1
|
Zhang J, Wang H, Wang Q, Mo J, Fu L, Peng S. EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. Mamm Genome 2025; 36:93-105. [PMID: 39414652 DOI: 10.1007/s00335-024-10078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease that ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may eventually progress to cirrhosis and hepatocellular carcinoma (HCC). The underlying mechanism of MASLD remains incompletely understood. This study aimed to identify key gene implicated in MASLD pathogenesis and validate its correlation with disease severity through an integration of bioinformatics and experimental approaches. Liver transcriptome data from MASLD patients were obtained from the Gene Expression Omnibus (GEO) database. A diet-induced MASLD mouse model was developed, and liver RNA-sequencing was performed. Liver specimens and clinical data from patients were collected for further analysis. A total of 120 differentially expressed genes (DEGs) were shared between datasets GSE89632 and GSE213621, with functional enrichment in inflammatory, metabolic, and cell cycle-related pathways. Protein-protein interaction (PPI) network analysis identified three modules associated with MASLD, with the cell cycle-related module being the most notable. EEF1A2 was identified as a novel hub gene and revealed to be elevated with MASLD progression through dataset analysis. EEF1A2 was confirmed to be highly expressed in the livers of both MASLD mouse models and patients. Moreover, the increased expression of EEF1A2 in MASH was positively correlated with higher serum alanine aminotransferase (ALT), alanine aminotransferase (AST), total cholesterol (TC), and body mass index (BMI). In conclusion, EEF1A2 is a novel hub gene significantly associated with MASLD severity and is a promising biomarker and therapeutic target for MASLD.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Mo
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Ahmed S, Aschner M, Alsharif KF, Allahyani M, Huang G, Wan C, Khan H. Marine peptides in lymphoma: surgery at molecular level for therapeutic understanding. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03901-w. [PMID: 39992419 DOI: 10.1007/s00210-025-03901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Lymphoma, the most common form of blood cancer, affects primarily the intricate network of tissues and organs known as the lymphatic system. Globally, it ranks among the leading causes of cancer-related deaths. Although conventional therapies have led to significant advancements, they are accompanied by adverse side effects and present challenges in cases of multidrug resistance, refractory patients, and relapses. This highlights a pressing need for innovative treatment approaches. Extensive research on the anti-lymphoma properties of natural compounds has particularly focused on marine organisms as valuable sources for potential medicinal agents. Among these, anticancer peptides have garnered attention due to their multiple beneficial effects against cancer, coupled with reduced toxicity to normal cells. This review focuses on the molecular mechanisms underlying the anti-lymphoma effects of marine peptides, examining the diverse pathways through which these peptides impact physiological processes. Key effects include modulation of cell viability, induction of apoptosis, cell cycle arrest, antimitotic activity, immunotherapeutic properties, disruption of mitochondrial function and induction of oxidative stress, cancer cell membrane destruction, and interference with microtubule stability. The review also highlights the antibody-drug conjugates (ADCs) derived from marine peptides and their synergistic effects with other anti-lymphoma medications. This knowledge should inspire future study and development of these prospective therapeutic modalities and hasten the investigation and creation of novel lymphoma remedies derived from marine sources.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunpeng Wan
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
3
|
Varona JF, Landete P, Lopez-Martin JA, Estrada V, Paredes R, Guisado-Vasco P, Fernandez de Orueta L, Torralba M, Fortun J, Vates R, Barberan J, Clotet B, Ancochea J, Carnevali D, Cabello N, Porras L, Gijon P, Monereo A, Abad D, Zuñiga S, Sola I, Rodon J, Vergara-Alert J, Izquierdo-Useros N, Fudio S, Pontes MJ, de Rivas B, Giron de Velasco P, Nieto A, Gomez J, Aviles P, Lubomirov R, Belgrano A, Sopesen B, White KM, Rosales R, Yildiz S, Reuschl AK, Thorne LG, Jolly C, Towers GJ, Zuliani-Alvarez L, Bouhaddou M, Obernier K, McGovern BL, Rodriguez ML, Enjuanes L, Fernandez-Sousa JM, Krogan NJ, Jimeno JM, Garcia-Sastre A. Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Sci Alliance 2022; 5:e202101200. [PMID: 35012962 PMCID: PMC8761492 DOI: 10.26508/lsa.202101200] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.
Collapse
Affiliation(s)
- Jose F Varona
- Departamento de Medicina Interna, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Pedro Landete
- Hospital Universitario La Princesa, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Vicente Estrada
- Hospital Clínico San Carlos, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Roger Paredes
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Hospital Germans Trias I Pujol, Barcelona, Spain
| | - Pablo Guisado-Vasco
- Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Lucia Fernandez de Orueta
- Universidad Europea, Madrid, Spain
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Miguel Torralba
- Health Sciences Faculty, University of Alcalá, Madrid, Spain
- Guadalajara University Hospital, Guadalajara, Spain
| | - Jesus Fortun
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Roberto Vates
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Barberan
- Departamento de Medicina Interna, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Bonaventura Clotet
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Hospital Germans Trias I Pujol, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic, Universitat Central de Catalunya, Barcelona, Spain
| | - Julio Ancochea
- Hospital Universitario La Princesa, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Daniel Carnevali
- Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Noemi Cabello
- Infectious Diseases Department, Clinico San Carlos University Hospital, Madrid, Spain
| | - Lourdes Porras
- Internal Medicine, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Paloma Gijon
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alfonso Monereo
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Daniel Abad
- Universidad Europea, Madrid, Spain
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Bellaterra, Spain
| | - Julia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Bellaterra, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | | | | | | | | | | | | | | | | | | | - Belen Sopesen
- Virology and Inflammation Unit, PharmaMar, SA, Madrid, Spain
- Sylentis, SAU, Madrid, Spain
- Biocross, SL, Valladolid, Spain
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Nevan J Krogan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Jose M Jimeno
- Virology and Inflammation Unit, PharmaMar, SA, Madrid, Spain
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep 2021; 37:752-762. [PMID: 32428051 DOI: 10.1039/d0np00011f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P- or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation.
