]- 3'(4'H)- yl)- 4- methyl benzenesulfonamide (4t-CHQ), as an active sub-component of spiroquinazolinone benzenesulfonamides, the experiment investigated the possible mechanisms that manifest the role of 4t-CHQ in leukemic KG1-a progenitor cells. Mechanistically, the inhibitory effects of 4t-CHQ on KG1-a cells emerge from its modulating function on the expression of Bax/Bcl2 and survinin proteins. METHODS Cell viability was assessed using MTT assay. The IC50 value of cells was calculated to be 131.3μM, after 72h-incubation with 4t-CHQ, ranging from 10 to 150μM. Apoptotic changes were studied using Acridine Orange/Ethidium Bromide (AO/EB) staining. DNA fragmentation was analyzed by agarose gel electrophoresis method. To evaluate the percentage of apoptotic cells and cell growth dynamic apoptotic features, we performed Annexin V/PI double staining assay and cell cycle analysis by flow cytometry. RESULTS According to the results, apoptosis induction was initiated by 4t-CHQ in the KG1-a cells (at IC50 value). Cell dynamic analysis revealed that the cell cycle at the G1 phase was arrested after treatment with 4t- CHQ. Western blotting analysis showed enhancement in the expression ratio of Bax/Bcl-2, while the expression of survinin protein decreased in a time-dependent manner in the KG1-a cells. According to the docking simulation data, the effectiveness of 4t-CHQ on KG1-a cells commenced by its reactions with the functional domain of BH3 and Bcl2 and BIR domains of survivin protein. CONCLUSION These results demonstrate a remarkable role of 4t- CHQ in arresting leukemia KG1-a stem cells both by induction of apoptosis as well as by down-regulating survivin and Bcl2 proteins.
Collapse
Affiliation(s)
- Arezoo Rahimian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah N Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Martin GH, Roy N, Chakraborty S, Desrichard A, Chung SS, Woolthuis CM, Hu W, Berezniuk I, Garrett-Bakelman FE, Hamann J, Devlin SM, Chan TA, Park CY. CD97 is a critical regulator of acute myeloid leukemia stem cell function. J Exp Med 2019; 216:2362-2377. [PMID: 31371381 PMCID: PMC6781010 DOI: 10.1084/jem.20190598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant efforts to improve therapies for acute myeloid leukemia (AML), clinical outcomes remain poor. Understanding the mechanisms that regulate the development and maintenance of leukemic stem cells (LSCs) is important to reveal new therapeutic opportunities. We have identified CD97, a member of the adhesion class of G protein-coupled receptors (GPCRs), as a frequently up-regulated antigen on AML blasts that is a critical regulator of blast function. High levels of CD97 correlate with poor prognosis, and silencing of CD97 reduces disease aggressiveness in vivo. These phenotypes are due to CD97's ability to promote proliferation, survival, and the maintenance of the undifferentiated state in leukemic blasts. Collectively, our data credential CD97 as a promising therapeutic target on LSCs in AML.
Collapse
Affiliation(s)
- Gaëlle H Martin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Pathology, New York University School of Medicine, New York, NY
| | - Nainita Roy
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Sohini Chakraborty
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Chung
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carolien M Woolthuis
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Iryna Berezniuk
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Francine E Garrett-Bakelman
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA.,Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sean M Devlin
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christopher Y Park
- Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
7
|
Liu C, Wei H, Yao X, Liu B, Xi Y, Zhao L. RETRACTED: Arsenic Trioxide Inhibits Proliferation and Induced apoptosis of Leukemia Stem Cells with Drug Resistance. Leuk Res 2018; 69:66-71. [PMID: 29684687 DOI: 10.1016/j.leukres.2018.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Chunxia Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hulai Wei
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaojian Yao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yaming Xi
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Li Zhao
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Paprocka M, Bielawska-Pohl A, Rossowska J, Krawczenko A, Duś D, Kiełbiński M, Haus O, Podolak-Dawidziak M, Kuliczkowski K. MRP1 protein expression in leukemic stem cells as a negative prognostic marker in acute myeloid leukemia patients. Eur J Haematol 2017; 99:415-422. [DOI: 10.1111/ejh.12938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Maria Paprocka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; The Polish Academy of Sciences; Wroclaw Poland
| | - Aleksandra Bielawska-Pohl
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; The Polish Academy of Sciences; Wroclaw Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; The Polish Academy of Sciences; Wroclaw Poland
| | - Agnieszka Krawczenko
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; The Polish Academy of Sciences; Wroclaw Poland
| | - Danuta Duś
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; The Polish Academy of Sciences; Wroclaw Poland
| | - Marek Kiełbiński
- Department and Clinic of Hematology; Blood Neoplasms and Bone Marrow Transplantation; Wroclaw Medical University; Wroclaw Poland
| | - Olga Haus
- Department and Clinic of Hematology; Blood Neoplasms and Bone Marrow Transplantation; Wroclaw Medical University; Wroclaw Poland
| | - Maria Podolak-Dawidziak
- Department and Clinic of Hematology; Blood Neoplasms and Bone Marrow Transplantation; Wroclaw Medical University; Wroclaw Poland
| | - Kazimierz Kuliczkowski
- Department and Clinic of Hematology; Blood Neoplasms and Bone Marrow Transplantation; Wroclaw Medical University; Wroclaw Poland
| |
Collapse
|
9
|
Pearl Mizrahi S, Gefen O, Simon I, Balaban NQ. Persistence to anti-cancer treatments in the stationary to proliferating transition. Cell Cycle 2016; 15:3442-3453. [PMID: 27801609 PMCID: PMC5224467 DOI: 10.1080/15384101.2016.1248006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The heterogeneous responses of clonal cancer cells to treatment is understood to be caused by several factors, including stochasticity, cell-cycle dynamics, and different micro-environments. In a tumor, cancer cells may encounter fluctuating conditions and transit from a stationary culture to a proliferating state, for example this may occur following treatment. Here, we undertake a quantitative evaluation of the response of single cancerous lymphoblasts (L1210 cells) to various treatments administered during this transition. Additionally, we developed an experimental system, a “Mammalian Mother Machine,” that tracks the fate of thousands of mammalian cells over several generations under transient exposure to chemotherapeutic drugs. Using our developed system, we were able to follow the same cell under repeated treatments and continuously track many generations. We found that the dynamics of the transition between stationary and proliferative states are highly variable and affect the response to drug treatment. Using cell-cycle markers, we were able to isolate a subpopulation of persister cells with distinctly higher than average survival probability. The higher survival rate encountered with cell-cycle phase specific drugs was associated with a significantly longer time-till-division, and was reduced by a non cell-cycle specific drug. Our results suggest that the variability of transition times from the stationary to the proliferating state may be an obstacle hampering the effectiveness of drugs and should be taken into account when designing treatment regimens.