Collapse
Affiliation(s)
- Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. and Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany and German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
5
|
Papapanou M, Papoutsi E, Giannakas T, Katsaounou P. Plitidepsin: Mechanisms and Clinical Profile of a Promising Antiviral Agent against COVID-19. J Pers Med 2021; 11:668. [PMID: 34357135 PMCID: PMC8306251 DOI: 10.3390/jpm11070668] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Current standard treatment of COVID-19 lacks in effective antiviral options. Plitidepsin, a cyclic depsipeptide authorized in Australia for patients with refractory multiple myeloma, has recently emerged as a candidate anti-SARS-CoV-2 agent. The aim of this review was to summarize current knowledge on plitidepsin's clinical profile, anti-tumour and anti-SARS-CoV-2 mechanisms and correlate this with available or anticipated, preclinical or clinical evidence on the drug's potential for COVID-19 treatment.PubMed, Scopus, CENTRAL, clinicaltrials.gov, medRxiv and bioRxiv databases were searched.Plitidepsinexerts its anti-tumour and antiviral properties primarily through acting on isoforms of the host cell's eukaryotic-translation-elongation-factor-1-alpha (eEF1A). Through inhibiting eEF1A and therefore translation of necessary viral proteins, it behaves as a "host-directed" anti-SARS-CoV-2 agent. In respect to its potent anti-SARS-CoV-2 properties, the drug has demonstrated superior ex vivo efficacy compared to other host-directed agents and remdesivir, and it might retain its antiviral effect against the more transmittable B.1.1.7 variant. Its well-studied safety profile, also in combination with dexamethasone, may accelerate its repurposing chances for COVID-19 treatment. Preliminary findings in hospitalized COVID-19 patients, have suggested potential safety and efficacy of plitidepsin, in terms of viral load reduction and clinical resolution. However, the still incomplete understanding of its exact integration into host cell-SARS-CoV-2 interactions, its intravenous administration exclusively purposing it for hospital settings the and precocity of clinical data are currently considered its chief deficits. A phase III trial is being planned to compare the plitidepsin-dexamethasone regimen to the current standard of care only in moderately affected hospitalized patients. Despite plitidepsin's preclinical efficacy, current clinical evidence is inadequate for its registration in COVID-19 patients.Therefore, multicentre trials on the drug's efficacy, potentially also studying populations of emerging SARS-CoV-2 lineages, are warranted.
Collapse
Affiliation(s)
- Michail Papapanou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (E.P.); (T.G.)
- Society of Junior Doctors, 15123 Athens, Greece
| | - Eleni Papoutsi
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (E.P.); (T.G.)
| | - Timoleon Giannakas
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (E.P.); (T.G.)
| | - Paraskevi Katsaounou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (E.P.); (T.G.)
- Pulmonary and Respiratory Failure Department, First ICU, Evaggelismos Hospital, 10676 Athens, Greece
| |
Collapse
|
6
|
Burgers LD, Fürst R. Natural products as drugs and tools for influencing core processes of eukaryotic mRNA translation. Pharmacol Res 2021; 170:105535. [PMID: 34058326 DOI: 10.1016/j.phrs.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Eukaryotic protein synthesis is the highly conserved, complex mechanism of translating genetic information into proteins. Although this process is essential for cellular homoeostasis, dysregulations are associated with cellular malfunctions and diseases including cancer and diabetes. In the challenging and ongoing search for adequate treatment possibilities, natural products represent excellent research tools and drug leads for new interactions with the translational machinery and for influencing mRNA translation. In this review, bacterial-, marine- and plant-derived natural compounds that interact with different steps of mRNA translation, comprising ribosomal assembly, translation initiation and elongation, are highlighted. Thereby, the exact binding and interacting partners are unveiled in order to accurately understand the mode of action of each natural product. The pharmacological relevance of these compounds is furthermore assessed by evaluating the observed biological activities in the light of translational inhibition and by enlightening potential obstacles and undesired side-effects, e.g. in clinical trials. As many of the natural products presented here possess the potential to serve as drug leads for synthetic derivatives, structural motifs, which are indispensable for both mode of action and biological activities, are discussed. Evaluating the natural products emphasises the strong diversity of their points of attack. Especially the fact that selected binding partners can be set in direct relation to different diseases emphasises the indispensability of natural products in the field of drug development. Discovery of new, unique and unusual interacting partners again renders them promising tools for future research in the field of eukaryotic mRNA translation.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
7
|
Varona JF, Landete P, Lopez-Martin JA, Estrada V, Paredes R, Guisado-Vasco P, de Orueta LF, Torralba M, Fortún J, Vates R, Barberán J, Clotet B, Ancochea J, Carnevali D, Cabello N, Porras L, Gijón P, Monereo A, Abad D, Zúñiga S, Sola I, Rodon J, Izquierdo-Useros N, Fudio S, Pontes MJ, de Rivas B, Girón de Velasco P, Sopesén B, Nieto A, Gómez J, Avilés P, Lubomirov R, White KM, Rosales R, Yildiz S, Reuschl AK, Thorne LG, Jolly C, Towers GJ, Zuliani-Alvarez L, Bouhaddou M, Obernier K, Enjuanes L, Fernández-Sousa JM, Krogan NJ, Jimeno JM, García-Sastre A. Plitidepsin has a positive therapeutic index in adult patients with COVID-19 requiring hospitalization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.25.21257505. [PMID: 34075384 PMCID: PMC8168388 DOI: 10.1101/2021.05.25.21257505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plitidepsin is a marine-derived cyclic-peptide that inhibits SARS-CoV-2 replication at low nanomolar concentrations by the targeting of host protein eEF1A (eukaryotic translation-elongation-factor-1A). We evaluated a model of intervention with plitidepsin in hospitalized COVID-19 adult patients where three doses were assessed (1.5, 2 and 2.5 mg/day for 3 days, as a 90-minute intravenous infusion) in 45 patients (15 per dose-cohort). Treatment was well tolerated, with only two Grade 3 treatment-related adverse events observed (hypersensitivity and diarrhea). The discharge rates by Days 8 and 15 were 56.8% and 81.8%, respectively, with data sustaining dose-effect. A mean 4.2 log10 viral load reduction was attained by Day 15. Improvement in inflammation markers was also noted in a seemingly dose-dependent manner. These results suggest that plitidepsin impacts the outcome of patients with COVID-19. ONE-SENTENCE SUMMARY Plitidepsin, an inhibitor of SARS-Cov-2 in vitro , is safe and positively influences the outcome of patients hospitalized with COVID-19.