Collapse
Affiliation(s)
- Sivan Pearl Mizrahi
- a Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University , Jerusalem , Israel.,b Department of Microbiology and Molecular Genetics , IMRIC, The Hebrew University Hadassah Medical School , Jerusalem , Israel
| | - Orit Gefen
- a Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University , Jerusalem , Israel
| | - Itamar Simon
- b Department of Microbiology and Molecular Genetics , IMRIC, The Hebrew University Hadassah Medical School , Jerusalem , Israel
| | - Nathalie Q Balaban
- a Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University , Jerusalem , Israel
| |
Collapse
|
10
|
Hu Y, Li S. Survival regulation of leukemia stem cells. Cell Mol Life Sci 2016; 73:1039-50. [PMID: 26686687 PMCID: PMC11108378 DOI: 10.1007/s00018-015-2108-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss.
Collapse
Affiliation(s)
- Yiguo Hu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, The Third Part Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Park SJ, Kim JG, Kim ND, Yang K, Shim JW, Heo K. Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett 2016; 11:1895-1902. [PMID: 26998096 DOI: 10.3892/ol.2016.4115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is one of the most common cancer types among women, acting as a distinct cause of mortality, and has a high incidence of recurrence. External stimuli, including 17β-estradiol (E2), transforming growth factor (TGF)-β1 and hypoxia, may be important in breast cancer growth and metastasis. However, the effects of these stimuli on breast cancer stem cell (CSC) regulation have not been fully investigated. In the present study, the proportion of cluster of differentiation (CD)44+/CD24-/low cells increased following treatment with E2, TGF-β1 and hypoxia in MCF-7 cells. The expression of CSC markers, including SOX2, KLF4 and ABCG2, was upregulated continually by E2, TGF-β1 and hypoxia. In addition, the expression levels of epithelial-mesenchymal transition-associated factors increased following treatment with E2, TGF-β1 and hypoxia. Therefore, the migration ability of E2-, TGF-β1- and hypoxia-treated MCF-7 cells was enhanced compared with control cells. In addition, the enhancement of apoptosis by 5-flurouracil or radiation was abolished following treatment with E2, TGF-β1 and hypoxia. These results indicate that E2, TGF-β1 and hypoxia are important for regulating breast CSCs, and that the modulation of the microenvironment in tumors may improve the efficiency of breast cancer therapy.
Collapse
Affiliation(s)
- Seong-Joon Park
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jae Woong Shim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| |
Collapse
|
12
|
Moradi-Kalbolandi S, Davani D, Golkar M, Habibi-Anbouhi M, Abolhassani M, Shokrgozar MA. Soluble Expression and Characterization of a New scFv Directed to Human CD123. Appl Biochem Biotechnol 2016; 178:1390-406. [DOI: 10.1007/s12010-015-1954-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022]
|
13
|
Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6:5490-5500. [PMID: 25823927 PMCID: PMC4467382 DOI: 10.18632/oncotarget.3545] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|
14
|
N-Cadherin and Tie2 positive CD34⁺CD38⁻CD123⁺ leukemic stem cell populations can develop acute myeloid leukemia more effectively in NOD/SCID mice. Leuk Res 2014; 38:632-7. [PMID: 24703771 DOI: 10.1016/j.leukres.2014.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 12/29/2022]
Abstract
Emerging studies suggest that the population of malignant cells found in human acute myelogenous leukemia (AML) arises from a rare population of leukemic stem cells (LSCs). A lot of investigators have reported the identification of cell surface markers, such as CD123. Here, we report the identification of N-cadherin and Tie2 as LSCs markers. Inoculation of CD34(+)CD38(-)CD123(+)N-cadherin(+) and CD34(+)CD38(-)CD123(+) Tie2(+) population can induce leukemia in NOD/SCID mice. The leukemic blast cells from the primary leukemic mice could also induce leukemia in the secondary transplantation. These findings suggested that N-cadherin and Tie2 were the important markers that can assist in leukemia development.