Collapse
|
8
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Duan YT, Sangani CB, Liu W, Soni KV, Yao Y. New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics. Curr Top Med Chem 2019; 19:972-994. [DOI: 10.2174/1568026619666190603094439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
All the heritable alterations in gene expression and chromatin structure due to chemical modifications that do not involve changes in the primary gene nucleotide sequence are referred to as epigenetics. DNA methylation, histone modifications, and non-coding RNAs are distinct types of epigenetic inheritance. Epigenetic patterns have been linked to the developmental stages, environmental exposure, and diet. Therapeutic strategies are now being developed to target human diseases such as cancer with mutations in epigenetic regulatory genes using specific inhibitors. Within the past two decades, seven epigenetic drugs have received regulatory approval and many others show their candidature in clinical trials. The current article represents a review of epigenetic heritance, diseases connected with epigenetic alterations and regulatory approved epigenetic drugs as future medicines.
Collapse
Affiliation(s)
- Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal V. Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Yongfang Yao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Pereira RB, Evdokimov NM, Lefranc F, Valentão P, Kornienko A, Pereira DM, Andrade PB, Gomes NGM. Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar Drugs 2019; 17:E329. [PMID: 31159480 PMCID: PMC6627313 DOI: 10.3390/md17060329] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023] Open
Abstract
The role of the marine environment in the development of anticancer drugs has been widely reviewed, particularly in recent years. However, the innovation in terms of clinical benefits has not been duly emphasized, although there are important breakthroughs associated with the use of marine-derived anticancer agents that have altered the current paradigm in chemotherapy. In addition, the discovery and development of marine drugs has been extremely rewarding with significant scientific gains, such as the discovery of new anticancer mechanisms of action as well as novel molecular targets. Approximately 50 years since the approval of cytarabine, the marine-derived anticancer pharmaceutical pipeline includes four approved drugs and eighteen agents in clinical trials, six of which are in late development. Thus, the dynamic pharmaceutical pipeline consisting of approved and developmental marine-derived anticancer agents offers new hopes and new tools in the treatment of patients afflicted with previously intractable types of cancer.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Nikolai M Evdokimov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
11
|
Leisch M, Egle A, Greil R. Plitidepsin: a potential new treatment for relapsed/refractory multiple myeloma. Future Oncol 2019; 15:109-120. [DOI: 10.2217/fon-2018-0492] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plitidepsin is a marine-derived anticancer compound isolated from the Mediterranean tunicate Applidium albicans. It exerts pleiotropic effects on cancer cells, most likely by binding to the eukaryotic translation eEF1A2. This ultimately leads to cell-cycle arrest, growth inhibition and induction of apoptosis via multiple pathway alterations. Recently, a Phase III randomized trial in patients with relapsed/refractory multiple myeloma reported outcomes for plitidepsin plus dexamethasone compared with dexamethasone. Median progression-free survival was 3.8 months in the plitidepsin arm and 1.9 months in the dexamethasone arm (HR: 0.611; p = 0.0048). Here, we review preclinical data regarding plitidepsins mechanism of action, give an overview of clinical trial results across different tumor types as well as the latest results in multiple myeloma.
Collapse
Affiliation(s)
- Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology & Rheumatology, Oncologic Center, Salzburg Cancer Research Institute – Laboratory of Immunological & Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology & Rheumatology, Oncologic Center, Salzburg Cancer Research Institute – Laboratory of Immunological & Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology & Rheumatology, Oncologic Center, Salzburg Cancer Research Institute – Laboratory of Immunological & Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| |
Collapse
|
12
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|
13
|
van Andel L, Rosing H, Fudio S, Avilés P, Tibben MM, Gebretensae A, Schellens JHM, Beijnen JH. Liquid chromatography-tandem mass spectrometry assay to quantify plitidepsin in human plasma, whole blood and urine. J Pharm Biomed Anal 2017; 145:137-143. [PMID: 28662481 DOI: 10.1016/j.jpba.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023]
Abstract
Plitidepsin is an anti-cancer drug currently evaluated in phase I/II/III clinical trials. This article describes the development and validation of a bioanalytical assay to quantify plitidepsin in human plasma, urine and whole blood using HPLC-MS/MS. The analyte was extracted from the matrix by liquid-liquid extraction using tert-butyl methyl ether. Final extracts were injected onto a C18 column, gradient elution was applied for chromatographic separation and detection was performed on a triple quadrupole mass spectrometer operating in the positive ion mode. The assay was linear over the range 0.1-100ng/mL, with acceptable accuracy and precision values. This is the first reported bioanalytical assay quantifying plitidepsin using a stable isotopically labelled standard, achieving a lower limit of quantification of 0.1ng/mL in all three matrices, allowing the quantification of trace levels of plitidepsin, and accomplishing this in an analysis time of two minutes only. The presented method was successfully applied in a mass balance study with plitidepsin in patients with advanced cancer.