Collapse
|
15
|
Interleukin-2 priming chemotherapy: a strategy to improve the remission of refractory/relapsed T cell acute lymphoblastic leukemia. Med Hypotheses 2013; 81:878-80. [PMID: 24074835 DOI: 10.1016/j.mehy.2013.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/09/2013] [Accepted: 08/23/2013] [Indexed: 11/22/2022]
Abstract
Regardless of the salvage therapy used, primary induction failure in acute lymphoblastic leukemia (refractory ALL) and relapse after a complete remission (CR) are associated with dismal outcomes. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) may be the best treatment option for relapsed/refractory ALL. However, the outcome of allo-HSCT is very poor when a patient is not in CR. Quiescent leukemia cells protect them from the commonly used cell cycle-specific chemotherapeutic agents. Interleukin-2 (IL-2), a very well characterized T cell growth factor, is responsible for the progression of T lymphocytes from the G0 to the S phase of the cell cycle. IL-2 receptors are present on malignant T cells. Interaction of IL-2 with the IL-2 receptor triggers T cell proliferation, but T cells must change from a resting to an activated state, which leads to the de novo synthesis of IL-2 and expression of the IL-2 receptor. Thus, exogenous IL-2 administration is pivotal for the activation of T cells. Based on the findings above mentioned, we hypothesized that IL-2 priming chemotherapy improves the remission of refractory/relapsed T cell acute lymphoblastic leukemia.
Collapse
|
16
|
Omoregie SN, Omoruyi FO, Wright VF, Jones L, Zimba PV. Antiproliferative activities of lesser galangal (Alpinia officinarum Hance Jam1), turmeric (Curcuma longa L.), and ginger (Zingiber officinale Rosc.) against acute monocytic leukemia. J Med Food 2013; 16:647-55. [PMID: 23819642 DOI: 10.1089/jmf.2012.0254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute monocytic leukemia (AML M5 or AMoL) is one of the several types of leukemia that are still awaiting cures. The use of chemotherapy for cancer management can be harmful to normal cells in the vicinity of the target leukemia cells. This study assessed the potency of the extracts from lesser galangal, turmeric, and ginger against AML M5 to use the suitable fractions in neutraceuticals. Aqueous and organic solvent extracts from the leaves and rhizomes of lesser galangal and turmeric, and from the rhizomes only of ginger were examined for their antiproliferative activities against THP-1 AMoL cells in vitro. Lesser galangal leaf extracts in organic solvents of methanol, chloroform, and dichloromethane maintained distinctive antiproliferative activities over a 48-h period. The turmeric leaf and rhizome extracts and ginger rhizome extracts in methanol also showed distinctive anticancer activities. The lesser galangal leaf methanol extract was subsequently separated into 13, and then 18 fractions using reversed-phase high-performance liquid chromatography. Fractions 9 and 16, respectively, showed the greatest antiproliferative activities. These results indicate that the use of plant extracts might be a safer approach to finding a lasting cure for AMoL. Further investigations will be required to establish the discriminatory tolerance of normal cells to these extracts, and to identify the compounds in these extracts that possess the antiproliferative activities.
Collapse
Affiliation(s)
- Samson N Omoregie
- Department of Biology and Chemistry, Northern Caribbean University, Mandeville, Jamaica.
| | | | | | | | | |
Collapse
|
17
|
She M, Niu X, Chen X, Li J, Zhou M, He Y, Le Y, Guo K. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett 2011; 318:173-9. [PMID: 22198207 DOI: 10.1016/j.canlet.2011.12.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023]
Abstract
Leukemic stem cells (LSCs) play the central role in the relapse and refractory of acute myeloid leukemia (AML) and highlight the critical need for the new therapeutic strategies to directly target the LSC population. However, relatively little is known about the unique molecular mechanisms of drug and natural killer cells (NK)-killing resistance of LSCs because of very small number of LSCs in bone marrow. In this study, we investigated whether established leukemia cell line contains LSCs. We showed that KG1a leukemia cell line contained leukemic stem-like cells, which have been phenotypically restricted within the CD34(+)CD38(-) fractions. CD34(+)CD38(-) cells could generate CD34(+)CD38(+) cells in culture medium and had renewal function. Moreover, CD34(+)CD38(-) cells had self-renewal potential. We found that leukemic stem-like cells from KG1a cells were resistant to chemotherapy and NK-mediated cytotoxicity. NKG2D ligands involve in protecting LSCs from NK-mediated attack. Taken together, our studies provide a novel cell model for leukemic stem cells research. Our data also shed light on mechanism of double resistant to chemotherapy and NK cell immunotherapy, which was helpful for developing novel effective strategies for LSCs.
Collapse
Affiliation(s)
- Miaorong She
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fallica B, Makin G, Zaman MH. Bioengineering approaches to study multidrug resistance in tumor cells. Integr Biol (Camb) 2011; 3:529-39. [PMID: 21387035 DOI: 10.1039/c0ib00142b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of cancer cells to become resistant to chemotherapeutic agents is a major challenge for the treatment of malignant tumors. Several strategies have emerged to attempt to inhibit chemoresistance, but the fact remains that resistance is a problem for every effective anticancer drug. The first part of this review will focus on the mechanisms of chemoresistance. It is important to understand the environmental cues, transport limitations and the cellular signaling pathways associated with chemoresistance before we can hope to effectively combat it. The second part of this review focuses on the work that needs to be done moving forward. Specifically, this section focuses on the necessity of translational research and interdisciplinary directives. It is critical that the expertise of oncologists, biologists, and engineers be brought together to attempt to tackle the problem. This discussion is from an engineering perspective, as the dialogue between engineers and other cancer researchers is the most challenging due to non-overlapping background knowledge. Chemoresistance is a complex and devastating process, meaning that we urgently need sophisticated methods to study the process of how cells become resistant.
Collapse
Affiliation(s)
- Brian Fallica
- Department of Biomedical Engineering, Boston University, USA
| | | | | |
Collapse
|
19
|
Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 2010; 8:e1000514. [PMID: 21049082 PMCID: PMC2958657 DOI: 10.1371/journal.pbio.1000514] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023] Open
Abstract
Metabolomics technology reveals that fibroblast that have exited the proliferative cell cycle nevertheless utilize glucose throughout central carbon metabolism and rely on the pentose phosphate pathway for viability. Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. Many cells in the human body are in a reversible state of quiescence, where they have exited the cell cycle but retain the capacity to re-enter it and divide again. Previous experiments in lymphocytes had suggested that quiescent cells reduce their glucose uptake and metabolic rate. In our studies, we have investigated the metabolism of fibroblasts, cells found in connective tissue and skin. Using “metabolomics” to monitor flux through metabolic pathways, we discovered that fibroblasts remain highly metabolically active even though they are not dividing. They degrade and resynthesize protein and fatty acid, and secrete large amounts of protein into the extracellular environment. Despite our expectation that quiescent cells would not have a high demand for nucleotide biosynthesis, we found that they do divert glucose to the pentose phosphate pathway, presumably to generate NADPH. The NADPH created may help the quiescent fibroblasts to detoxify free radicals or to synthesize fatty acids. Experiments in which we inhibited the pentose phosphate pathway resulted in increased apoptosis in quiescent cells, suggesting a possible strategy for selectively killing nondividing cells.
Collapse
|
20
|
Kügler M, Stein C, Kellner C, Mentz K, Saul D, Schwenkert M, Schubert I, Singer H, Oduncu F, Stockmeyer B, Mackensen A, Fey GH. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br J Haematol 2010; 150:574-86. [PMID: 20636437 DOI: 10.1111/j.1365-2141.2010.08300.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two trivalent constructs consisting of single-chain Fv antibody fragments (scFvs) specific for the interleukin-3 receptor alpha chain (CD123), CD33 and the Fcgamma-receptor III (CD16) were designed and characterized for the elimination of acute myeloid leukaemia (AML) cells. The dual targeting single-chain Fv triplebody (sctb) [123 x ds16 x 33] and the mono targeting sctb [123 x ds16 x 123] both specifically bound their respective target antigens and were stable in human serum at 37 degrees C for at least 5 d. Both constructs induced potent antibody-dependent cellular cytotoxicity (ADCC) of two different AML-derived CD33- and CD123 double-positive cell lines in the low picomolar range using isolated mononuclear cells (MNCs) as effector cells. In these experiments the dual targeting molecule produced significantly stronger lysis than the mono targeting agent. In addition, the sctbs showed a high potency in mediating ADCC of primary leukaemia cells isolated from peripheral blood or bone marrow of seven AML patients. Hence, these novel molecules displayed potent anti-leukaemic effects against AML cells in vitro and represent attractive candidates for further preclinical development.
Collapse
|
21
|
Honoki K. Do stem-like cells play a role in drug resistance of sarcomas? Expert Rev Anticancer Ther 2010; 10:261-70. [PMID: 20132001 DOI: 10.1586/era.09.184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stem cells are defined by their unique characteristics, which include their abilities to self-renew and differentiate. Normal somatic stem cells have been isolated from various tissues such as bone marrow, adipose tissue, mammary glands and the nervous system. They are considered naturally resistant to chemotherapeutic agents because they express high levels of membrane transporter molecules, detoxifying enzymes and DNA repair proteins. Several recent studies have identified the presence of side populations in various cancer tissues, the so-called 'cancer stem cells', which are defined as the counterparts of stem cells in tumor tissues. These cancer stem cells possess stem-like properties, such as self-renewal and differentiation abilities, as well as playing a role in tumor initiation. Most sarcomas, which are thought to originate from mesenchymal stem cells, are highly malignant and approximately 30-40% of them show local and/or distant relapse (metastasis), even in the case of relatively chemosensitive tumors such as osteosarcomas and Ewing sarcomas. Several studies have suggested the presence of stem-like cell populations in sarcomas, based on their tumorigenicity and drug resistance. This review explores the issues of drug resistance of cancer stem cells in sarcomas and the possibilities of targeting cancer stem cells for the future treatment of sarcomas.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
22
|
Palamà IE, Leporatti S, Luca ED, Renzo ND, Maffia M, Gambacorti-Passerini C, Rinaldi R, Gigli G, Cingolani R, Coluccia AML. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells. Nanomedicine (Lond) 2010; 5:419-31. [DOI: 10.2217/nnm.10.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Materials & methods: Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO3) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34+ cells freshly isolated from healthy donors or CML patients were tested. Results & discussion: Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 µm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95–99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34+ stem cells (range: 70–85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34+ stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. Conclusion: This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.