Collapse
Affiliation(s)
- L van Andel
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands.
| | - H Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands
| | - S Fudio
- Pharma Mar, S.A. Colmenar Viejo, Madrid, Spain
| | - P Avilés
- Pharma Mar, S.A. Colmenar Viejo, Madrid, Spain
| | - M M Tibben
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands
| | - A Gebretensae
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands
| | - J H M Schellens
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
van Andel L, Fudio S, Rosing H, Munt S, Miguel-Lillo B, González I, Tibben MM, de Vries N, de Vries Schultink AHM, Schellens JHM, Beijnen JH. Pharmacokinetics and excretion of 14C-Plitidepsin in patients with advanced cancer. Invest New Drugs 2017; 35:589-598. [PMID: 28111728 DOI: 10.1007/s10637-017-0432-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
Plitidepsin (Aplidin®) is a marine-derived anticancer compound currently investigated in phase III clinical trials. This article describes the distribution, metabolism and excretion of this novel agent and it mainly aims to identify the major routes of elimination. Six subjects were enrolled in a mass balance study during which radiolabelled plitidepsin was administered as a 3-h intravenous infusion. Blood samples were taken and urine and faeces were collected. Total radioactivity (TRA) analysis using Liquid Scintillation Counting (LSC) was done to determine the amount of radioactivity excreted from the body and plitidepsin concentrations in whole blood, plasma and urine were determined by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays. In total, a mean of 77.4% of the administered radioactivity was excreted over a time period of 20 days, of which 71.3% was recovered in faeces and 6.1% was found in urine. The majority excreted in urine was accounted for by unchanged plitidepsin, with only 1.5% of the total administered dose explained by metabolites in urine. Faeces, on the other hand contained low levels of parent compound, which means that most of the TRA excreted in faeces was accounted for by metabolites. TRA levels were 3.7 times higher in whole blood compared to plasma. Plitidepsin was widely distributed and plasma clearance was low. This study shows that red blood cells are a major distribution compartment and that the biliary route is the main route of total radioactivity excretion.
Collapse
Affiliation(s)
- L van Andel
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek / The Netherlands Cancer Institute, P.O. Box 90440, 1006, BK, Amsterdam, The Netherlands.
| | - S Fudio
- Pharma Mar, S.A. Colmenar Viejo, Madrid, Spain
| | - H Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek / The Netherlands Cancer Institute, P.O. Box 90440, 1006, BK, Amsterdam, The Netherlands
| | - S Munt
- Pharma Mar, S.A. Colmenar Viejo, Madrid, Spain
| | | | - I González
- Pharma Mar, S.A. Colmenar Viejo, Madrid, Spain
| | - M M Tibben
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek / The Netherlands Cancer Institute, P.O. Box 90440, 1006, BK, Amsterdam, The Netherlands
| | - N de Vries
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek / The Netherlands Cancer Institute, P.O. Box 90440, 1006, BK, Amsterdam, The Netherlands
| | - A H M de Vries Schultink
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek / The Netherlands Cancer Institute, P.O. Box 90440, 1006, BK, Amsterdam, The Netherlands
| | - J H M Schellens
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek / The Netherlands Cancer Institute, P.O. Box 90440, 1006, BK, Amsterdam, The Netherlands.,Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Alonso-Álvarez S, Pardal E, Sánchez-Nieto D, Navarro M, Caballero MD, Mateos MV, Martín A. Plitidepsin: design, development, and potential place in therapy. Drug Des Devel Ther 2017; 11:253-264. [PMID: 28176904 PMCID: PMC5261604 DOI: 10.2147/dddt.s94165] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plitidepsin is a cyclic depsipeptide that was first isolated from a Mediterranean marine tunicate (Aplidium albicans) and, at present, is manufactured by total synthesis and commercialized as Aplidin®. Its antitumor activity, observed in preclinical in vitro and in vivo studies has prompted numerous clinical trials to be conducted over the last 17 years, alone or in combination with other anticancer agents. Single-agent plitidepsin has shown limited antitumor activity and a tolerable safety profile in several malignancies, such as noncutaneous peripheral T-cell lymphoma, melanoma, and multiple myeloma. In patients with relapsed or refractory multiple myeloma, plitidepsin activity seems to be enhanced after addition of dexamethasone while remaining well tolerated, and a Phase III trial comparing plitidepsin plus dexamethasone vs dexamethasone alone is underway. Additional studies are required to better define the role of plitidepsin in combination with other active agents in these indications. Results of plitidepsin activity in other hematological malignancies or solid tumors have been disappointing so far. Further studies analyzing its mechanisms of action and potential biomarkers will help select patients who may benefit most from this drug. In this review, we critically analyze the published studies on plitidepsin in hematological malignancies and solid tumors and discuss its current role and future perspectives in treating these malignancies. We also review its design, pharmaceutical data, and mechanism of action.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Hematology Department, IBSAL-CIC-USAL, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Emilia Pardal
- Hematology Department, Hospital Virgen del Puerto, Plasencia, Spain
| | | | - Miguel Navarro
- Oncology Department, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Maria Dolores Caballero
- Hematology Department, IBSAL-CIC-USAL, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Maria Victoria Mateos
- Hematology Department, IBSAL-CIC-USAL, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alejandro Martín
- Hematology Department, IBSAL-CIC-USAL, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Abstract
Cyclic depsipeptides are polypeptides in which one or more amino acid is replaced by a hydroxy acid, resulting in the formation of at least one ester bond in the core ring structure. Many natural cyclic depsipeptides possessing intriguing structural and biological properties, including antitumor, antifungal, antiviral, antibacterial, anthelmintic, and anti-inflammatory activities, have been identified from fungi, plants, and marine organisms. In particular, the potent effects of cyclic depsipeptides on tumor cells have led to a number of clinical trials evaluating their potential as chemotherapeutic agents. Although many of the trials have not achieved the desired results, romidepsin (FK228), a bicyclic depsipeptide that inhibits histone deacetylase, has been shown to have clinical efficacy in patients with refractory cutaneous T-cell lymphoma and has received Food and Drug Administration approval for use in treatment. In this review, we discuss antitumor cyclic depsipeptides that have undergone clinical trials and focus on their structural features, mechanisms, potential applications in chemotherapy, and pharmacokinetic and toxicity data. The results of this study indicate that cyclic depsipeptides could be a rich source of new cancer therapeutics.
Collapse
|
17
|
Makam N S, Chidambara Murthy KN, Sultanpur CM, Rao RM. Natural molecules as tumour inhibitors: Promises and prospects. J Herb Med 2014. [DOI: 10.1016/j.hermed.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Maxwell JE, Sherman SK, O'Dorisio TM, Howe JR. Medical management of metastatic medullary thyroid cancer. Cancer 2014; 120:3287-301. [PMID: 24942936 DOI: 10.1002/cncr.28858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/21/2022]
Abstract
Medullary thyroid cancer (MTC) is an aggressive form of thyroid cancer that occurs in both heritable and sporadic forms. Discovery that mutations in the rearranged during transfection (RET) proto-oncogene predispose to familial cases of this disease has allowed for presymptomatic identification of gene carriers and prophylactic surgery to improve the prognosis of these patients. A significant number of patients with the sporadic type of MTC and even those with familial disease still present with lymph node or distant metastases, making surgical cure difficult. Over the past several decades, many different types of therapy for metastatic disease have been attempted with limited success. Improved understanding of the molecular defects and pathways involved in both familial and sporadic MTC has resulted in new hope for these patients with the development of drugs targeting the specific alterations responsible. This new era of targeted therapy with kinase inhibitors represents a significant step forward from previous trials of chemotherapy, radiotherapy, and hormone therapy. Although much progress has been made, additional agents and strategies are needed to achieve durable, long-term responses in patients with metastatic MTC. This article reviews the history and results of medical management for metastatic MTC from the early 1970s up until the present day.
Collapse
Affiliation(s)
- Jessica E Maxwell
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | | |
Collapse
|
19
|
Nano-encapsulation of plitidepsin: in vivo pharmacokinetics, biodistribution, and efficacy in a renal xenograft tumor model. Pharm Res 2013; 31:983-91. [PMID: 24287622 DOI: 10.1007/s11095-013-1220-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/22/2013] [Indexed: 12/26/2022]
Abstract
PURPOSE Plitidepsin is an antineoplasic currently in clinical evaluation in a phase III trial in multiple myeloma (ADMYRE). Presently, the hydrophobic drug plitidepsin is formulated using Cremophor®, an adjuvant associated with unwanted hypersensitivity reactions. In search of alternatives, we developed and tested two nanoparticle-based formulations of plitidepsin, aiming to modify/improve drug biodistribution and efficacy. METHODS Using nanoprecipitation, plitidepsin was loaded in polymer nanoparticles made of amphiphilic block copolymers (i.e. PEG-b-PBLG or PTMC-b-PGA). The pharmacokinetics, biodistribution and therapeutic efficacy was assessed using a xenograft renal cancer mouse model (MRI-H-121 xenograft) upon administration of the different plitidepsin formulations at maximum tolerated multiple doses (0.20 and 0.25 mg/kg for Cremophor® and copolymer formulations, respectively). RESULTS High plitidepsin loading efficiencies were obtained for both copolymer formulations. Considering pharmacokinetics, PEG-b-PBLG formulation showed lower plasma clearance, associated with higher AUC and Cmax than Cremophor® or PTMC-b-PGA formulations. Additionally, the PEG-b-PBLG formulation presented lower liver and kidney accumulation compared with the other two formulations, associated with an equivalent tumor distribution. Regarding the anticancer activity, all formulations elicited similar efficacy profiles, as compared to the Cremophor® formulation, successfully reducing tumor growth rate. CONCLUSIONS Although the nanoparticle formulations present equivalent anticancer activity, compared to the Cremophor® formulation, they show improved biodistribution profiles, presenting novel tools for future plitidepsin-based therapies.