Collapse
Affiliation(s)
- Ilaria E Palamà
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Scuola Superiore ISUFI, University of Salento, Via Arnesano 73100 Lecce, Italy
| | - Stefano Leporatti
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Scuola Superiore ISUFI, University of Salento, Via Arnesano 73100 Lecce, Italy
| | | | | | | | | | - Ross Rinaldi
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Scuola Superiore ISUFI, University of Salento, Via Arnesano 73100 Lecce, Italy
| | - Giuseppe Gigli
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Scuola Superiore ISUFI, University of Salento, Via Arnesano 73100 Lecce, Italy
| | - Roberto Cingolani
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Scuola Superiore ISUFI, University of Salento, Via Arnesano 73100 Lecce, Italy
| | - Addolorata ML Coluccia
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Scuola Superiore ISUFI, University of Salento, Via Arnesano 73100 Lecce, Italy
- ‘Vito Fazzi’ Hospital, Italy
| |
Collapse
|
23
|
Stein C, Kellner C, Kügler M, Reiff N, Mentz K, Schwenkert M, Stockmeyer B, Mackensen A, Fey GH. Novel conjugates of single-chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol 2010; 148:879-89. [PMID: 20064159 DOI: 10.1111/j.1365-2141.2009.08033.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Four new single-chain Fv antibody fragments (scFvs) specific for the human leucocyte surface antigen CD123 (interleukin-3 receptor alpha) were generated to achieve preferential targeting of leukaemia stem cells (LSCs) in acute myeloid leukaemia (AML). The scFvs were isolated from a phage display library generated with spleen RNA from mice, immunized with a fusion protein consisting of the extracellular domain of CD123 and the Fc domain of a human immunoglobulin G1. The scFvs displayed CD123-specific binding on tumour cells (binding constants (K(D)) 4.5-101 nmol/l). The scFv with the highest affinity was used to design two cell death-inducing molecules. First, an immunotoxin, a fusion protein with truncated Pseudomonas Exotoxin A, induced potent apoptosis of AML-derived MOLM-13 and SKNO-1 cells at nanomolar concentrations. Second, the fusion to another scFv, specific for the low affinity Fcgamma-receptor III (CD16), created a bispecific single chain Fv (bsscFv). This bsscFv [123 x ds16] mediated potent lysis of AML-derived MOLM-13, THP-1 and SKNO-1 cells in antibody-dependent cellular cytotoxicity (ADCC) reactions at picomolar concentrations. The recruitment of CD16-positive effector cells for the lysis of AML cells via CD123 represents a novel combination with attractive prospects for future clinical testing.
Collapse
Affiliation(s)
- Christoph Stein
- Chair of Genetics, University of Erlangen-Nuremberg, Erwin-Rommel-Strasse 3, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McCubrey JA, Abrams SL, Stadelman K, Chappell WH, Lahair M, Ferland RA, Steelman LS. Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. ADVANCES IN ENZYME REGULATION 2009; 50:285-307. [PMID: 19895837 PMCID: PMC2862855 DOI: 10.1016/j.advenzreg.2009.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Estrov Z. Stem Cells and Somatic Cells: Reprogramming and Plasticity. CLINICAL LYMPHOMA AND MYELOMA 2009; 9:S319-S328. [DOI: 10.3816/clm.2009.s.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
26
|
Fusion of dendritic cells and CD34+CD38- acute myeloid leukemia (AML) cells potentiates targeting AML-initiating cells by specific CTL induction. J Immunother 2009; 32:408-14. [PMID: 19342964 DOI: 10.1097/cji.0b013e3181a01abb] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Distinct leukemia-initiating cells (L-ICs) represent a critical target for therapeutic intervention of acute myeloid leukemia (AML). A potential strategy to eradicate L-ICs is to generate L-IC-specific cytotoxic T lymphocytes (CTLs). However, owing to rarity and immortality of L-ICs, it is difficult for antigen-presenting cells to capture L-ICs for specific antigen presentation. Here, we report a novel approach by fusing allogeneic dendritic cells (DCs) and CD34CD38 AML progenitor cells, through which specific CTLs were effectively induced, leading to the cytolysis to AML-initiating cells. Fusion of either DC/CD34CD38 AML cell or DC/CD34 AML cell could effectively induce the proliferation and activation of CTLs. However, only the former CTLs could effectively attack AML progenitor cells, and result in the unkilled progenitor/initiating cells losing the abilities of active proliferation in vitro and engraftment in NOD-SCID mice. These findings suggest that AML progenitor/initiating cell-specific CTLs may be generated based on allogeneic DC/progenitor cell fusion strategy; the induced CTLs may potentially eradicate AML by targeting L-ICs directly or indirectly.
Collapse
|
27
|
Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 2009; 122:264-80. [DOI: 10.1016/j.pharmthera.2009.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/03/2009] [Indexed: 12/11/2022]
|
28
|
Abstract
Cancer stem cells (CSC), also called tumor initiating cells (TIC), are considered to be the origin of replicating malignant tumor cells in a variety of human cancers. Their presence in the tumor may herald malignancy potential, mediate resistance to conventional chemotherapy or radiotherapy, and confer poor survival outcomes. Thus, CSC may serve as critical cellular targets for treatment. The ability to therapeutically target CSC hinges upon identifying their unique cell surface markers and the underlying survival signaling pathways. While accumulating evidence suggests cell-surface antigens (such as CD44, CD133) as CSC markers for several tumor tissues, emerging clinical needs exist for the identification of new markers to completely separate CSC from normal stem cells. Recent studies have demonstrated the critical role of the tumor suppressor PTEN/PI3 kinase pathway in regulating TIC in leukemia, brain, and intestinal tissues. The successful eradication of tumors by therapies targeting CSC will require an in-depth understanding of the molecular mechanisms governing CSC self renewal, differentiation, and escape from conventional therapy. Here we review recent progress from brain tumor and intestinal stem cell research with a focus on the PTEN-Akt-Wnt pathway, and how the components of CSC pathways may serve as biomarkers for diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Lan Chun Tu
- Institute for Systems Biology, 1441 N 34 Street, Seattle, WA 98103, USA
| | - Greg Foltz
- Institute for Systems Biology, 1441 N 34 Street, Seattle, WA 98103, USA
- Swedish Neuroscience Institute, Seattle, WA
| | - Edward Lin
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Research Center, 825 Eastlake Ave East, Seattle, WA 98109, USA
| | - Leroy Hood
- Institute for Systems Biology, 1441 N 34 Street, Seattle, WA 98103, USA
| | - Qiang Tian
- Institute for Systems Biology, 1441 N 34 Street, Seattle, WA 98103, USA
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
29
|
Velasco-Velázquez MA, Yu Z, Jiao X, Pestell RG. Cancer stem cells and the cell cycle: targeting the drive behind breast cancer. Expert Rev Anticancer Ther 2009; 9:275-279. [PMID: 19275505 DOI: 10.1586/14737140.9.3.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Mori S, Cortes J, Kantarjian H, Zhang W, Andreef M, Ravandi F. Potential role of sorafenib in the treatment of acute myeloid leukemia. Leuk Lymphoma 2009; 49:2246-55. [PMID: 19052971 DOI: 10.1080/10428190802510349] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of aberrant cellular pathways and dysfunctional molecules important in neoplastic transformation has begun to provide us with a number of targets for drug development. It is likely that many of these agents will be incorporated into our existing treatment strategies that include cytotoxic agents. Sorafenib, a multi-kinase inhibitor has been approved in the United States for the treatment of renal cell carcinoma as well as hepatocellular cancer. Its potential role in hematological malignancies, particularly acute myeloid leukemia (AML) is under evaluation. Here we describe the biological pathways in AML that are the potential targets of sorafenib action and discuss the early clinical data with the agent in solid tumors and AML.