Collapse
|
20
|
Phase I-II study of plitidepsin and dacarbazine as first-line therapy for advanced melanoma. Br J Cancer 2013; 109:1451-9. [PMID: 23989947 PMCID: PMC3776988 DOI: 10.1038/bjc.2013.477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This phase I-II trial compared plitidepsin 1-h infusion alone or combined with dacarbazine (DTIC) 1-h infusion as front-line therapy for advanced melanoma. METHODS The recommended dose (RD) for plitidepsin/DTIC was defined in the first stage. In the second stage, patients were randomised to receive single-agent plitidepsin 3.2 mg m(-2) (n = 20) on days 1, 8 and 15 every 4 weeks (q4wk) or plitidepsin 2.4 mg m(-2) on days 1, 8 and 15 q4wk combined with DTIC 800 mg m(-2) q4wk (n = 38). RESULTS The overall response rate with plitidepsin/DTIC was 21.4%; all responders had normal serum lactate dehydrogenase (LDH) levels and performance status ≤ 1 at baseline. Median progression-free survival (PFS) with plitidepsin/DTIC was 3.3 months in all patients, and 4.3 months in those with baseline normal LDH. No responses occurred with single-agent plitidepsin and median PFS was 1.5 months. Both regimens were well tolerated. Haematological abnormalities were more common and transaminase increases more severe with plitidepsin/DTIC. Treatment-related transaminase increases leading to infusion omission on day 8 were relatively common. No drug-drug pharmacokinetic interactions were found. CONCLUSION This plitidepsin/DTIC schedule has antitumour activity and manageable toxicity in advanced melanoma. Further evaluation of plitidepsin 2.4 mg m(-2) fortnightly and DTIC 800 mg m(-2) q4wk is recommended.
Collapse
|
21
|
|
22
|
Ribrag V, Caballero D, Fermé C, Zucca E, Arranz R, Briones J, Gisselbrecht C, Salles G, Gianni AM, Gomez H, Kahatt C, Corrado C, Szyldergemajn S, Extremera S, de Miguel B, Cullell-Young M, Cavalli F. Multicenter phase II study of plitidepsin in patients with relapsed/refractory non-Hodgkin's lymphoma. Haematologica 2012; 98:357-63. [PMID: 23065525 DOI: 10.3324/haematol.2012.069757] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This phase II clinical trial evaluated the efficacy, safety and pharmacokinetics of plitidepsin 3.2 mg/m(2) administered as a 1-hour intravenous infusion weekly on days 1, 8 and 15 every 4 weeks in 67 adult patients with relapsed/refractory aggressive non-Hodgkin's lymphoma. Patients were divided into two cohorts: those with non-cutaneous peripheral T-cell lymphoma (n=34) and those with other lymphomas (n=33). Efficacy was evaluated using the International Working Group criteria (1999). Of the 29 evaluable patients with non-cutaneous peripheral T-cell lymphoma, six had a response (overall response rate 20.7%; 95% confidence interval, 8.0%-39.7%), including two complete responses and four partial responses. No responses occurred in the 30 evaluable patients with other lymphomas (including 27 B-cell lymphomas). The most common plitidepsin-related adverse events were nausea, fatigue and myalgia (grade 3 in <10% of cases). Severe laboratory abnormalities (lymphopenia, anemia, thrombocytopenia, and increased levels of transaminase and creatine phosphokinase) were transient and easily managed by plitidepsin dose adjustments. The pharmacokinetic profile did not differ from that previously reported in patients with solid tumors. In conclusion, plitidepsin monotherapy has clinical activity in relapsed/refractory T-cell lymphomas. Combinations of plitidepsin with other chemotherapeutic drugs deserve further evaluation in patients with non-cutaneous peripheral T-cell lymphoma. (clinicaltrials.gov identifier: NCT00884286).
Collapse
Affiliation(s)
- Vincent Ribrag
- Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Geoerger B, Estlin EJ, Aerts I, Kearns P, Gibson B, Corradini N, Doz F, Lardelli P, Miguel BD, Soto A, Prados R, Vassal G. A phase I and pharmacokinetic study of plitidepsin in children with advanced solid tumours: An Innovative Therapies for Children with Cancer (ITCC) study. Eur J Cancer 2012; 48:289-96. [DOI: 10.1016/j.ejca.2011.10.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
24
|
Soto-Matos A, Szyldergemajn S, Extremera S, Miguel-Lillo B, Alfaro V, Coronado C, Lardelli P, Roy E, Corrado CS, Kahatt C. Plitidepsin has a safe cardiac profile: a comprehensive analysis. Mar Drugs 2011; 9:1007-1023. [PMID: 21747745 PMCID: PMC3131558 DOI: 10.3390/md9061007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022] Open
Abstract
Plitidepsin is a cyclic depsipeptide of marine origin in clinical development in cancer patients. Previously, some depsipeptides have been linked to increased cardiac toxicity. Clinical databases were searched for cardiac adverse events (CAEs) that occurred in clinical trials with the single-agent plitidepsin. Demographic, clinical and pharmacological variables were explored by univariate and multivariate logistic regression analysis. Forty-six of 578 treated patients (8.0%) had at least one CAE (11 patients (1.9%) with plitidepsin-related CAEs), none with fatal outcome as a direct consequence. The more frequent CAEs were rhythm abnormalities (n = 31; 5.4%), mostly atrial fibrillation/flutter (n = 15; 2.6%). Of note, life-threatening ventricular arrhythmias did not occur. Myocardial injury events (n = 17; 3.0%) included possible ischemic-related and non-ischemic events. Other events (miscellaneous, n = 6; 1.0%) were not related to plitidepsin. Significant associations were found with prostate or pancreas cancer primary diagnosis (p = 0.0017), known baseline cardiac risk factors (p = 0.0072), myalgia present at baseline (p = 0.0140), hemoglobin levels lower than 10 g/dL (p = 0.0208) and grade ≥2 hypokalemia (p = 0.0095). Treatment-related variables (plitidepsin dose, number of cycles, schedule and/or total cumulative dose) were not associated. Electrocardiograms performed before and after plitidepsin administration (n = 136) detected no relevant effect on QTc interval. None of the pharmacokinetic parameters analyzed had a significant impact on the probability of developing a CAE. In conclusion, the most frequent CAE type was atrial fibrillation/atrial flutter, although its frequency was not different to that reported in the age-matched healthy population, while other CAEs types were rare. No dose-cumulative pattern was observed, and no treatment-related variables were associated with CAEs. Relevant risk factors identified were related to the patient's condition and/or to disease-related characteristics rather than to drug exposure. Therefore, the current analysis supports a safe cardiac risk profile for single-agent plitidepsin in cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Vicente Alfaro
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-93-4037094; Fax: +34-93-4491079
| | | | | | | | | | | |
Collapse
|
25
|
Salazar R, Plummer R, Oaknin A, Robinson A, Pardo B, Soto-Matos A, Yovine A, Szyldergemajn S, Calvert AH. Phase I study of weekly plitidepsin as 1-hour infusion combined with carboplatin in patients with advanced solid tumors or lymphomas. Invest New Drugs 2010; 29:1406-13. [PMID: 20623160 DOI: 10.1007/s10637-010-9488-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/24/2010] [Indexed: 11/28/2022]
Abstract
This dose-escalating phase I clinical trial was designed to determine the recommended dose (RD) and to assess the safety and feasibility of weekly plitidepsin (1-hour i.v. infusion, Days 1, 8 and 15) combined with carboplatin (1-hour i.v. infusion, Day 1, after plitidepsin) in 4-week (q4wk) cycles given to patients with advanced solid tumors or lymphomas. Twenty patients were enrolled and evaluable for both safety and efficacy. The starting dose was plitidepsin 1.8 mg/m(2) and carboplatin area under the curve (AUC) = 5 min*mg/ml; dose escalation proceeded based on worst toxicity in the previous cohort. The maximum tolerated dose (MTD) was plitidepsin 3.0 mg/m(2) and carboplatin AUC = 5 min*mg/ml, with grade 3 transaminase increases as the most common dose-limiting toxicities (DLTs). The RD for phase II studies was plitidepsin 2.4 mg/m(2) and carboplatin AUC = 5 min*mg/ml, with fatigue, myalgia and nausea as the most common drug-related adverse events (AEs). No unexpected toxicity was seen. Twelve patients (60%), ten of whom were heavily pretreated (≥2 previous chemotherapy lines) showed stable disease (SD), with a median time to progression (TTP) of 4.4 months. In conclusion, plitidepsin 2.4 mg/m(2) and carboplatin AUC = 5 min*mg/ml is a safe dose for future phase II studies evaluating the use of this combination in cancer patients potentially sensitive to platinum-based therapy.
Collapse
Affiliation(s)
- Ramón Salazar
- Instituto Catalán de Oncología, Ctra. Gran Vía, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Andavan GSB, Lemmens-Gruber R. Cyclodepsipeptides from marine sponges: natural agents for drug research. Mar Drugs 2010; 8:810-34. [PMID: 20411126 PMCID: PMC2857363 DOI: 10.3390/md8030810] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/04/2010] [Accepted: 03/19/2010] [Indexed: 11/24/2022] Open
Abstract
A number of natural products from marine sponges, such as cyclodepsipeptides, have been identified. The structural characteristics of this family of cyclic peptides include various unusual amino acid residues and unique N-terminal polyketide-derived moieties. Papuamides are representatives of a class of marine sponge derived cyclic depsipeptides, including callipeltin A, celebesides A and B, homophymine A, mirabamides, microspinosamide, neamphamide A and theopapuamides. They are thought to have cytoprotective activity against HIV-1 in vitro by inhibiting viral entry. Jasplakinolide, a representative member of marine sponge-derived cyclodepsipeptides that include arenastatin A, geodiamolides, homophymines, spongidepsin and theopapuamides, is a potent inducer of actin polymerization in vitro. Although actin dynamics is essential for tumor metasasis, no actin targeting drugs have been used in clinical trials due to their severe cytotoxicity. Nonetheless, the actin cytoskeleton remains a potential target for anti-cancer drug development. These features imply the use of cyclodepsipeptides as molecular models in drug research.
Collapse
Affiliation(s)
| | - Rosa Lemmens-Gruber
- * Author to whom correspondence should be addressed; E-Mail:
; Tel.: +43-1-4277-55325; Fax: +43-1-4277-9553
| |
Collapse
|
27
|
Phase II study of plitidepsin 3-hour infusion every 2 weeks in patients with unresectable advanced medullary thyroid carcinoma. Am J Clin Oncol 2010; 33:83-8. [PMID: 19704366 DOI: 10.1097/coc.0b013e31819fdf5e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To evaluate the antitumor response, time-to-event efficacy endpoints and toxicity of plitidepsin (Aplidin) 5 mg/m as a 3-hour intravenous (i.v.) infusion every 2 weeks in patients with unresectable advanced medullary thyroid carcinoma (MTC). METHODS Sixteen patients with MTC and disease progression or large tumor burden received plitidepsin. Tumor response and time-related parameters were evaluated according to Response Evaluation Criteria in Solid Tumors. Secondary efficacy endpoints were marker response (calcitonin and carcinoembryonic antigen), clinical benefit and quality of life. Safety was assessed using the National Cancer Institute Common Toxicity Criteria. RESULTS A total of 141 cycles (median, 9 per patient; range, 1-24) were administered. No complete responses or partial responses (PR) were found, and 12 patients had stable disease for >8 weeks. Median follow-up was 15.0 months. Median time to progression was 5.3 months. Median overall survival could not be calculated, but 86.7% and 66.0% of patients were alive at 6 and 12 months. Marker response included 1 unconfirmed PR and 2 stabilizations for calcitonin, and 1 unconfirmed PR and 4 stabilizations for calcitonin and carcinoembryonic antigen. One patient showed clinical benefit. Quality of life scores generally decreased during the study. Most treatment-related adverse events were mild or moderate. Grade 3 lymphopenia was the only severe hematological toxicity found (2 patients). Severe nonhematological toxicities were grade 3 creatine phosphokinase increase (2 patients, with no myalgia or muscular weakness) and transient grade 3 alanine aminotransferase increase (5 patients). CONCLUSIONS Single-agent plitidepsin given as 3-hour i.v. infusions every 2 weeks was generally well tolerated but showed limited clinical activity in patients with unresectable advanced MTC.