Collapse
Affiliation(s)
- Shahram Mori
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Zeev Estrov
- The Department of Leukemia, The University of Texas MD, Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Bäsecke J, Libra M, Nicoletti F, Stivala F, Milella M, Tafuri A, Cervello M, Martelli AM, McCubrey JA. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23:25-42. [PMID: 18800146 PMCID: PMC2627788 DOI: 10.1038/leu.2008.246] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/24/2008] [Accepted: 08/06/2008] [Indexed: 02/07/2023]
Abstract
Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemotherapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with small-molecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance-a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy.
Collapse
Affiliation(s)
- N Misaghian
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - G Ligresti
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - LS Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - FE Bertrand
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - J Bäsecke
- Division of Hematology and Oncology, Department of Medicine, Georg-August University, Göttingen, Germany
| | - M Libra
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - F Nicoletti
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - F Stivala
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - M Milella
- Regina Elena Cancer Center, Rome, Italy
| | - A Tafuri
- Department of Cellular Biotechnologies and Hematology, University ‘La Sapienza’ of Rome, Rome, Italy
| | - M Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare ‘Alberto Monroy’, Palermo, Italy
| | - AM Martelli
- Department of Human Anatomical Sciences. University of Bologna, Bologna, Italy
- IGM/CNR, c/o IOR, Bologna, Italy
| | - JA McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
33
|
Defining the target specificity of ABT-737 and synergistic antitumor activities in combination with histone deacetylase inhibitors. Blood 2008; 113:1982-91. [PMID: 19060243 DOI: 10.1182/blood-2008-05-156851] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The apoptotic and therapeutic activities of the histone deacetylase inhibitor (HDACi) vorinostat are blocked by overexpression of Bcl-2 or Bcl-X(L). Herein, we used the small molecule inhibitor ABT-737 to restore sensitivity of Emu-myc lymphomas overexpressing Bcl-2 or Bcl-X(L) to vorinostat and valproic acid (VPA). Combining low-dose ABT-737 with vorinostat or VPA resulted in synergistic apoptosis of these cells. ABT-737 was ineffective against Emu-myc/Mcl-1 and Emu-myc/A1 cells either as a single agent or in combination with HDACi. However, in contrast to the reported binding specificity data, Emu-myc/Bcl-w lymphomas were insensitive to ABT-737 used alone or in combination with HDACi, indicating that the regulatory activity of ABT-737 is restricted to Bcl-2 and Bcl-X(L). Emu-myc lymphomas that expressed Bcl-2 throughout the tumorigenesis process were especially sensitive to ABT-737, while those forced to overexpress Mcl-1 were not. This supports the notion that tumor cells "addicted" to ABT-737 target proteins (ie, Bcl-2 or Bcl-X(L)) are likely to be the most sensitive target cell population. Our studies provide important preclinical data on the binding specificity of ABT-737 and its usefulness against primary hematologic malignancies when used as a single agent and in combination with HDACi.
Collapse
|
34
|
Kerst G, Bergold N, Viebahn S, Gieseke F, Kalinova M, Trka J, Handgretinger R, Müller I. WT1 protein expression in slowly proliferating myeloid leukemic cell lines is scarce throughout the cell cycle with a minimum in G0/G1 phase. Leuk Res 2008; 32:1393-9. [PMID: 18457871 DOI: 10.1016/j.leukres.2008.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/03/2008] [Accepted: 03/10/2008] [Indexed: 11/26/2022]
Abstract
Wilms' tumor gene 1 (WT1) is overexpressed in various hematological malignancies and has been proposed as a target for minimal residual disease (MRD) detection and for immunotherapy. Although WT1 is known as a key molecule for tumor cell proliferation, the expression pattern of WT1 in leukemic cells in dependency of proliferation has not yet been investigated. Furthermore, WT1 expression was mostly studied by reverse transcriptase PCR and the expression of WT1 protein has not been extensively studied. Here, we analyzed WT1 protein expression in the human myeloid leukemia cell lines K562 and HL-60 by indirect immunofluorescence and flow cytometry. Both cell lines exhibited varying nuclear WT1 immunoreactivity pointing to a cell cycle-dependent and/or proliferation-dependent WT1 expression. In rapidly proliferating cells high levels of WT1 protein were detected by flow cytometry. A reduced proliferation rate was associated with a low WT1 protein expression and an accumulation of cells in G(0)/G(1) phase. During G(0)/G(1) phase cells expressed WT1 at a lower level than in S or G(2)/M phase. Moreover, WT1 expression was diminished in all cell cycle phases in slowly proliferating cells. We conclude that WT1 protein expression is dependent on the cell cycle phase as well as on the proliferation rate. This finding might be relevant for MRD studies and immunotherapeutic strategies targeting WT1.