Collapse
|
28
|
Dumez H, Gallardo E, Culine S, Galceran JC, Schöffski P, Droz JP, Extremera S, Szyldergemajn S, Fléchon A. Phase II study of biweekly plitidepsin as second-line therapy for advanced or metastatic transitional cell carcinoma of the urothelium. Mar Drugs 2009; 7:451-63. [PMID: 19841725 PMCID: PMC2763111 DOI: 10.3390/md7030451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/28/2009] [Accepted: 09/14/2009] [Indexed: 01/24/2023] Open
Abstract
The objective of this exploratory, open-label, single-arm, phase II clinical trial was to evaluate plitidepsin (5 mg/m(2)) administered as a 3-hour continuous intravenous infusion every two weeks to patients with locally advanced/metastatic transitional cell carcinoma of the urothelium who relapsed/progressed after first-line chemotherapy. Treatment cycles were repeated for up to 12 cycles or until disease progression, unacceptable toxicity, patient refusal or treatment delay for >2 weeks. The primary efficacy endpoint was objective response rate according to RECIST. Secondary endpoints were the rate of SD lasting > or = 6 months and time-to-event variables. Toxicity was assessed using NCI-CTC v. 3.0. Twenty-one patients received 57 treatment cycles. No objective tumor responses occurred. SD lasting <6 months was observed in two of 18 evaluable patients. With a median follow-up of 4.6 months, the median PFR and the median OS were 1.4 months and 2.3 months, respectively. The most common AEs were mild to moderate nausea, fatigue, myalgia and anorexia. Anemia, lymphopenia, and increases in transaminases, alkaline phosphatase and creatinine were the most frequent laboratory abnormalities. No severe neutropenia occurred. Treatment was feasible and generally well tolerated in this patient population; however the lack of antitumor activity precludes further studies of plitidepsin in this setting.
Collapse
Affiliation(s)
- Herlinde Dumez
- University Hospitals Gasthuisberg, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium; E-Mail: (P.S.)
| | - Enrique Gallardo
- Corporació Parc Taulí, C/Parc Taulí, s/n, 08208 Sabadell (Barcelona), Spain; E-Mail: (E.G.)
| | - Stephane Culine
- Parc Euromedicine, 323 rue des Apothicaires, 34298 Montpellier, France; E-Mail: (S.C.)
| | - Joan Carles Galceran
- Hospital Universitari del Mar, Passeig Marítim, 25-29, 08003 Barcelona, Spain; E-Mail: (J.C.G.)
| | - Patrick Schöffski
- University Hospitals Gasthuisberg, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium; E-Mail: (P.S.)
| | - Jean P. Droz
- Centre Léon Bérard, 28 Rue Laennec, F-69008, Lyon, France; E-Mail: (J.P.D.); (A.F.)
| | - Sonia Extremera
- Pharma Mar S.A., Av. de los Reyes, 1, PI La Mina-Norte, 28770 Colmenar Viejo, Madrid, Spain; E-Mails: (S.E.); (S.S.)
| | - Sergio Szyldergemajn
- Pharma Mar S.A., Av. de los Reyes, 1, PI La Mina-Norte, 28770 Colmenar Viejo, Madrid, Spain; E-Mails: (S.E.); (S.S.)
| | - Aude Fléchon
- Centre Léon Bérard, 28 Rue Laennec, F-69008, Lyon, France; E-Mail: (J.P.D.); (A.F.)
| |
Collapse
|
29
|
Phase II randomized study of Plitidepsin (Aplidin), alone or in association with L-carnitine, in patients with unresectable advanced renal cell carcinoma. Mar Drugs 2009; 7:57-70. [PMID: 19370171 PMCID: PMC2666889 DOI: 10.3390/md7010057] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 11/17/2022] Open
Abstract
This randomized phase II study evaluated two schedules of the marine compound Plitidepsin with or without co-administration of L-carnitine in patients with renal cell carcinoma. Patients had adequate performance status and organ function. The primary endpoint was the rate of disease control (no progression) at 12 weeks (RECIST). Other endpoints included the response rate and time dependent efficacy measures. The trial also assessed the efficacy of L-carnitine to prevent Plitidepsin-related toxicity. The two regimes given as 24 hour infusion every two weeks showed hints of antitumoral activity. Disease control at 12 weeks was 15.8% in Arm A (5mg/m2, no L-carnitine) and 11,1% in Arm B (7 mg/m2 with L-carnitine). Two partial responses were observed in Arm A (19 patients), none in Arm B (20 patients). Both schedules had the same progression-free interval (2.1 months). The median overall survival was 7.0 and 7.6 months. The safety profile was similar in both arms of the trial and adverse events were mainly mild to moderate (NCI CTC version 2.0). Increasing the dose to 7 mg/m2 did not increase the treatment efficacy but the incidence of transaminase and CPK elevations and serious AEs. Coadministration of L-carnitine did not prevent muscular toxicity or CPK-elevation associated with Plitidepsin.
Collapse
|