Collapse
Affiliation(s)
- Gunter Kerst
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 2008; 83:673-91. [PMID: 17786164 PMCID: PMC2839198 DOI: 10.1038/sj.clpt.6100296] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the recent knowledge obtained on the molecular mechanisms involved in the intrinsic and acquired resistance of cancer cells to current cancer therapies. We describe the cascades that are often altered in cancer cells during cancer progression that may contribute in a crucial manner to drug resistance and disease relapse. The emphasis is on the implication of ATP-binding cassette (ABC) multidrug efflux transporters in drug disposition and antiapoptotic factors, including epidermal growth factor receptor cascades and deregulated enzymes in ceramide metabolic pathways. The altered expression and activity of these signaling elements may have a critical role in the resistance of cancer cells to cytotoxic effects induced by diverse chemotherapeutic drugs and cancer recurrence. Of therapeutic interest, new strategies for reversing the multidrug resistance and developing more effective clinical treatments against the highly aggressive, metastatic, and recurrent cancers, based on the molecular targeting of the cancer progenitor cells and their further differentiated progeny, are also described.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Hauke
- Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - SK Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
36
|
Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM, Bian XW. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 2008; 265:124-34. [PMID: 18343028 DOI: 10.1016/j.canlet.2008.02.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/30/2008] [Accepted: 02/03/2008] [Indexed: 12/11/2022]
Abstract
A variety of malignant cancers have been found to contain a subpopulation of stem cell-like tumor cells, or cancer stem cells (CSCs). However, the existence of CSCs in U87, a most commonly used glioma cell line, is still controversial. In this study, we demonstrate that U87 cell line contained a fraction of tumor cells that could form tumor spheres and were enriched by progressively increasing the concentration of serum-free neural stem cell medium with or without low dose vincristine. These cells possessed the ability of self-renewal and multipotency, the defined characteristics of CSCs. Moreover, the tumors formed by the secondary spheres displayed typical histological features of human glioblastoma, including cellular pleomorphism, pseudopalisades surrounding necrosis, hyperchromatic nuclei, high density of microvessels and invasion to the brain parenchyma. These results indicate that gradually increasing the concentration of serum-free neural stem cell culture medium with or without vincristine is a simple and effective method for isolation of CSCs to study the initiation and progression of human glioblastoma.
Collapse
Affiliation(s)
- Shi-Cang Yu
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Gaotanyan 30, Shapingba District, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22:708-22. [PMID: 18337766 DOI: 10.1038/leu.2008.27] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are frequently activated in leukemia and other hematopoietic disorders by upstream mutations in cytokine receptors, aberrant chromosomal translocations as well as other genetic mechanisms. The Jak2 kinase is frequently mutated in many myeloproliferative disorders. Effective targeting of these pathways may result in suppression of cell growth and death of leukemic cells. Furthermore it may be possible to combine various chemotherapeutic and antibody-based therapies with low molecular weight, cell membrane-permeable inhibitors which target the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to ultimately suppress the survival pathways, induce apoptosis and inhibit leukemic growth. In this review, we summarize how suppression of these pathways may inhibit key survival networks important in leukemogenesis and leukemia therapy as well as the treatment of other hematopoietic disorders. Targeting of these and additional cascades may also improve the therapy of chronic myelogenous leukemia, which are resistant to BCR-ABL inhibitors. Furthermore, we discuss how targeting of the leukemia microenvironment and the leukemia stem cell are emerging fields and challenges in targeted therapies.
Collapse
|
38
|
Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 2008; 22:941-50. [PMID: 18305549 DOI: 10.1038/leu.2008.48] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In post-fetal life, hematopoiesis occurs in unique microenvironments or 'niches' in the marrow. Niches facilitate the maintenance of hematopoietic stem cells (HSCs) as unipotent, while supporting lineage commitment of the expanding blood populations. As the physical locale that regulates HSC function, the niche function is vitally important to the survival of the organism. This places considerable selective pressure on HSCs, as only those that are able to engage the niche in the appropriate context are likely to be maintained as stem cells. Since niches are central regulators of stem cell function, it is not surprising that molecular parasites like neoplasms are likely to seek out opportunities to harvest resources from the niche environment. As such, the niche may unwittingly participate in tumorigenesis as a leukemic or neoplastic niche. The niche may also promote metastasis or chemo-resistance of hematogenous neoplasms or solid tumors. This review focuses on what is known about the physical structures of the niche, how the niche participates in hematopoiesis and neoplastic growth and what molecules are involved. Further understanding of the interactions between stem cells and the niche may be useful for developing therapeutic strategies.
Collapse
Affiliation(s)
- Y Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
39
|
Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 2008; 11:981-1011. [PMID: 17979879 PMCID: PMC4401269 DOI: 10.1111/j.1582-4934.2007.00088.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. This review summarizes recent advances in our understanding of the cellular origin and molecular mechanisms at the basis of cancer initiation and progression as well as the heterogeneity of cancers arising from the malignant transformation of adult stem/progenitor cells. We describe the critical functions provided by several growth factor cascades, including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor (SCF) receptor (KIT), hedgehog and Wnt/beta-catenin signalling pathways that are frequently activated in cancer progenitor cells and are involved in their sustained growth, survival, invasion and drug resistance. Of therapeutic interest, we also discuss recent progress in the development of new drug combinations to treat the highly aggressive and metastatic cancers including refractory/relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas and gastrointestinal cancers which remain incurable in the clinics. The emphasis is on new therapeutic strategies consisting of molecular targeting of distinct oncogenic signalling elements activated in the cancer progenitor cells and their local microenvironment during cancer progression. These new targeted therapies should improve the efficacy of current therapeutic treatments against aggressive cancers, and thereby preventing disease relapse and enhancing patient survival.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
40
|
Raynal NJM, Momparler L, Charbonneau M, Momparler RL. Antileukemic activity of genistein, a major isoflavone present in soy products. JOURNAL OF NATURAL PRODUCTS 2008; 71:3-7. [PMID: 18163589 DOI: 10.1021/np070230s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Soy has been used in traditional medicine for the treatment of various diseases, including cancer. The isoflavones present in soy have been shown in animal models to have cancer-preventing activity. However, the therapeutic effects of isoflavones against cancer are still unclear. We have evaluated the in vitro and in vivo antileukemic activity of genistein (1), a major isoflavone present in soy. We observed that it produced a dose- and time-dependent antineoplastic activity against myeloid and lymphoid leukemic cell lines. In addition, genistein treatment of the leukemic cells reactivated tumor suppressor genes that were silenced by aberrant DNA methylation. A genistein-enriched diet produced a moderate, but significant, antileukemic effect in mice. The limited extent of this in vivo response may have been due to the rapid metabolic inactivation of genistein in mice. Due to the longer half-life of genistein in humans, a soy-enriched diet has the potential to produce plasma levels of this isoflavone in the range of the concentrations used in vitro that produced an antileukemic activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/blood
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- DNA Methylation/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Genistein/blood
- Genistein/chemistry
- Genistein/pharmacology
- Humans
- Leukemia, Lymphoid/diet therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Myeloid/diet therapy
- Leukemia, Myeloid/genetics
- Male
- Mice
- Molecular Structure
- Glycine max/chemistry
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Noël J-M Raynal
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
An emerging concept in cancer biology is that a rare population of cancer stem cells exists among the heterogeneous cell mass that constitutes a tumor. This concept is best understood in human myeloid leukemia. Normal and malignant hematopoietic stem cell functions are defined by a common set of critical stemness genes that regulate self-renewal and developmental pathways. Several stemness factors, such as Notch or telomerase, show differential activation in normal hematopoietic versus leukemia stem cells. These differences could be exploited therapeutically even with drugs that are already in clinical use for the treatment of leukemia. The translation of novel and existing leukemic stem cell-directed therapies into clinical practice, however, will require changes in clinical trial design and the inclusion of stem cell biomarkers as correlative end points.
Collapse
Affiliation(s)
- Saranya Chumsri
- Department of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center
| | - William Matsui
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Angelika M. Burger
- Department of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Macklin P, Lowengrub J. Nonlinear simulation of the effect of microenvironment on tumor growth. J Theor Biol 2006; 245:677-704. [PMID: 17239903 DOI: 10.1016/j.jtbi.2006.12.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/06/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
In this paper, we present and investigate a model for solid tumor growth that incorporates features of the tumor microenvironment. Using analysis and nonlinear numerical simulations, we explore the effects of the interaction between the genetic characteristics of the tumor and the tumor microenvironment on the resulting tumor progression and morphology. We find that the range of morphological responses can be placed in three categories that depend primarily upon the tumor microenvironment: tissue invasion via fragmentation due to a hypoxic microenvironment; fingering, invasive growth into nutrient rich, biomechanically unresponsive tissue; and compact growth into nutrient rich, biomechanically responsive tissue. We found that the qualitative behavior of the tumor morphologies was similar across a broad range of parameters that govern the tumor genetic characteristics. Our findings demonstrate the importance of the impact of microenvironment on tumor growth and morphology and have important implications for cancer therapy. In particular, if a treatment impairs nutrient transport in the external tissue (e.g., by anti-angiogenic therapy) increased tumor fragmentation may result, and therapy-induced changes to the biomechanical properties of the tumor or the microenvironment (e.g., anti-invasion therapy) may push the tumor in or out of the invasive fingering regime.
Collapse
Affiliation(s)
- Paul Macklin
- Department of Mathematics, University of California, 103 MSTB, Irvine, CA 92697, USA.
| | | |
Collapse
|
43
|
Abstract
Cancer is a multifaceted disease in which cell proliferation is no longer under normal growth control. Accumulating data have suggested the existence of cancer stem cells, a minor population of tumor cells that possess the stem cell property of self-renewal and that are responsible for the initiation and maintenance of cancer. The knowledge of cancer stem cell biology is most advanced in research on the hematopoietic cancer, leukemia. With the identification of leukemia stem cells (LSCs) capable of repopulating nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, this body of research has led to conclusive proof for cancer stem cells. This review focuses on the biological characterization of LSCs for each type of leukemia, which has provided key insights into leukemogenic pathology and LSC-targeted therapies.
Collapse
Affiliation(s)
- Ling Luo
- State Key Laboratory of Experimental Hematology, National Research Center for Stem Cell Engineering, Technology, Institute of Hematology, Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin
| | | |
Collapse
|
44
|
John Wiley & Sons, Ltd.. Current Awareness in Hematological Oncology. Hematol Oncol 2006. [DOI: 10.1002/hon.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|